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A B S T R A C T   

In this research, a novel snoring sound classification (SSC) method is presented by proposing a new feature 
generation function to yield a high classification rate. The proposed feature extractor is named as Local Dual 
Octal Pattern (LDOP). A novel LDOP based SSC method is presented to solve the low success rate problems for 
Munich-Passau Snore Sound Corpus (MPSSC) dataset. Multilevel discrete wavelet transform (DWT) decompo-
sition and the LDOP based feature generation, informative features selection with ReliefF and iterative neigh-
borhood component analysis (RFINCA), and classification using k nearest neighbors (kNN) are fundamental 
phases of the proposed SSC method. Seven leveled DWT transform, and LDOP are used together to generate low, 
medium, and high levels features. This feature generation network extracts 4096 features in total. RFINCA selects 
95 the most discriminative and informative ones of these 4096 features. In the classification phase, kNN with 
leave one out cross-validation (LOOCV) is used. 95.53% classification accuracy and 94.65% unweighted average 
recall (UAR) have been achieved using this method. The proposed LDOP based SSC method reaches 22% better 
result than the best of the other state-of-the-art machine learning and deep learning-based methods. These results 
clearly denote the success of the proposed SSC method.   

1. Introduction 

Snoring is one of the common sleep problems for humans. It nega-
tively affects the sleep partner and sleep quality of the person [1–3]. If 
snoring is not treated, health risks such as insomnia, psychological 
problems, heart conditions, and sleep apnea can occur [4]. People snore 
unconsciously during sleep, and snoring is caused by some problems in 
the respiratory system [5,6]. It is formed by the vibration of the tissues 
between the palate and the small tongue while breathing. Snoring is not 
a disease alone [4]. 

However, it negatively affects the quality of life of the person. Low 
sleep quality causes poor performance during the day. During sleep, 
there is a decrease in the amount of oxygen in the blood from snoring. 
This may reveal the risks of various health problems [7,8]. It can be the 
underlying cause of health problems such as heart conditions, hyper-
tension, stroke, diabetes. It can also cause deterioration of family re-
lationships. Snoring is a treatable problem [9–11]. Treatment of this 
problem is possible with therapies and surgical interventions. The 
application of the treatment depends on the correct determination of the 
source of the snoring problem. Therefore, Drug-Induced Sleep 

Endoscopy (DISE) is applied for diagnosis before treatment. The 
long-term video recordings have been examined to diagnose snore type 
[12]. This technique has a high time cost and not comfortable for the 
person since the drug is used. When the diagnosis is unsuccessful, this 
process is repeated. Detecting snoring problems with automatic classi-
fiers using sound signals is a much faster and more comfortable method 
[13,14]. Computer-aided automatic detection systems increase the 
success of accurate diagnosis and treatment. Snoring sound signals can 
be analyzed to diagnose the sleep diseases of the person. Snoring sounds 
are irregular, and frequency bands differ from person to person. It is 
difficult to distinguish breath sounds [15]. Therefore, it is necessary to 
recommend a general snore sound classification method [16]. There are 
many studies about snore sound classification in the literature, and some 
of them are listed in Table 1. 

The used abbreviations in Table 1 are given as follows. SVM: support 
vector machine [28], HOG: histogram of oriented gradients [29], GRU: 
gated recurrent unit [30], MFCC: Mel-frequency cepstrum coefficients 
[31], CNN: convolutional neural networks [32], LBP: local binary 
pattern [33], RNN: recursive neural network [34], GMM: Gaussian 
mixture model [35], DNN: deep neural network [36], SCAT: deep 
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scattering spectrum [37], CRNN: convolutional recurrent neural net-
works [38]. 

Our presented feature extraction function is named Local Dual Octal 
Pattern (LDOP). A multileveled feature generation network is presented 
using LDOP and multileveled discrete wavelet transform (DWT) [39,40] 
with sym8 filter. ReliefF [41,42] and iterative neighborhood component 
analysis [43] (RFINCA) method selects the most informative and 
discriminative features. kNN [44,45] classifier is used in the classifica-
tion phase, and the testing-validation strategy is selected to leave one 
out cross-validation (LOOCV) [46]. 

Our main motivation is to solve the classification problem of the 
snore types on the MPSSC dataset. As can be seen from Table 1, previ-
ously presented automatic snoring sound classification (SSC) methods 
did not achieve high success rates on MPSSC. Therefore, we presented 
this LDOP and RFINCA based SSC method. The contributions of our SSC 
method are given below.  

• SSC is one of the difficult problems for machine learning methods. A 
novel feature extractor (LDOP) is presented to solve this problem 
using this model.  

• The optimal number of features selection problems is solved using 
the RFINCA feature selector.  

• A high accurate SSC method is presented using the proposed LDOP 
and RFINCA together. General results are also presented using the 
LOOCV validation and testing strategy. The proposed LDOP based 
SSC method achieves approximately 22% higher classification rates 
to the best of others. 

2. The used snore sound dataset 

The MPSSC dataset was presented at the INTERSPEECH 2017 
Computational Paralinguistic Challenge. Dataset was collected from 
patients who used DISE. Snoring sounds were collected by three different 
medical centers. These sounds were labeled in four classes. These four 
classes are named as VOTE [14]. V, O, T, and E represent vibration levels 
of Velum, oropharyngeal area, tongue, and epiglottis, respectively [47]. 
The collected sound signals were preprocessed to 16 bit with 16 kHz 

frequency [14]. There are 828 sounds in this dataset with three main 
folders (train, development, test). The attributes of the used dataset are 
given in Table 2. 

3. Local dual octal pattern 

The proposed LDOP is utilized as the primary feature generation 
function of this model. The main objective of the LDOP is to generate 
discriminative features from a sound signal. It is a one-dimensional 
feature generation function. It uses two octal blocks and one center 
value. Therefore, 17 sized overlapping blocks are utilized for feature 
generation. The used overlapping block is shown in Fig. 1. To better 
express this method, steps are given below. 

Step 1: Divide sound signal into 17 sized overlapping windows. 

windowt = sound(i : i+ 16), t = {1, 2,…,L − 16}, i = {1, 2,…, L} (1)  

where windowt represents tth overlapping window with a size of 17, i, 
and t are index values. 

Step 2: Assign center value and contamination area of it. 
Step 3: Generate the left and right bits using the signum function. 

bitleft(i) = sig(window(9),window(i) ), i = {1, 2,…, 8} (2)  

bitright(i) = sig(window(9),window(9 + i) ) (3)  

sig(s, d) =
{

0, s − d < 0
1, s − d ≥ 0 (4)  

where sig(, .), s and d define the signum function, the first input, and the 
second input of the signum function. The values are utilized as the im-
mune power of these elements. If the immune power of the center value 
bigger than other values, it can infect them. Therefore, the signum 
function is selected to generate binary features. 

Step 4: Calculate decimal left and right values. 

left(t) =
∑8

i=1
bitleft(i)∗28− i (5)  

right(t) =
∑8

i=1
bitright(i)∗28− i (6) 

Step 5: Extract histograms of the left and right signals. These signals 
are coded with 8-bits. Therefore, the length of their histograms is 
calculated as 28 = 256. Therefore, two arrays are defined as left, and 
right histograms and initial values of them are assigned as zero. Histo-
grams calculation phase is described in Eqs. 7–8 mathematically. 

histleft(left(t) ) = histleft(left(t) ) + 1 (7)  

histright(right(t) ) = histright(right(t) ) + 1 (8)  

where histleft and histright represent left and right histograms. 
Step 6: Concatenate the extracted left and right histograms to obtain 

a feature vector with a size of 512. 

featvec(j) = histleft(j), j = {1, 2,…, 256} (9) 

Table 1 
Literature Review about snore sound classification.  

Studies Year Method Dataset Criteria and result 

[17] 2017 MFCC, ELM, SVM MPSSC [14] 
Unweighted Average 
Recall (UAR) 
49.38% 

[18] 2017 
CNN and Alexnet, 
VGG19 MPSSC [14] 

UAR 
67.0% 

[19] 2018 LBP and HOG MPSSC [14] 
UAR 
66.5% 

[20] 2017 Deep CNN MPSSC [14] UAR 
72.6% 

[14] 2018 SVM, MFCC MPSSC [14] UAR 
55.8% 

[21] 2019 RNN Their 
Dataset 

Accuracy, 
Sensitivity, F1 Score 
99.2% 

[22] 2017 SVM MPSSC [14] UAR 
49.58% 

[23] 2017 GMM, SCAT and DNN MPSSC [14] UAR 
69.71% 

[24] 2020 CRNN 
A3-Snore 
dataset [24] 

Average Precision 
94.92% 

[25] 2018 CNN- Dual Conv. GRU MPSSC [14] 
UAR 
63.8% 

[26] 2019 Conditional Generative 
Adversarial Networks 

MPSSC [14] UAR 
67.4% 

[27] 2019 Wavelet Features MPSSC [14] UAR 
69.4% 

[12] 2020 SVM 
Their 
Dataset 

Recognition Rate 
91.14%  

Table 2 
The properties of the used MPSSC dataset [47]. The MPSSC has three folds, and 
these are train, development, and test. There are four classes, and these classes 
are named V, O, T, and E.  

Class Name Train Development Test Total 

V (Velum) 168 161 155 484 
O (Oropharyngeal) 76 75 65 216 
T (Tongue) 8 15 16 39 
E (Epiglottis) 30 32 27 89 
Total 282 283 263 828  
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featvec(j+ 256) = histright(j) (10)  

where featvec defines feature vector. 
As it can be seen in these five steps, the proposed LDOP generates 

512 features. In the proposed SSC method, the LDOP is utilized as a 
fundamental feature generation function. The procedure of the proposed 
LDOP is also shown in Fig. 2 to implement this method easily. 

Feature generation is processed using the defined LDOP procedure. 

4. Proposed snore sound classification method 

A new SSC method is presented in this paper. The primary compo-
nents of this SSC method are the multilevel feature generation, feature 
selection using RFINCA, and classification with LOOCV. To present a 
multilevel feature generation network uses the proposed LDOP feature 
generator as a primary feature extraction function and DWT [48]. Here, 
DWT is utilized as a decomposition/level creation method. To generate 
features, LDOP is applied to each level. ReliefF and NCA are 
weight-based feature selectors. RFINCA is presented to use effectiveness 
both of them and select the optimal features automatically (without 
using trial and error method). In the classification phase, a con-
ventional/shallow classifier (kNN [44,45]) is used. The LOOCV is used 
to obtain general results. 

Graphical illustration of the proposed LDOP and RFINCA based SSC 
method is shown in Fig. 3. 

This method uses a multileveled feature extraction network. LDOP is 
utilized as a feature extraction function, and 7-leveled one dimensional 
DWT with Symlet 8 filter is used as a decomposition method. This 
network has eight levels (we used raw snoring sound and seven low pass 
filters of it), and LDOP extracts 512 features from each level. Therefore, 
4096 features are generated using the proposed LDOP and DWT based 
feature generation network. Two feature selectors are used in the feature 
selection phase. These are ReliefF [41,42] and NCA [49,50]. Both of 
them have weight calculation capability using a distance-based fitness 
function. Therefore, each feature is normalized to use these feature se-
lectors effectively. While NCA generates positive weights, ReliefF can 
generate both positive and negative weights. The generated negative 

weighted features with ReliefF can be assigned as superfluous features. 
Therefore, ReliefF is applied to extracted and normalized 4096 features. 
Superfluous features are eliminated using generated weights with 
ReliefF. One of the fundamental problem of the NCA is to not select 
optimum number of features automatically. To solve this problem, an 
iterative method is used and kNN is utilized as loss value calculator in 
this phase. In this work, ReliefF selected 2553 of these 4096 features and 
iterative NCA select 95 of the selected 2553 features. These selected 95 
features are utilized as input of the kNN classifier. LOOCV is selected for 
training and testing. Steps of the proposed LDOP and RFINCA based SSC 
method are given in below. 

Step 0: Load snoring sound (SS). 
Step 1: Apply 7 leveled DWT to SS applying symlet 8 filter. 

[
L1, H1] = DWT(SS, sym8) (11)  

[
LG, HG] = DWT

(
LG− 1, sym8

)
, G = {2, 3,…, 7} (12)  

where LG and HG are Gth leveled low pass filter and high pass filter sub- 
bands, respectively. DWT(., .) defines DWT function, and sym8 is symlet 
8 filter. 

Step 2: Generate features using LDOP. Details of the LDOP are 
explained in Section 3, and the pseudo-code of this procedure is shown 
in Fig. 3. 

ft1 = LDOP(SS) (13)  

ftT = LDOP
(
LT − 1), T = {2, 3,…, 8} (14)  

where ftT is feature vector of the Tth level. 
Step 3: Concatenate the generated features and obtain a 4096 sized 

feature vector (fv). 

fv((j − 1)∗512 + i ) = ftj(i), j = {1, 2,…, 8} (15) 

The steps 1–3 defines LDOP and DWT based feature generation 
networks. 

Step 4: Apply min-max normalization to fv. 

Fig. 1. The used 17 sized windows. The 9th value of this window assigned as center value and contamination area of it is shown. The contamination area is 
categorized into two groups, and these groups are called left and right. 

Fig. 2. LDOP feature generation procedure.  

T. Tuncer et al.                                                                                                                                                                                                                                  



Biomedical Signal Processing and Control 63 (2021) 102173

4

X =
fv − min(fv)

max(fv) − min(fv)
(16)  

where X denotes normalized features. 
Step 5: Calculate weights of the ReliefF using ReliefF function, X and 

target (actual classes). Using these weights, choose positive weighted 
features. 

wr = ReliefF(X, target, 10) (17)  

counter = 1 (18)  

XP(counter) = X(i) and counter = counter + 1, if wr(i) > 0, i

= {1, 2,…, 4096} (19)  

where wr is weights of the ReliefF, XP defines positive weighted features. 
Step 6: Apply NCA to XP and calculate the sorted index of the fea-

tures. 

index = NCA(XP, target, sgd) (20)  

where sgd is stochastic gradient descend optimization function. In the 
NCA, initial weights are assigned randomly. Then, these weights are 
updated using a Manhattan distance based fitness function and an 
optimization method. 

Step 7: Use the iterative feature selection procedure and calculate the 
loss value of each selected feature. In this step, a range of the number of 
features is determined to decrease computational cost. Our range is from 
40 to 540. Optimal features are selected using minimum loss valued 
features. Eqs. 21–24 defines Step 7 mathematically. 

featK(i) = XP(index(i) ), K = {1, 2,…, 501}, i = {1, 2,…,K + 39} (21)  

loss(K) = kNN(featK , target, 1,Manhattan) (22)  

[mini, ind] = min(loss) (23)  

feature(i) = XP(i), i = {1, 2,…, ind + 39} (24)  

where featK is Kth selected features by NCA, kNN(., ., .) represents kNN 
classifier, and parameters of it are used features, target, k value, and 
distance metric, respectively. mini and ind define minimum loss value 
and index of the minimum value. 

Step 8: Classify final selected features (feature) using kNN classifier. k 
value, distance metric, and testing and training strategy of this classifier 
are 1, Manhattan distance, and LOOCV, respectively. The results are 
calculated using this classifier. 

5. Results 

In this work, we used a publicly and freely published snore sounds 
dataset, and it is called as MPSSC. This dataset contains 828 snore 

sounds with 4 (classes of the MPSSC are V, O, T, E) classes. These sounds 
are divided into three categories, and these categories are named as 
training, testing, and development. In the previously presented methods 
which used the MPSSC dataset, two of these three categories were used 
for training, and one of them was used to tests. In this work, a novel 
training and testing strategy is used. We used all of the sound signals, 
and testing and training were processed using LOOCV. Here, all of the 
sounds have been used (testing, training, and validation). Using LOOCV, 
a general result of the model was achieved. For example, Janot et al. 

[14] presented six results (P
(

3
2

)

= 6). Using 6 results, evaluation of the 

used machine learning model on this dataset is difficult. Because, 6 
different success rates are calculated for a dataset. Therefore, LOOCV 
was used to obtain a general result for these three categories. MAT-
LAB2019b programming environment was used on a desktop computer 
to implement our proposed SSC method. This desktop computer has 
Windows 10.1 operating system, i7 7th generation 3.2 GHz micropro-
cessor, and 16 GB main memory. The proposed LDOP and DWT based 
feature generation network. RFINCA feature selector were coded using 
MATLAB m files. In the classification phase, we used MATLAB Classifi-
cation Learner (MCL) toolbox. In the MCL toolbox, there are only hold 
out validation and k-fold cross-validation testing and training options. 
Therefore, we selected a k-fold cross validation option, and k was set as 
10. Fine kNN classifier was selected, and the distance metric of it chosen 
as the city block (Manhattan). Then, the source code of the used Fine 
kNN was generated, and the k-fold section was changed as 828 to 
calculate the LOOCV result of this classifier. UAR was used as an eval-
uation metric in previously presented SSC methods. However, we used 
UAR, unweighted average precision (UAP), F1 score using UAR and 
UAP, the geometric mean of the recall values, and classification accu-
racy to evaluate our proposed LDOP and RFINCA based SSC method 
comprehensively. The used procedure to calculate these performance 
metrics is shown in Fig. 4 [51–53]. 

With the performance procedure, which is shown in Fig. 4, accuracy, 
UAR, UAP, F1-score, and geometric mean values of the proposed LDOP 
and RFINCA based method were calculated, and the obtained results 
were listed in Table 3. 

To validate these results, which are shown in Table 3, we demon-
strated the confusion matrix of our SSC method was shown in Table 4. 

6. Discussions 

This paper proses a novel LDOP and RFINCA based SSC method. 
Automated SSC is crucial to detect sleeping activities. Therefore, we 
presented a novel automated classification method, and this classifica-
tion method was tested on the MPSSC database. Many methods were 
used this database to test their models. A new feature generation func-
tion is presented and it is named LDOP. LDOP and DWT feature 
extraction network generated 4096 features to obtain high, medium, 
and low levels features. RFINCA selected the most informative features. 

Fig. 3. Graphical summarization of the proposed LDOP and RFINCA based method.  
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The size of the selected final feature vector is 95 in this work. MPSSC is a 
heterogeneous dataset. Especially, there are a fairly small number of 
observations in the T and E classes. Also, achieving high recall is very 
hard for V and E classes employed conventional feature extraction 
methods. Another problem of this dataset is to obtain 6 variable results 
using training, testing, and development partitions. To solve these 
problems, a LDOP and RFINCA based SSC method is presented, and 
results were obtained using LOOCV. Our feature extraction and selection 
methods are very powerful because we achieved 95.53% accuracy 
94.65% UAR values using kNN classifier. Boxplot analysis was used and 
results shown in Fig. 5 to show the classification capabilities of these 
features. 

Statistical attributes of the features are shown using boxplot. The 

relationship of the features can be seen in Fig. 5. The statistical attributes 
of these features of each class are clearly denoted that these features are 
separable because they have different shapes. 

The proposed LDOP and RFINCA based SSC method was also 
compared to other methods, and the obtained comparatively results 
were listed in Table 5. 

The benefits of the proposed method are given below. 

• A high accurate SSC method is presented. High classification accu-
racy and UAR were achieved using the proposed LDOP, and RFINCA 
based SSC method (See Table 3 and Table 4).  

• The proposed LDOP and RFINCA based SSC method uses hand- 
crafted features. It has a multileveled feature generation network, 
but the computational complexity of this feature generation network 
is O(nlogn). Also, a feature range was used to decrease the time cost 
in the RFINCA. Therefore, this method is a lightweight method. 

• Any metaheuristic optimization methods for instance genetic algo-
rithm, particle swarm optimization, artificial bee colony were not 
used to increase the success of the proposed method.  

• The automatic optimal feature selection problem was solved with 
RFINCA.  

• We used LOOCV as a training and validation strategy to solve the 
low-performance problem on the MPSSC. LOOCV is the most robust 
training and validation strategy because there is no random assign-
ment in the LOOCV. Therefore, our SSC method is robust.  

• The proposed LDOP and RFINCA based SSC method outperformed. 
Table 5 denoted that our SSC method reached approximately 22% 
higher UAR than the best of others. Also, we achieved higher clas-
sification rates than deep learning methods without set millions of 
parameters.  

• The results were given comprehensively using five performance 
metrics. 

Fig. 4. The procedure of the performance metrics calculations.  

Table 3 
Results (%) of the proposed LDOP and RFINCA based 
SSC method.  

Performance metric Result 

Accuracy 95.53 
UAR 94.65 
UAP 95.84 
F1-score 95.24 
Geometric mean 94.61  

Table 4 
Confusion matrix of the proposed LDOP and RFINCA based method.  

Actual class Output class Recall (%)  

V O T E  

V 474 8 1 1 97.93 
O 19 195 1 1 90.28 
T 2 0 37 0 94.87 
E 3 1 0 85 95.51 
Precision (%) 95.18 95.59 94.87 97.70 95.53  
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7. Conclusions 

To achieve high classification performance on the MPSSC dataset is 
very hard because it was collected from many subjects in several medical 
centers. A novel SSC method was presented to overcome this problem. 
This SSC method has a feature generation, feature selection, and clas-
sification phases. We inspired by the Covid-19 contamination rate to 
propose a feature extractor. Therefore, we used 17 sized overlapping 

windows to extract 512 features. As it known from the literature, DWT is 
one effective decomposition method for sounds. Therefore, the proposed 
feature generation network was created using the proposed LDOP and 
DWT together. RFINCA selected optimal features automatically, and 
these features were classified using kNN with LOOCV. We used five 
performance metrics to evaluate the proposed method comprehensively. 
Accuracy, UAR, UAP, F1-score, and geometric mean values of our SSC 
method were calculated as 95.53%, 94.65%, 95.84%, 95.24%, and 
94.61% respectively. The achieved results compared to other methods 
and approximately 22% higher classification rate was reached than the 
best of others (See Table 5). Results clearly demonstrated that the per-
formance of the MPSSC database classification problem was increased 
incredibly. 

8. Future directions 

Our future directions are;  

• Novel automated SSC applications can be presented/developed using 
the proposed LDOP and RFINCA method. Sleep activities and quality 
can be detected using this application. Sleep apnea can also be 
diagnosed with this automated SSC application. 

Fig. 5. Graphical illustration of the statistical attributes of the extracted and selected 95 most informative features according to classes. Here, blue boxes represent 
differences of quartile 3 (Q3) and quartile 1 (Q1), red line denotes mean value, red pluses are upper or lower values of [Q1, Q3] range. 

Table 5 
UAR results (%) of the proposed method and other state-of-art methods.  

References Year Method UAR 

[17] 2017 MFCC, ELM, SVM 49.38 
[18] 2017 CNN and Alexnet, VGG19 67.0 
[19] 2018 LBP and HOG 66.5 
[20] 2017 Deep CNN 72.6 
[14] 2018 SVM, MFCC 55.8 
[22] 2017 SVM 49.58 
[23] 2017 GMM, SCAT and DNN 69.71 
[25] 2018 CNN- Dual Conv. GRU 63.8 
[26] 2019 Conditional Generative Adversarial Networks 67.4 
[27] 2019 Wavelet Features 69.4 
Our method  LDOP, multilevel DWT, RFINCA and kNN with 

LOOCV 
94.65  
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• The proposed LDOP and RFINCA based method can be used to solve 
other signal processing and sound classification problems.  

• Nonparametric (automatic) new generation feature selectors can be 
presented.  

• Bigger snore sounds dataset can be collected to automated diagnose 
some diseases. 
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