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Increased falls risk is prevalent among stroke survivors with gait impairments. Tripping is 
the leading cause of falls and it is highly associated with mid-swing Minimum Foot 
Clearance (MFC), when the foot’s vertical margin from the walking surface is minimal. The 
current study investigated MFC characteristics of post-stroke individuals (n = 40) and 
healthy senior controls (n = 21) during preferred speed treadmill walking, using an Optotrak 
3D motion capture system to record foot-ground clearance. In addition to MFC, bi-lateral 
spatio-temporal gait parameters, including step length, step width and double support 
time, were obtained for the post-stroke group’s Unaffected and Affected limb and the 
control group’s Dominant and Non-dominant limbs. Statistical analysis of MFC included 
central tendency (mean, median), step-to-step variability (standard deviation and 
interquartile range) and distribution (skewness and kurtosis). In addition, the first percentile, 
that is the lowest 1% of MFC values (MFC 1%) were computed to identify very high-risk 
foot trajectory control. Spatio-temporal parameters were described using the mean and 
standard deviation with a 2 × 2 (Group × Limb) Multivariate Analysis of Variance applied to 
determine significant Group and Limb effects. Pearson’s correlations were used to reveal 
any interdependence between gait variables and MFC control. The main finding of the 
current research was that post-stroke group’s affected limb demonstrated lower MFC 
1% with higher variability and lower kurtosis. Post-stroke gait was also characterised by 
shorter step length, larger step width and increased double support time. Gait retraining 
methods, such as using real-time biofeedback, would, therefore, be recommended for 
post-stroke individuals, allowing them to acquire optimum swing foot control and reduce 
their tripping risk by elevating the swing foot and improving step-to-step consistency in 
gait control.
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INTRODUCTION

A stroke is one of the most common and serious ageing-related 
health risks, with over 100 incidents documented in Australia 
every day (Australian Institute of Health and Welfare, 2020). 
Our primary concern in this report is the associated risk of 
falling within the year following a stroke because the likelihood 
of a fall in this population is 150% greater than in age- and 
gender-matched controls (Batchelor et al., 2012). Approximately 
50% of post-stroke individuals residing at home are predicted 
to fall within 12 months (Mackintosh et  al., 2005), with up to 
half evidencing multiple falls. An essential component of stroke 
patient care is, therefore, understanding stroke effects on gait 
control and, most importantly, why post-stroke gait impairments 
lead to a very high falls risk. Addressing this question is important 
in assisting physiotherapists to devise rehabilitation interventions 
that will not only improve stroke patients’ mobility but also 
make a significant contribution to decreasing their falls risk.

Across a range of conditions gait impairments commonly 
present as walking with shorter, wider steps, increased variability 
in step length and timing (Wang et  al., 2019) and prolonged 
double support, when both feet are in contact with the ground 
(Hollman et  al., 2011; Taniguchi et  al., 2019). These gait 
characteristics are all typical of post-stroke individuals 
(Balasubramanian et  al., 2009; Osada et  al., 2021). Gait 
impairments can be  viewed as reflecting clinically defined 
sensorimotor deficits (Callisaya et al., 2010; Taylor et al., 2012) 
but they also emerge as cautious gait adaptations to secure 
stability in response to a greater fear of falling (Young and 
Dingwell, 2012; Tsai and Lin, 2013; Bueno et  al., 2019). It is, 
therefore, expected that in post-stroke individuals disrupted 
sensorimotor functions physically disturb healthy, vigorous 
walking (Jones and Adkins, 2015). An interesting question 
remains, however, as to why post-stroke individuals have such 
a high risk of falling when they do appear to employ cautious 
gait adaptations in an attempt to ensure their safety.

One approach to answering this question is recognising that 
tripping is the leading cause of falls, across all populations (Blake 
et  al., 1988; Berg et  al., 1997). Biomechanically, tripping can 
be  characterised as unintentional swing foot contact with the 
walking surface, or an object on it, with sufficient momentum 
to induce forward balance loss (Smeesters et  al., 2001; Nagano 
et  al., 2011). The critical gait cycle event influencing tripping is 
Minimum Foot Clearance (MFC) at mid-swing, when the vertical 
margin between the lowest part of the foot and the walking 
surface is at its local minimum (Winter, 1991; Begg et  al., 2007). 
In addition, the foot’s horizontal velocity is maximal at MFC, 
leading to a highly forceful impact in the event of obstacle contact 
(Winter, 1991). Swing phase foot trajectory control does not only 
maintain progression via displacement in the direction of travel, 
reflected in step length, but also modulates the vertical component 
to ensure safe and efficient foot-ground clearance. Ankle weakness 
(i.e., reduced dorsiflexors’ strength, plantar flexors’ contracture) 
due to a stroke can lead to reduced ankle dorsiflexion and, as 
a consequence, less foot-ground clearance (Blanton et  al., 2002; 
Martin et  al., 2015) and increased tripping risk. While increasing 
MFC height is, therefore, fundamental to preventing tripping, 

achieving consistent ground clearance, reflected in low MFC height 
variability, is also important because relatively few very low 
clearances will considerably elevate tripping risk (Begg et al., 2007).

Swing foot clearance is a complex, finely coordinated, 
sensorimotor function and, therefore, advanced, microanalysis 
is required to determine how MFC characteristics influence 
tripping (Begg et  al., 2007). While traditional measures of 
central tendency and dispersion, such as the MFC mean and 
standard deviation provide a general description, Begg et  al. 
(2007) developed methods to predict tripping risk by modelling 
the MFC height distribution of very large MFC samples from 
treadmill walking. Later, using the Begg et al. (2007) modelling, 
Nagano et  al. (2011, 2020) applied bi-lateral MFC analysis to 
characterise asymmetrical swing foot control of the healthy 
senior population and post-stroke individuals.

The first question addressed in the current study was whether 
post-stroke people’s tripping related MFC characteristics could 
help to explain their high falls risk. The focus in this report, 
however, was the first percentile (1%) of the MFC distribution 
when tripping probability is highest. Increased MFC is 
fundamental to tripping prevention but the lowest segment of 
the dataset (i.e., the bottom 1%) may provide a more reliable 
foot-ground contact prediction than central tendency (i.e., mean 
or median). Most previous studies (Barrett et  al., 2010) have 
characterised MFC height using the central tendency but it 
is reasonable to hypothesise that the best prediction of tripping 
is found in the infrequent very low swing foot clearances. In 
the current study, therefore, we  hypothesised that post-stroke 
individuals would demonstrate lower 1% MFC with higher 
step-to-step variability indicating increased tripping risk.

Gait cycle parameters may, independently, reveal why post-
stroke individuals are prone to falls despite cautious gait 
adaptations, reflected in variables, such as shorter and wider 
steps and prolonged double support (Young and Dingwell, 2012; 
Tsai and Lin, 2013; Bueno et  al., 2019). Rinaldi and Monaco 
(2013), however, reported different intralimb coordination patterns 
for post-stroke individuals and healthy controls and proposed 
that walking mechanics can be considered a synthesis of multiple, 
interlinked, motor control processes, rather than separate systems. 
In this project, we  extended these findings by identifying the 
correlation patterns between gait cycle variables, while conventional 
(mean ± standard deviation) gait cycle measures were maintained 
relatively constant using treadmill walking. We  anticipated, for 
example, that correlation analysis would show whether cautious 
gait adaptations positively influence MFC; alternatively, it might 
be  found that tripping risk is unaffected by gait improvements 
reflected in the timing and magnitude of traditional gait cycle 
events. This approach to stroke-affected gait analysis is innovative 
and a promising additional tool for understanding stroke effects 
on mobility. It may also inform physical rehabilitation procedures 
designed to correct gait defects and, most importantly, further 
our understanding of how rehabilitation procedures impact a 
patient’s falls risk. Correlations between MFC 1% and gait control 
variables, such as step width and length, and ankle dorsiflexion, 
for example, would suggest mobility treatment interventions 
that could promote safer swing phase ground clearance, particularly 
in the stroke patient’s more affected limb.
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MATERIALS AND METHODS

Participants
A total of 40 post-stroke individuals (Stroke) and 21 healthy 
senior controls (Control) participated in the study. The Stroke 
group (age 71 ± 12 years; height 1.69 ± 0.11 m; body mass 
83.4 ± 17.6 kg) were all at least 6-month post-stroke. Participants 
who required gait aids in daily life, such as an ankle foot orthosis 
or walking stick, were included but the criteria for the current 
project also required the ability to walk at least 50 m without 
their assistive device while being tested. Post-stroke participants, 
therefore, had relatively higher mobility, confirmed by Stroke 
Rehabilitation Assessment of Movement (STREAM) scores of 
87.4/100 for the lower extremity and 88.0/100 for mobility 
components. They had no other health conditions that prevented 
them from walking on a treadmill and, as indicated above, did 
not wear a foot orthosis or use an aid during testing. The 
Control group (age 74 ± 6 years; height 1.67 ± 0.09 m; body mass 
71.6 ± 9.4 kg) were living independently, able to perform routine 
daily activities, free of any known cognitive, orthopaedic or 
neurological abnormalities and able to walk for at least 20 min 
continuously. Further inclusion criteria were below 12 s on a 
‘timed up and go test’, a score of 20 or above on a visual 
contrast sensitivity test (‘Melbourne Edge Test’) and having not 
fallen within the previous 2 years. All post-stroke participants 
(Stroke) were volunteers and they provided informed consent 
using procedures approved by the Austin Health Human Research 
Ethics Committee. All healthy senior participants (Control) were 
volunteers recruited from the local community and the informed 
consent procedures mandated by the Victoria University Human 
Research Ethics Committee were applied.

Testing Protocol
Gait testing was conducted on motor-driven treadmill at a 
pre-determined preferred speed (England and Granata, 2006). 
Stroke walked significantly slower (2.1 ± 1.0 km/h) than Control 
(3.6 ± 0.7 km/h; t = 5.906, p < 0.001). All participants were equipped 
with a safety harness, wore their own comfortable shoes and 
used the handrails to maintain stability (Wang et  al., 2019). 
3D kinematic position-time data were collected (100 Hz) using 
the Optotrak (NDI International, Waterloo, Ontario, Canada) 
with the two camera towers located bilaterally. Light-emitting 
diodes (LEDs) were utilised to model the foot kinematics. The 
key anatomical landmarks were heel, the proximal inferior surface 
of the shoe-outsole and the toe, the most anterior and superior 
toe part of a shoe. Treadmill walking continued for 10 min but 
for the Stroke group, testing was stopped when the supervising 
Physiotherapist or participants determined that a rest was required.

Data Acquisition and Analysis
To identify heel contact and toe-off, we  applied a foot velocity 
algorithm similar to that proposed by O’Connor et  al. (2006). 
Examined parameters included step length, step width, double 
support and Minimum Foot Clearance (MFC). Step length 
and step width were defined, respectively, as anterior–posterior 
and medio-lateral displacement between heels at heel contact. 

Double support time was the temporal period from heel contact 
to contralateral toe-off. As illustrated in Figure  1 (top), MFC 
was defined as the mid-swing phase event where the vertical 
margin of the swing foot from the walking surface is at local 
minimum while moving at maximum velocity. In some cases, 
Stroke group demonstrated swing foot trajectories that did not 
show a conventionally defined MFC event and, in such 
circumstances, maximum swing foot horizontal velocity timing 
was used with vertical displacement at this time used to represent 
MFC height, using a previous procedure (Nagano et  al., 2020).

Raw 3D marker position/time coordinates were low-pass 
filtered using a fourth order zero-lag Butterworth Filter with 
a cutoff frequency of 6 Hz (Begg et  al., 2007; Nagano et  al., 
2020). Spatio-temporal parameters were described using the 
mean and SD. MFC analysis followed the approach of  
Begg et  al. (2007) using the central tendency (mean, median), 

FIGURE 1 | (top) Illustration of MFC, marker attachment at toe and heel; 
(middle) Histogram description, 1% = first percentile, 25% = 25th percentile, 
75% = 75th percentile, IQR (interquartile range) = 75th-25th percentile; (bottom 
left) step length and step width; (bottom right) walking test environment, 
Cam = motion capture camera.
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FIGURE 2 | MFC histogram. Stronger vs. Weaker: Healthy (dominant vs. non-dominant) and Stroke (unaffected vs. affected).

step-to-step variability (SD and IQR) and MFC height distribution 
patterns (skewness and kurtosis). The MFC dataset was also 
separated at the first percentile (1%) as illustrated in Figure  1 
(middle).

Statistical Analysis
Multivariate Analysis of Variance (MANOVA) was applied with 
a 2 × 2 (Group × Limb) design for each spatio-temporal parameter’s 
mean and SD; while for MFC the median, the first (lowest) 1% 
of the height distribution, IQR, skewness and kurtosis were also 
obtained. Prior to MFC analysis, multivariate normality and 
homoscedasticity were confirmed by Mahalanobis distance and 
Homogeneity of variance (Levene’s Test of Equality of Error 
Variances) at the alpha level of 0.001. To identify hemiplegic 
stroke effects on gait variables the affected and unaffected limbs 
were compared. For healthy counterparts the non-dominant vs. 
dominant limb classification was employed (Seeley et  al., 2008). 
Inspection of different MFC control processes between the groups 
was conducted by Pearson’s correlation analysis, applied to all 
dependent variables separately within each group to investigate 
their interaction with MFC control based on our previously used 
approaches (Nagano and Begg, 2020; Nagano et al., 2021). Significant 
effects were determined when computed p-values were less than 0.05.

RESULTS

MFC
Figure  2 displays the MFC histograms for Control and Stroke 
groups. Multivariate tests revealed an overall higher MFC in 
the Control group, as hypothesised (F8, 111 = 23.304, p < 0.001).

As shown in Table 1, MFC height was distinguished height 
was distinguished only in 1%, due to Stroke having 0.61 cm lower 
clearance (F1, 118 = 15.419, p < 0.001), as visualised in the lowest 
part of the dataset. Higher MFC variability was identified in the 
SD for Stroke by 0.121 cm (F1, 118 = 9.221, p = 0.003) and IQR by 
0.135 cm (F1, 118 = 5.148, p = 0.025). Distribution pattern effects were 
revealed in lower skewness in Stroke (F1, 118 = 24.448, p < 0.001). 
In addition, a Group x Limb interaction was obtained for kurtosis 
(F1, 118 = 3.981, p = 0.048) with Stroke’s affected limb showing lower 
MFC kurtosis (0.211) compared to their unaffected side (0.727) 
and the Control dominant (0.537) and non-dominant limb (1.418).

Spatio-Temporal Gait Parameters
Spatio-temporal parameters were clearly distinguished between 
the Control and Stroke for step length (F 7, 114 = 11.603, p < 0.001), 
step width (F7, 114 = 8.168, p < 0.001) and double support time 
(F 7, 114 = 20.485, p < 0.001), as in Figure  3.
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As shown in the mean ± SD data (Figure  3), Stroke  
showed shorter (F1, 120 = 71.398, p < 0.001) and more variable 
(F1, 120 = 20.270, p < 0.001) step length, wider (F1, 120 = 10.726, 
p = 0.001) but less variable (F1, 120 = 22.642, p < 0.001) step width 
and greater (F1, 118 = 93.034, p < 0.001) but more variable double 
support time (F1, 118 = 15.130, p < 0.001).

Correlations Between MFC Mechanics and 
Gait Control
Effects of stroke on gait coordination were determined using 
correlations analysis to reveal whether overall gait changes due 
to stroke would affect MFC control. Correlations patterns are 
reported below with respect to effects common to both groups, 
Stroke effects and Control effects.

Effects Common to Both Groups
Positive correlations were observed between MFC height and 
step-to-step MFC variability: Control (mean—SD: r = 0.682, p < 0.001; 
median—IQR: r = 0.736, p < 0.001) and Stroke (mean—SD: r = 624, 
p < 0.001; median—IQR: r = 0.436, p = 0.004), suggesting that 
increased MFC height tends to accompany higher step-to-step 
variability. MFC Skewness correlated negatively with height-related 
data for Control (mean r = −0.610, p = 0.003; median r = −0.622, 
p = 0.003; 1% r = −0.577, p = 0.006) and Stroke (mean r = −0.486, 
p < 0.001; median r = −0.509, p < 0.001; 1% r = −0.493, p = 0.001).

Stroke Effects
Step width correlated positively with mean (r = 0.320, p = 0.041) 
and median (r = 0.330, p = 0.035) MFC height but interestingly, 
positive correlations suggested that increased MFC 1% was 
accompanied with higher step width variability as in SD 
(r = 0.432, p = 0.005) and IQR (r = 0.445, p = 0.004). Step width 
kurtosis was negatively correlated with MFC variability for SD 
(r = −0.365, p = 0.019) and IQR (r = −0.334, p = 0.033), implying 
that variability of step width and MFC may be inter-coordinated. 
Increased mean step width was also associated with lower 
MFC skewness (r = −0.339, p = 0.030).

Control Effects
In contrast to the Stroke effects on MFC, Control showed negative 
correlations between mean step length and MFC variability: SD 
(r = −0.455, p = 0.038) and IQR (r = −0.433, p = 0.050), suggesting 
that longer steps are associated with less MFC variability.

FIGURE 3 | Spatio-temporal gait parameters (mean ± SD). (top) step 
length = group effects for mean and SD, (middle) step width = group effects for 
mean and SD, (bottom) double support time = group effects for mean and SD. 
Stronger vs. Weaker limb classification: healthy = dominant vs. non-dominant, 
Stroke = unaffected vs. affected.

TABLE 1 | MFC characteristics of Post-stroke and Control groups.

Stroke Control Group Limb Group × Limb

Mean 2.15 cm 2.35 cm 0.324 0.690 0.938
Median 2.10 cm 2.30 cm 0.406 0.680 0.933
1% 1.32 cm 1.93 cm <0.001 0.500 0.958
SD 0.44 cm 0.32 cm 0.003 0.655 0.989
IQR 0.58 cm 0.45 cm 0.025 0.540 0.830
Skewness 0.39 0.89 <0.001 0.756 0.200
Kurtosis 0.47 0.97 0.149 0.603 0.048

Significant effects (p < 0.05) indicated by bold. Main effects = Group, Limb; Interaction = Group × Limb.
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DISCUSSION

Tripping is the leading cause of falls, particularly prevalent 
among the post-stroke population (Blake et al., 1988; Batchelor 
et al., 2012; Nagano et al., 2020). Previous studies have reported 
that higher tripping risk is reflected in lower and more variable 
MFC (Begg et  al., 2007). Although the mean and median 
MFC did not distinguish the two groups’ MFC, 1% showed 
significantly lower MFC in the post-stroke group with larger 
step-to-step variability, possibly accounting for their previously 
reported 2.5 times higher falls risk compared to healthy 
age-matched controls (Mackintosh et al., 2005; Batchelor et al., 
2012). Distribution patterns also highlighted the stroke-affected 
limb’s less kurtotic MFC characteristics, that, combined with 
greater SD and IQR, reflected more variable swing foot  
control, possibly due to impaired proprioception and rhythmicity 
(Warlop et  al., 2018; Hamacher et  al., 2019).

As expected from the report by Osada et  al. (2021), spatio-
temporal gait parameter analysis confirmed that the post-stroke 
group had critically impaired gait patterns compared to healthy 
seniors. This was indicated by typically shorter step length, larger 
step width and prolonged double support time (Taniguchi et  al., 
2019); similarly characterised by Balasubramanian et  al. (2009). 
These gait adaptations were more clearly seen in slower gait 
(Wang et al., 2019), which could possibly explain why post-stroke 
individuals demonstrated overall less vigorous walking. The 
experimental protocol used in the current study closely followed 
Wang et al. (2019) and our findings were consistent for all spatio-
temporal parameters except double support time variability. In 
their study, no differences were identified between the two groups 
while the current study revealed otherwise. This discrepancy may 
be  attributable to differences in data volume with up to 10 min 
sampled at 100 Hz in our procedure compared to 20 s at 60 Hz 
by Wang et  al. (2019). Furthermore, participants in the current 
study were 15–20 years older than the Wang et al. (2019) samples, 
suggesting that double support time variability may not be  as 
pronounced in our relatively younger post-stroke individuals. Not 
only spatial gait control but also temporal aspects of motor 
function were impacted by stroke and rhythmic stepping exercises 
have been proposed as gait training to regain temporal gait 
coordination (Ghai and Ghai, 2019).

Among the examined spatio-temporal parameters, step width 
was highly interlinked with MFC control for the post-stroke 
individuals. Wider steps in the post-stroke group may have 
been an adaptation to compensate reduced dynamic balance 
by extending the base of support formed by the feet (Young 
et  al., 2012; Onushko et  al., 2019). Correlations suggested that 
wider steps could accompany higher MFC but importantly, 
this adaptation may not reduce tripping risk because increased 
MFC was observed only in central tendency (mean, median) 
but not in the first percentile (1%) in response to larger step 
width. Significantly lower MFC 1% among the post-stroke 
group was an important finding because it may explain the 
increased risk of tripping in this group. Attempts to increase 
MFC 1% are, therefore, arguably more important than mean 
or median for tripping prevention. According to correlations, 
however, elevated MFC 1% may accompany more variable 

step-to-step MFC control. This is a dilemma because both 
higher and consistent swing foot clearance should be  required 
for prevention of tripping (Best and Begg, 2008) but the results 
suggest that improvement in one can negatively affect the other. 
For post-stroke individuals, gait training to reduce tripping 
risk should, therefore, challenge this undesirable MFC intralimb 
coordination by elevating MFC 1% while maintaining step-to-
step consistency (Begg et  al., 2014; Nagano et  al., 2020).

Biofeedback gait training for swing foot control can be suggested 
for this specific purpose (Begg et  al., 2014), in which people can 
receive real-time visual feedback to control MFC within the target 
band, determined by individuals’ swing foot motions (Figure  4).

As visualised in Figure  4 (right), this training protocol is the 
attempt to control MFC within the narrow band to elevate swing 
foot clearance and improve consistency (Begg et al., 2014; Nagano 
et  al., 2020). Other than MFC optimisation, various biofeedback 
training protocols have been proposed for the post-stroke 
population (Spencer et al., 2021). Auditory cueing (Mainka et al., 
2018; Ghai and Ghai, 2019) and treadmill walking (Frenkel-
Toledo et  al., 2005) are the effective method to regain rhythmic 
stepping patterns (i.e., reduced step-to-step variability). Use of 
active exoskeletons is another approach for post-stroke people’s 
rehabilitation (Kaneko and Nakamura, 2010; Rodríquez-Fernández 
et  al., 2021). While a number of intervention strategies are 
available, further validation work is necessary to confirm the 
most effective rehabilitation procedures for post-stroke individuals.

There were some limitations to the current study protocol. 
We  permitted the use of treadmill handrails during testing, 
which may engender a more upright and symmetrical gait 
compared to walking freely. These results are consistent with 
Wang et  al. (2019) allowing handrail use and reporting little 
asymmetry in gait patterns despite hemiplegic stroke. Compared 
to our previous studies that did not allow healthy older adults 
to use handrail support (Karaharju-Huisnan et al., 2001; Nagano 
et  al., 2011, 2013), gait parameters were generally less 
asymmetrical. Without handrail support, however, treadmill 
walking is generally difficult for post-stroke individuals but in 
future studies overground protocols should be  employed, to 
extend the findings to more typical everyday walking. Despite 
advantages of treadmill protocols for collecting a large volume 
of steady-state gait data, it is likely that some gait changes 
might be  due to increased ‘fear of falling’ (Park and Yoo, 
2014), particularly in the post-stroke population.

Multiple definitions of MFC were used for atypical swing foot 
clearance frequently observed in post-stroke individuals, in which 
maximum foot horizontal velocity during the swing phase was 
used as an alternative definition (Nagano et al., 2020). In addition, 
the participants wore their own preferred comfortable walking 
shoes which might also have caused minor differences in MFC 
definitions, however, each individual’s MFC was calculated relative 
to shoe’s ground reference to minimise this difference. In addition 
to large intra-subject variability in MFC control, the stroke group 
also demonstrated high inter-subject variability, visualised in the 
Figure 2 histograms. In future studies, post-stroke sub-populations 
could be investigated, based on, for example, severity of symptoms, 
time post-stroke and other health-related variables, such as body 
mass and cognitive function. Finally, in future MFC research, the 
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focus could again be  the lower end of the distribution (1% was 
selected in the current study) rather than central tendency because 
considerably greater tripping risk is associated with very low swing 
foot clearances. In addition, examining MFC characteristics for 
pre-determined low clearance thresholds, such as 1 mm (Killeen 
et  al., 2017), is another potentially instructive analysis technique 
for investigating tripping risk in post stoke individuals.
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