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By employing a neuron plasticity mechanism, the original dendritic neuronmodel (DNM) has been succeeded in the classification
tasks with not only an encouraging accuracy but also a simple learning rule. However, the data collected in real world contain a lot
of redundancy, which causes the process of analyzing data by DNM become complicated and time-consuming. ,is paper
proposes a reliable hybrid model which combines a maximum relevance minimum redundancy (Mr2) feature selection technique
with DNM (namely, Mr2DNM) for classifying the practical classification problems.,e mutual information-based Mr2 is applied
to evaluate and rank the most informative and discriminative features for the given dataset. ,e obtained optimal feature subset is
used to train and test the DNM for classifying five different problems arisen from medical, physical, and social scenarios.
Experimental results suggest that the proposed Mr2DNM outperforms DNM and other six classification algorithms in terms of
accuracy and computational efficiency.

1. Introduction

As a machine learning technique, a supervised learning
algorithm is usually evaluated with a dataset which includes
training samples and testing samples. Each sample is
depicted by a certain number of features (or attributes) and a
class label, e.g., for the medical diagnosis, the features might
consist of the age, sex, and smoking habit of a patient, and
the class label is the corresponding diagnosis result that the
patient is whether or not suffering from liver disorders [1].
After learning, the classifier can obtain learning rules that
can be applied to classify future samples in the same domain.
However, most domains are explored with less than 40
features before 1997 [2]. It should not be tolerated that the
dimension issue of the dataset leads the study to only explore
on a limited scale. To explore the domains with more fea-
tures, the optimization of the dataset is urgent and chal-
lenging. Regarding the feature of a dataset, the concept of
“relevance” is firstly proposed by John et al. [3] in the context
of machine learning.,at motivates Langley [4] to develop a

relevant features selection method for assisting the learning
of the classifier. However, selecting the most relevant feature
through finding or ranking all the relevant features of the
dataset is generally suboptimal for training a classifier, es-
pecially if the features include duplicate information, which
is called redundant feature.,erefore, a maximum relevance
minimum redundancy (Mr2) feature selection framework
that can eliminate most irrelevant and redundant features to
reduce training samples is proposed for gene expression
array analysis [5]. Generally, in a gene expression dataset
which contains 6,000∼60,000 samples, there are only less
than 100 samples which are suitable for training and testing.
Hence, the feature selection provides a good solution for
developing the gene domain. ,e objective of the feature
selection is to avoid the curse of dimensionality of the dataset
and thereafter to improve the classification performance of
the classifiers. It can not only provide better classification
accuracy with lower computation cost, but also give an easier
understanding of the importance of the feature in the
dataset. ,e feature selection methods have driven the
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classifier to explore more domains; particularly, those
consist of numerous features. It has been widely applied to
areas of text processing of Internet documents [6], com-
binatorial chemistry [2], etc.

To achieve the best performance of classification, in
addition to the feature selection, the classifier is another
crucial factor. Among hundreds of classifiers, the artificial
neural networks (ANNs) occupy an important place. ANNs
are inspired by biological systems with lots of inter-
connected simple processors [7, 8] and are widely applied
for solving problems arisen from many different fields, e.g.,
business, industry, and science [9]. ,e well-known
mathematical neuron model called McCulloch–Pitts model
(MCP) [10] defines the corresponding weights for the
synapses to control the importance of the inputs. In recent
years, many studies [11–13] suggest that the information
processing capacity-based MCP of a single neuron has not
been fully developed. As the MCP-based single neuron
model is too oversimplified to address nonlinearly sepa-
rated problems [14, 15], it is considered that the utilization
of the dendritic structure [16, 17] is promising to improve
the nonlinear processing ability for a neuron. Although the
Koch–Poggio–Torre model [18] considers the effects of
dendrites in the neuron, it lacks the plasticity mechanism,
that is, the synaptic type and dendritic structure cannot
correctly classify some complex tasks [19]. Some studies
[20–23] have pointed out that some pyramidal neurons
possess the plasticity mechanism, which might provide
inspirations for improving the Koch–Poggio–Torre model.

In our previous works, we mainly focus on the de-
velopment of a single dendritic neuron model (DNM) via
the nonlinear information processing ability of synapses
[24]. DNM has been applied to medical diagnosis [25, 26],
tourism prediction [27, 28], and financial time series
prediction [29]. Besides its supervised learning ability, an
unsupervised learnable DNM has been used for efficiently
learning the two-dimensional multidirectional selectivity
problem [30]. In addition, DNM trained by six population-
based evolutionary learning algorithms also shows its
prominent effects in classification, approximation, and
prediction [31]. In DNM, the neuron plasticity mechanism
is realized by synaptic pruning and dendritic pruning
during learning. Meanwhile, the obtained simplified
morphological of DNM can be implemented with hardware
logical circuits [32].

To reduce the influence of redundancy feature on the
dataset and save computation cost, in this paper we propose
a hybrid model Mr2DNM by combining Mr2 with DNM.
Mr2DNM applies an optimal subset to train and generate
learning rules, where the optimal subset is obtained by
utilizing Mr2 criteria to search and rank the features of the
dataset, and DNM is used to evaluate the subset. Mean-
while, the unused samples of the optimal subset will be used
as testing ones to verify the performance of Mr2DNM. In
the experiment, the proposed model is compared with
other six classification models by classifying five real-world
benchmark datasets, which includes three well-known
medical diagnosis datasets (i.e., breast cancer, liver dis-
orders, and diabetes), one radar dataset that returns from

the ionosphere, and one congressional voting records
dataset. Results suggest that the proposed model out-
performs its peers in terms of the classification accuracy,
computational efficiency, convergence rate, and the quality
of the area under the receiver operator characteristic (ROC)
curve.

,e remaining of this paper is organized as follows.
Section 2 presents a brief introduction of the fundamental
structures and functions of Mr2DNM. Section 3 introduces
the error back-propagation learning algorithm that is ap-
plied to train Mr2DNM. Section 4 shows the experimental
results of the model and performance analysis on five
benchmark datasets. Finally, the conclusions are drawn in
Section 5.

2. Proposed Model: Mr2DNM

2.1. Mr2. ,e proposed Mr2DNM is a hybrid approach
based on a feature selection technique and a neural network
classifier, which are combined using a wrapper approach as
shown in Figure 1. ,e feature selection is implemented via
the criteria of Mr2 based on mutual information. By cal-
culating the mutual information of dataset, relevances of
(1) feature-feature and (2) feature-target class are visually
quantified. Furthermore, information overlap between
features (i.e., feature-feature) is considered and defined as
redundancy. ,e feature subset which is obtained by Mr2
criteria includes ordered (strongly⟶ weakly) relevance
features. ,e relevance of the feature decides the frequency
of the feature joining into the learning process of a classifier
(i.e., strongly—always⟶ weakly—possibly). Meanwhile,
the irrelevant features are excluded from the optimal
feature subset during the learning of the classifier.
,erefore, Mr2 feature selection combining with plasticity
neurons of DNM is supposed to reduce the computational
burden (e.g., learning process acceleration), avoid the
overfitting problem, and enhance the generalization ca-
pacity of Mr2DNM [33–35]. ,e Mr2 criterion based on
mutual information [34] is expressed as follows:

maxΦ(D, R),Φ � D−R, (1)

where D represents the maximal relevance of a feature set S
with N features xi. Φ(·) expresses the optimize operation
which combines D and R to find an optimal feature subset.
,e equation of D is defined as

max D �
1

|S|

xi∈S

I xi; c( , i � 1, . . . , n, (2)

where I represents the mutual information between indi-
vidual feature xi ∈ S and the target class c. In addition, it is
considered that there is redundancy in two highly dependent
features. In this case, one of the two features can be removed
and it will not influence the discriminative power [33].
,erefore, R is used to compute the minimal redundancy of
a feature set S, shown as
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minR �
1

|S|2


xi,xr∈S
I xi; xr( , i, r � 1, . . . , n, (3)

where the mutual information I(x; y) of two random
variables x and y can be expressed in terms of their prob-
abilistic density (or distribution) functions p(x), p(y), and
p(x, y), for continuous (or discrete) case

I(x; y) � Bp(x, y)log
p(x, y)

p(x)p(y)
 dx dy,

I(x; y) � 
y∈Y


x∈X

p(x, y)log
p(x, y)

p(x)p(y)
 .

(4)

In the Mr2 criterion, the ranking of all N features
X � xi i � 1, . . . , N{ } in the dataset is done via selecting the
features with the maximal Φ(·) in turn. Among them, the
near-optimal features defined by Φ(·) can be found with
an incremental search method [34]. ,e incremental
search method is defined as follows:

max
xr∈ X−Sn−1{ }

I xr; c( −
1

n− 1


xi∈Sn−1

I xr; xi( ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (5)

where Sn−1 is the feature set with n− 1 features. ,e task of
this incremental search method is to select the nth feature
from the set X− Sn−1 .,e computational complexity of the
incremental search method is O(|S| · N).

Additionally, the features are defined as
F1(i1), F2(i2), . . . , FN(iN), where FN represents the given
mark of the feature in the dataset, iN is the ranking of the
feature which is obtained by the Mr2 criterion, and for
example, iN � 1 indicates that the feature FN ranks the first
one in the dataset and should be the most important feature,
which has the maximal relevance with the target class c and
the minimal redundancy in comparison with the other
features, while iN � N means the feature FN can be firstly
excluded from the learning of the classifier to speed up the
calculation efficiency. ,e DNM combines with the ranked
features to achieve the optimal compromised solution be-
tween classification accuracy rate and dataset dimension.

2.2. DNM. In DNM, the dendrites and synapses are formed
via initial user-defined parameters in the primary neuron
system.,e initial structure is allowed to possess superfluous
number of dendrites and synapses. ,e superfluous parts are

screened; meanwhile, the useful parts are strengthened and
fixed to form the ripened structure of the neuron model
during learning. Four basic rules are used to define the
DNM, shown as follows:

(i) ,e model allows initial number of dendrites and
synapses which can be arbitrarily defined.

(ii) ,e interaction exists among all synapses in the
same dendrite layer.

(iii) ,e ripened dendrites and synapses are decided by
learning.

(iv) ,e synapses can only be defined as one of the four
specific connection states.

In Figure 2, the transmission process of signals in the
model during learning is illustrated. It can be summarized as
follows:

(i) ,e input signals for one specific task are trans-
ferred to synapses via sigmoid functions and output
to dendritic branches.

(ii) ,e results from synapses on the same dendritic
branch are calculated by applying a multiplication
operation.

(iii) ,e signals from all dendritic branches are collected
in the membrane layer and summed to the soma
layer.

(iv) ,e signal is determined in the soma layer whether
it exceeds the threshold or not.

2.2.1. Synaptic Layer. A synapse is produced by the contact
of two neurons. Its duty is to transmit information within
two neurons. In the synaptic layer of our model, the synapse
can be defined as the specific one of the four connection
types, while as an input to interact with the dendritic
branch. ,e four connection types include the direct
connection, inverse connection, constant-0 connection,
and constant-1 connection, which can be expressed by
sigmoid functions. ,e four connection types are illus-
trated in Figure 3.,e changes in the postsynaptic potential
caused by ion can be used to decide whether the input is an
excitation synapse or an inhibition one [36]. ,e node
function that connecting ith (i � 1, 2, 3, . . . , N) input to the
jth (j � 1, 2, 3, . . . , M) synaptic layer is expressed as
follows:

Feature set

Feature selection search

Feature evaluation

Feature
set

Performance
estimation

Training set DNM

Final evaluation

Learning rule
Optimal 

set

Accuracy

Testing set

Figure 1: ,e wrapper approach to the proposed Mr2DNM.
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Yi,j �
1

1 + e−k ωi,jxi−qi,j( 
, (6)

where Yi,j indicates the output of the synaptic layer.
xi ∈ [0, 1] denotes the input of the synapse. k represents a
user-defined parameter, whose optimal setting will be given
in the experiment. ,e weight parameters ωi,j and qi,j in the
synapses need to be trained by learning algorithms. ,e
following equation is used to compute the threshold θi,j of
the synaptic layer:

θi,j �
qi,j

ωi,j

. (7)

,e presynaptic input is determined as one of the four
connection types via the trained ωi,j and qi,j values. ,e
details of these four connection types are shown in Figure 4,
and the functions of six cases are given as follows:

(i) Type 1: direct connection
Case (a): 0< qi,j <ωi,j, e.g., ωi,j � 1.0 and qi,j � 0.5.

Yi,j �
1, if xi > θi,j,

0, if xi ≤ θi,j.

⎧⎨

⎩ (8)

In this case (Figure 4(a)), when the input xi value
exceeds the threshold θi,j, the output Yi,j is 1, which
means the signals will be passed and output
smoothly. Otherwise, the signals will be blocked.

(ii) Type 2: inverse connection
Case (b): ωi,j < qi,j < 0, e.g., ωi,j � −1.0 and
qi,j � −0.5.

Yi,j �
0, if xi > θi,j,

1, if xi ≤ θi,j,

⎧⎨

⎩ (9)

where the threshold θi,j is not exceeded by the input xi value,
the output Yi,j is 1, which means the signal is updated as an
excitatory signal and allows the information to pass, shown
in Figure 4(b).,e inverse connection type is considered as a
logic NOT operation.

(iii) Type 3: constant-1 connection
Case (c1): qi,j < 0<ωi,j, e.g., ωi,j � 1.0 and
qi,j � −0.5;
Case (c2): qi,j <ωi,j < 0, e.g., ωi,j � −1.0 and
qi,j � −1.5.
In the constant-1 connection cases (Figures 4(c1)
and 4(c2)), the outputs are always 1, regardless of
the inputs or the parameters change. ,e in-
formation will be transmitted completely.

(iv) Type 4: constant-0 connection
Case (d1): 0<ωi,j < qi,j, e.g., ωi,j � 1.0 and qi,j � 1.5;
Case (d2): ωi,j < 0< qi,j, e.g., ωi,j � −1.0 and
qi,j � 0.5.
In the two cases (Figures 4(d1) and 4(d2)) which are
contrasted to the constant-1 connection cases, all
the information will be blocked; in other words, the
input values can be ignored.

,e weight parameters ωi,j and qi,j are assigned with
random values from −1.5 to 1.5, before the model begins the
training. ,erefore, the synaptic types are also the random
connection types. When the model finishes the training and
generates the learning rule, the model obtains the correct
weight parameters ωi,j and qi,j.,en the synaptic connection
types can be determined.

2.2.2. Dendritic Layer. ,e dendritic layer receives the
signals from the synaptic layers and implements a multi-
plication operation. ,e multiplication operation approxi-
mately corresponds to a logical AND operation and is
described by

Zj � 
N

i�1
Yi,j. (10)

2.2.3. Membrane Layer. ,e signals that come from the
dendritic branch are summed in the membrane layer. ,is
summation is approximately equal to a logical OR operation
and is expressed as follows:

V � 
M

j�1
Zj. (11)

2.2.4. Soma Layer. ,e soma layer is the last step of a
neuronal computation and associated with a threshold. If the
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Figure 3: Four connection types in the synaptic layer.
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signal from the membrane exceeds the threshold, the
transmission channel is turned on. ,e operation is defined
as a sigmoid function and is shown as follows:

O �
1

1 + e−ksoma V−θsoma( )
, (12)

where ksoma is a user-defined parameter, θsoma means the
threshold of the cell body and its range is [0,1]. When the
signal from the membrane layer is greater than the threshold,
the neuron excitation will occur, otherwise keep fired.

2.2.5. Neuronal Pruning Function. ,e neuronal pruning
functions in the synaptic layer and dendritic layer complete
the plasticity mechanism of the proposed model. Based on
classification problems, the proposed model can give the
specific pruning structure by applying the synaptic pruning
and dendritic pruning.

(1) Synaptic Pruning.,e constant-1 synaptic connection in the
four connection types is considered as one of the origins of the
plasticity of the neuron,which is called the synaptic pruning.,e
constant-1 completes a multiplication operation in the dendritic
layer, since every synapse interacts with the other synapses in
each dendritic layer. A value multiplied by the constant-1 is not
changed, and it does not cause the output of the dendritic layer
to change. ,erefore, this constant-1 synaptic connection type
can be neglected or pruned in the dendritic layer to simplify the

neuron model without having any impact on the learning
process of the proposed model.

(2) Dendritic Pruning. ,e constant-0 synaptic connection
interacts with each dendritic layer, which is called dendritic
pruning. Hence, whatever the output of the dendritic layer
is, it multiplied by the constant-0 always equals 0. ,e
outputs of all the dendritic layers are summed in the
membrane layer, and any value that adds zero is equal to
itself. ,e corresponding dendrite with constant-0 can be
removed without any impact, which can simplify the
morphology and structure of the proposed model.

3. Learning Algorithm

Based on the structure of the proposed Mr2DNM which is a
feed-forward logic neural network, the error back-propa-
gation (BP) algorithm is employed for training the model.
,e construction of the neuron model depends on an ef-
fective learning rule. Its learning rule is obtained by the least
squared error between the real output vector O and the
target output vector T, shown as follows:

E �
1
2
(T−O)

2
. (13)

,e error is decreased by correcting the synaptic pa-
rameters ωi,j and qi,j of the connection function during
learning. ,e corrections of both parameters utilize the
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gradient descent learning algorithm. ,e equations are
expressed as follows:

Δωi,j(t) � −η
zE

zωi,j

,

Δqi,j(t) � −η
zE

zqi,j

,

(14)

where η represents the learning rate, which is a user-defined
parameter. However, a small learning rate might make the
convergence speed slow. ,us, we set the corresponding
suitable η for each classification problem as possible in the
simulation. ,en, the updating rules of ωi,j and qi,j are
computed as follows:

ωi,j(t + 1) � ωi,j(t) + Δωi,j,

qi,j(t + 1) � qi,j(t) + Δqi,j,
(15)

where t is the number of the learning iteration. In addition,
the partial differentials of E with regard to ωi,j and qi,j are
defined as follows:

zE

zωi,j

�
zE

zO
·
zO

zV
·

zV

zZj

·
zZj

zYi,j

·
zYi,j

zωi,j

,

zE

zqi,j

�
zE

zO
·
zO

zV
·

zV

zZj

·
zZj

zYi,j

·
zYi,j

zqi,j

.

(16)

,e detail parts of the above partial differentials are
represented as follows:

zE

zO
� O−T,

zO

zV
�

ksomae−ksoma V−qsoma( )

1 + e−ksoma V−qsoma( ) 
2,

zV

zZj

� 1,

zZj

zYi,j

� 
N

L�1&L≠i
YL,j,

zYi,j

zwi,j

�
kxie
−k xiwi,j−qi,j( 

1 + e−k xiwi,j−qi,j(  
2,

zYi,j

zqi,j

�
−ke−k xiwi,j−qi,j( 

1 + e−k xiwi,j−qi,j(  
2.

(17)

4. Experiment and Analysis

4.1. Experimental Setup. ,is experiment is programmed in
MATLAB (R2013b) and implemented on a computer with
Intel(R) Core i5 3.4GHz and RAM 16GB. To assess the

performance of the proposed Mr2DNM, five widely used
benchmark datasets taken from the University of California
at IrvineMachine Learning Repository (UCI) are tested [37].
,ese datasets include Wisconsin breast cancer database
(WBCD), BUPA medical research database for liver dis-
orders (BUPA), ionosphere dataset (IONO), Pima Indians
diabetes dataset (PIMA), and congressional voting records
dataset (VOTE). ,ese five datasets could be divided into
categorical (WBCD, BUPA) or numerical (IONO, PIMA,
VOTE) ones. Table 1 lists the characteristics of these
datasets. To make a fair comparison, the samples which
includemissing value are deleted, because the used classifiers
cannot handle missing value. According to our previous
work, the samples of each dataset are randomly divided: 70%
for training and 30% for testing [26]. In addition, the input
variables are normalized from 0 to 1.0, by a min-max
normalization rule:

Xnormalized �
X−Xmin

Xmax −Xmin
. (18)

Table 2 provides the user-defined parameter settings to
our experiment for each dataset independently. Among
them, the parameter settings of five datasets are set based on
the suggesting in [25, 26].

4.2. Performance Evaluation. ,e optimal classification ac-
curacy results of the proposed Mr2DNM which adopts the
reduced feature subsets are summarized in Table 3, where
the number of features (NF) in the original dataset, the
number of features in the optimal subset (#) obtained by
Mr2 criteria, the reduction rate of features of the optimal
subset to the original one, corresponding feature sequence
obtained by Mr2 criteria, average accuracy based on 30
independent runs, computational time, and average area
under the receiver operator characteristic curve (AUC) for
five classification problems are listed. To further prove the
effect of Mr2 on the DNM classifier, Figure 5 illustrates the
influence of used feature size on accuracy and calculation
time for classifying five datasets, respectively. It is observed
that as the number of features decreases, the accuracy rate
changes. Compared with the results that more features are
used, a specific subset of features can obtain better accuracy
with a lower computational cost. However, too few features
will cause the accuracy rate to deteriorate significantly. In
addition, the ROCs that can prove the classification quality
of classifiers are shown in Figure 6. AUC is the area under
ROC, and its range is [0,1] [38]. It means that the classifier
can perfectly classify the dataset, when the value of AUC is
1. If the AUC is equal to 0.5, it means the model is a random
classifier [39]. According to Table 3, it can be found that
Mr2DNM obtains high accuracy on WBCD, IONO, and
VOTE, and relatively low one on BUPA and PIMA.,e low
accuracy is caused due to complexity of datasets, and ex-
istent literatures also obtain similar results.

To compare the convergence speed of each feature size,
the mean squared error (MSE) of Mr2DNM at each iter-
ation is calculated and illustrated in Figure 7, which
provides the results of 1000 iterations for five datasets. In
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Table 2: Parameter setting for five datasets.

Dataset k ksoma θsoma M η No. of iterations
No. of samples

Training Testing

WBCD 1 10 0.5 45 0.01 1000 478 205
BUPA 3 10 0.5 10 0.005 2000 242 103
IONO 3 10 0.5 34 0.001 1000 246 105
PIMA 3 10 0.5 25 0.001 1000 538 230
VOTE 3 10 0.5 30 0.001 1000 162 70

Table 1: Datasets used in the experiment.

Dataset
Feature

Sample
Nominal Continuous

WBCD 9 0 683
BUPA 0 7 345
IONO 0 34 351
PIMA 0 8 768
VOTE 16 0 232

Table 3: Performance of the proposed Mr2DNM for five datasets.

Dataset NF # Reduction (%) Optimal feature sequence Accuracy (%) Time (×103 s) AUC
WBCD 9 7 22.22 F2, F6, F1, F7, F5, F3, F8 96.80 54.4 0.9942
BUPA 7 5 28.57 F5, F6, F1, F4, F3 72.66 7.1 0.7458
IONO 34 8 76.47 F5, F1, F8, F4, F3, F28, F7, F14 90.73 24.6 0.9227
PIMA 8 7 12.5 F2, F5, F8, F6, F4, F1, F3 76.80 33.2 0.8198
VOTE 16 6 62.5 F4, F5, F12, F3, F14, F8 96.57 10.2 0.9779
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Figure 5: Continued.
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Figure 5: Accuracy, time, and feature size for five datasets. (a) WBCD. (b) BUPA. (c) IONA. (d) PIMA. (e) VOTE.
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Figure 6: ROCs of Mr2DNM that used the optimal feature subsets for five datasets. (a) WBCD. (b) BUPA. (c) IONA. (d) PIMA. (e) VOTE.
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Figure 7, the number shown in the legend denotes the
feature size. ,e curves of only eight consecutive subset
sizes are shown for IONO and VOTE datasets, which
contain the optimal subset size. From Figure 7, it is ob-
served that a better accuracy rate always can be obtained by
removing appropriate redundancy features and resulting in
a fast convergence speed and a smooth convergence curve.
,erefore, Mr2 feature selection method is effective for
DNM to deal with classification tasks.

,e convergence situations of the five optimal subsets
are shown in Figure 8. It is clear that five datasets have all
completed their own convergence within 500 iterations.
Generally, the reduction of features leads to a lower cal-
culation time. ,e redundant features are sequentially
excluded from the feature subsets so that the classification
accuracy changes. However, a reduced feature subset
clearly can contribute a better accuracy with a lower cal-
culation cost and faster and smoother convergence
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Figure 7: MSE of each feature size for five datasets. (a) WBCD. (b) BUPA. (c) IONA. (d) PIMA. (e) VOTE.
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Table 4: Average classification accuracy (%) obtained by 30 runs for all compared classifiers.

Dataset Orig RENN FaLKNR AdaBoost MultiBoost IEMLP Mr2DNM

WBCD Accuracy (%) 95.28 96.14 96.28 94.99 95.85 96.62 96.80
Rank 6 4 3 7 5 2 1

BUPA Accuracy (%) 71.59 71.88 71.01 71.88 71.59 71.59 72.66
Rank 5 2.5 7 2.5 5 5 1

IONO Accuracy (%) 91.17 86.61 86.61 91.17 91.74 89.23 90.73
Rank 2.5 6.5 6.5 2.5 1 5 4

PIMA Accuracy (%) 75.39 76.69 75.91 75.26 75.13 78.07 76.80
Rank 5 3 4 6 7 1 2

VOTE Accuracy (%) 94.71 94.71 96.55 94.48 94.48 95.95 96.57
Rank 4.5 4.5 2 6.5 6.5 3 1
A.Rank 4.6 4.1 4.5 4.9 4.9 3.2 1.8
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Figure 9: ,e dendritic morphology of BUPA dataset. (a) After learning. (b) After pruning.
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situation in comparison with that all features are used. It
should be noted that overly small feature size conspicu-
ously reduces the classification accuracy. For the above
reasons, Mr2DNM is verified to be an optimal compro-
mised method that maximizes the classification accuracy
and synchronously minimizes the feature size and calcu-
lation time.

Furthermore, the performance of Mr2DNM is compared
with other six related classification algorithms, including
standard back-propagation (Orig) [40], RENN [41],
FaLKNR [42], AdaBoost [43], MultiBoost [44], and IEMLP
[40]. Table 4 shows the comparative results of the classifi-
cation accuracy on five benchmark datasets, and the cor-
responding ranks of performance are listed. ,e proposed
Mr2DNM obtains the best accuracy on three classification
problems and the average rank (A.Rank) for five classifi-
cation problems, which is first place among all compared
methods. In fact, it can be considered that there is no one
algorithm that always outperforms the others on all clas-
sification tasks. However, the A.Rank suggests that the
performance of the proposed Mr2DNM averagely out-
performs the other classification techniques.

4.3. Simplified Morphology Analysis

4.3.1. Neuron Morphology. As mentioned above, Mr2DNM
achieves the internal dimensional reduction via simplifying
the morphology to the neuron model during learning.
During learning, (1) each attribute has an input (synapse)
connection on each dendritic branch; (2) an input con-
nection is defined as one of four connection states
whenever a connection action occurs; (3) four connection
states are a direct connection (•), an inverse connection
(▬), a constant-0 connection ( ), and a constant-1
connection (A), respectively; (4) the same feature does not
necessarily have the same connection type on each den-
dritic branch; and (5) all the dendritic branches are finally
summed in the membrane layer. ,e internal dimensional
reduction is implemented via ignoring the inputs (syn-
apses) which have the constant-1 connection and removing
the dendritic branches which have the input of the con-
stant-0 connection states. ,e neuronal morphology of
BUPA as an example is given in Figure 9. Since Mr2 is
employed as the feature selection, the initial number of the
feature is set as 5 at the beginning, which means that DNM
reduces the calculation of 10 connection states before
training the model. In addition, before training the model,
there are 50 synaptic points and 10 dendritic points to
perform calculation, as shown in Figure 9(a). After
training, the model obtains a simplified morphology which
only has 9 synaptic points and 3 dendritic points through
the neuron pruning, as shown in Figure 9(b).

4.3.2. Logic Circuits Morphology. ,e functions of
Mr2DNM approximately correspond to the “comparator,”
logical “NOT,” “AND,” and “OR” operation, respectively
[32, 45]. ,ence, the simplified neuron morphology can be
replaced by the logic circuits, and the corresponding logic

circuits for the BUPA as an example are shown in Figure 10.
,e comparator of the logic circuit compares the input with
the corresponding threshold. If the value of the input
exceeds the threshold θ, the result outputs 1, and otherwise
0. ,e final output of the model can be obtained by sub-
sequent logic circuits. ,e implementation of the simplified
model can be realized by the logic circuit in hardware so
that the results are easily reproduced while decreasing the
computational cost.

5. Conclusion

In this paper, a hybrid model (Mr2DNM) by considering
the feature redundancy and nonlinear interactions in a
dendrite tree is used for classifying the practical problems
with a low computational cost. ,e mutual information-
based Mr2 criterion can cut out redundant features to
provide an optimal feature subset for the training of DNM.
DNM trained by BP learning algorithm handles major
classification work with the plastic mechanism and sigmoid
functions. In addition, the simplified morphology of the
proposed model obtained by training can be achieved via
logic circuits to further decrease cost.

,e contribution of study is summarized as follows:
(1) an efficient hybrid classification model (Mr2DNM) is
proposed; (2) the simulation proves that a feature se-
lection method combined with a neuron model can obtain
beneficial results; (3) to our knowledge, the hybrid of
feature selection method and single neuron model is a
research area that still needs to be explored deeply and to
provide an inspiring view; and (4) meanwhile, this study
advocates others to employ feature selection method to
other neural network models for reaching superior
classification performance, and it can be expected that
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Figure 10: Logic circuit of the simplified morphology of BUPA
dataset.

Computational Intelligence and Neuroscience 11



such hybridization can avoid the negative impact brought
by the redundancy features in the datasets and make the
performance of the model fully reflected.
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