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Accurate diagnosis of atopic 
dermatitis by combining 
transcriptome and microbiota data 
with supervised machine learning
Ziyuan Jiang1,8, Jiajin Li2,8, Nahyun Kong3, Jeong‑Hyun Kim4, Bong‑Soo Kim5, Min‑Jung Lee5, 
Yoon Mee Park4, So‑Yeon Lee6, Soo‑Jong Hong6* & Jae Hoon Sul7*

Atopic dermatitis (AD) is a common skin disease in childhood whose diagnosis requires expertise 
in dermatology. Recent studies have indicated that host genes–microbial interactions in the gut 
contribute to human diseases including AD. We sought to develop an accurate and automated pipeline 
for AD diagnosis based on transcriptome and microbiota data. Using these data of 161 subjects 
including AD patients and healthy controls, we trained a machine learning classifier to predict the 
risk of AD. We found that the classifier could accurately differentiate subjects with AD and healthy 
individuals based on the omics data with an average F1‑score of 0.84. With this classifier, we also 
identified a set of 35 genes and 50 microbiota features that are predictive for AD. Among the selected 
features, we discovered at least three genes and three microorganisms directly or indirectly associated 
with AD. Although further replications in other cohorts are needed, our findings suggest that these 
genes and microbiota features may provide novel biological insights and may be developed into useful 
biomarkers of AD prediction.

Atopic dermatitis (AD) is a type of inflammatory skin disease resulting in red, itchy, swollen, cracked, and irri-
tated skin, which is a severe form of  eczema1. It is more prevalent in children but can occur at any age. Studies 
found that about 15% of children under 15 years of age are affected by AD in the United  States2, while only about 
7% of adults have  AD3. In addition to the discomfort in the skin, children with AD may develop inhalant allergic 
diseases such as  asthma4 and allergic  rhinitis5 as well as mental disorders such as anxiety and  depression6. Hence, 
AD may impose a high economic burden and have considerable negative effects on life  quality7–9, which is a sig-
nificant cost to society. However, there is no cure for this disease except a few treatments to relieve the  symptoms8 
because its causes are  complicated10. For decades, treatment of AD has been limited to topical corticosteroids, 
topical calcineurin inhibitors, and for those with moderate to severe AD, systemic  immunosuppressants11. In 
patients with moderate to severe AD, biological therapy such as dupilumab shows good results, but the high 
drug cost is a burden on patients with  AD10,11.

Recently, the important role of colonic epithelial cells (colonocytes) has been implicated in the host–microbial 
interactions, and these gut epithelial cells contribute to the microbiota composition and activities following gut 
dysbiosis, affecting many chronic human  diseases12. In addition, integration and correlation analyses of host 
genes expression and gut microbiota have emerged as an important opportunity for diagnosis and prediction of 
human diseases including  AD13,14; for instance, associations between enzyme commission genes and microbiota 
in inflammatory bowel  diseases15, and also between IL-17 and Streptococcus in  AD16. However, there have been 
few studies on prediction analysis using machine learning based on the gut transcriptome and microbiota in AD.
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It is challenging to diagnose AD because of its variable morphology, distribution, and irregularity. Based on 
its main clinical features, diagnostic criteria have been developed and used  worldwide17,18. Besides, the assess-
ment of disease severity is problematic due to the lack of objective and effective  markers19. This is concerning as 
physicians need to make decisions about treatment based on the diagnosis of AD and its severity, which might 
be related to the prognosis. Therefore, an accurate and automated diagnosis of AD and an improved set of bio-
markers for it could have a potentially high impact.

In this paper, we develop a machine learning classifier for accurate and automated diagnosis for AD using the 
transcriptome of gut epithelial colonocytes and gut microbiota data. A classifier is an algorithm that implements 
classification, which maps the input data to specific classes. In our study, an AD classifier takes transcriptome data 
and/or microbiota data as input data and outputs the predicted status of AD. Specifically, we use transcriptome 
and metagenome data to achieve the comprehensive gene expression and microbiota profiles of individuals with 
moderate to severe AD and controls. We develop a robust machine learning pipeline including feature selec-
tion, model selection, cross-validation, classification, and follow-up statistical analyses, which can differentiate 
between subjects with and without AD based on the omics data with high accuracy.

Materials and methods
Sample collection and disease diagnosis. In this study, we collected the transcriptome of gut epithe-
lial colonocytes and gut microbiota data of 161 subjects including 88 cases (patients with AD), 73 controls 
(healthy individuals). AD subjects were recruited from the Childhood Asthma Atopy Center of Asan Medical 
Center, Seoul, Korea, and were diagnosed in accordance with the criteria of Hanifin and  Rajka20. All individu-
als are children aged from 6 to 72 months. The SCOring AD (SCORAD) value, as an important AD assessment 
index for the extent and severity of AD, was assessed by pediatric allergists based on the guidelines for the 
SCORAD  index21. Total serum immunoglobulin (IgE) levels in the peripheral blood were measured using the 
ImmunoCAP system (Phadia AB, Uppsala, Sweden). The parents and guardians of all children provided written 
informed consent for their participation, and this study protocol was approved by the human ethics committee 
at Asan Medical Center (Institutional Review Board No. 2008-0616, 2015-1031, and 2017-0923).

Transcriptome and microbiota data. Transcriptome data was obtained from mRNAs extracted the 
exfoliated colonocytes of each fecal specimen using the GeneChip Human Gene 2.0 ST Array (Affymetrix, Santa 
Clara, CA) under the manufacturer’s protocol. Microbiota data was obtained from the fecal samples using the 
Power Microbial RNA/DNA Isolation kit (MO BIO/Qiagen, Carlsbad, CA, USA), polymerase chain reaction 
(PCR) amplification based on primers targeting the V1-V3 variable region of 16S rRNA gene, and sequenc-
ing the Roche/454 FLX Titanium system (Roche, Mannheim, Germany) and MiSeq (Illumina, San Diego, CA) 
under the manufacturer’s instructions. Since there was the requirement of actual read counts for quality control 
and the difficulty in a direct comparison between these two sequencing platforms, we focused on the common 
phylum and genus. More detailed information on the sequencing method is provided in our previous  studies22,23.

AD machine learning classifier. We built the supervised machine learning pipeline that predicts atopic 
dermatitis status using transcriptome and microbiota data. This pipeline includes prepossessing, feature selec-
tion, model selection and improvements, integration of microbiota data, and performance  evaluation24. The 
pipeline is implemented with Python 3.7 and the scikit-learn  package25.

Prepossessing. Initially, there were 161 samples in the transcriptome dataset and the microbiota dataset, respec-
tively. 160 samples existed in both datasets. For one individual with only transcriptome data, we imputed its 
microbiota data using a mean values imputation approach that assumes missing values are missing completely 
at random (MCAR). For one individual with only microbiota data, we removed this sample as it is difficult to 
impute its transcriptome data due to a large number of genes to impute (one hundred times more genes in the 
transcriptome data than microorganisms in the microbiota data). At the end of this process, we have the set of 
identical 161 samples in both transcriptome and microbiota datasets.

Among the 161 samples, there were 88 AD patients and 73 controls, and we split them into the training set (n 
= 131) and the test set (n = 30). As the numbers of cases and controls were different, we used a stratified split to 
guarantee that the balance of cases and controls is consistent across training and test sets. We then used min-max 
normalization to scale the transcriptome and microbiota data so that the data range from 0 to 1, calculated as:

where x is a vector of the values of a feature. We use this normalization method because we want to ensure that 
the scaled data are positive. We normalize the training and test sets together.

Feature selection. As it is unlikely that a disease is strongly associated with more than 40,000 genes, most of the 
genes would be unrelated to the disease or have negligible effects. Therefore, feature selection on the training 
dataset is necessary to identify a subset of predictive genes, whose expression data could predict atopic dermati-
tis as accurately as possible. The two main aspects we considered were: (1) the optimal number of features to be 
selected in the entire dataset, and (2) the exact features chosen from the original training set.

Typically, there are three types of widely used feature selection methods. They are Filter, Wrapper, and Embed-
ded  methods26. We selected three methods from each type: Chi-squared Test, Recursive Feature Elimination 
(RFE), and Random Forest Classifier (RFC) because they are efficient and applied in the previous  research27. 
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Specifically, RFE requires the results from the models, and hence we chose Logistic Regression (LR), Support 
Vector Machine (SVM), and Random Forest Classifier (RFC) as the models in conjunction with RFE. These 
combinations are referred to as LR-RFE, SVM-RFE, and RFC-RFE, respectively.

After introducing the specific methods for feature selection, we should then consider the problem of overfit-
ting. It is hard to extract correct features from high-dimensional datasets with small sample sizes.

Cross-validation (CV) is important in preventing  overfitting28,29. In our task, we designed two plans (Plans 
A and B) for feature selection using cross-validation. Note that we do cross-validation and feature selection on 
the training set only so it will not cause data leakage. Plan A: we performed a 5 by 5 nested cross-validation for 
feature selection, which consisted of a fivefold inner CV round and a fivefold outer CV round. We used the outer 
CV on the entire training set to evaluate the model performance, and the inner CV is applied to the outer CV 
training split to select the set of predictive features (Supplementary Fig. S1A). In other words, supposing that 
the outer CV training split named D is used for feature selection, we executed a fivefold CV on D (i.e., inner CV) 
and determined the optimal number of features to select in D, which could achieve best average performance in 
the inner CV. Then we calculated the overlapping features across all training splits of the outer CV. Denote the 
number of features in the final set as nA. In a given inner CV training split, all the features are ranked by their 
weights (feature importance) assigned by the classification model trained with the inner CV training split. Then 
we selected top k features with k starting from 44,608 (all features) and being reduced by 10% in each iteration 
until k = 1, and trained models with the inner CV training split and evaluated them with the inner CV test split 
(the validation set). The optimal value of k was selected to generate the model with the best performance. In the 
outer CV training split, all the features are ranked using the same method as applied to the inner CV training 
split. Then we selected k top features to identify the set of predictive features for this outer CV training split, where 
k is the optimal number of features determined in the inner CV. The outer CV test set will be used for model 
selection and hyper-parameter tuning with the k selected features in the follow-up analysis instead of feature 
selection. We then repeated this process over all the five outer CV training splits and yielded five sets of predic-
tive features. Finally, we selected the intersection set of them as the final set of predictive features for the entire 
original training set. Plan B: instead of using a nested cross-validation, we only performed one fivefold cross-
validation on the entire training set and directly selected nB top features on its training splits, D (Supplementary 
Fig. S1B, S2), where the features are ranked by test scores such as the p values of χ2 test between the features and 
the disease statuses. nB is determined as the value that produces the model with the best average performance 
in the outer CV test sets (the validation set). The final set of predictive features are the top nB features chosen in 
the entire original training set.

As mentioned before, to decide the two main aspects regarding feature selection, we considered different 
feature selection methods and many possible numbers of features based on a set of criteria. We used fivefold 
cross-validation to evaluate the performance. In detail, we employed the average F1-scores from outer CV 
test sets as metrics. We compared plan A and plan B, combined with five candidate feature selection methods: 
RFE-LR, RFE-SVM, RFE-RFC, Chi-square Test, and RFC. Based on the comparison results (see supplementary 
methods), we took the following steps to select the best feature number: we first calculated feature importance 
in each training split in the outer CV, ranked the features by their average feature importance, and chose the 
top n features from the training set whose feature importance was greater than a threshold (Plan B). Finally, we 
chose 35 features using the Chi-squared test in the entire original training set.

Model selection and improvements. We trained four different machine learning models, (1) Logistic Regression 
(LR), (2) Support Vector Machine (SVM) with linear and rbf kernels, (3) Random Forest Classifier (RFC)30, and 
(4)  XGBoost31 with the outer CV training splits. XGBoost is a tree boosting method, demonstrated to perform 
extremely well in multiple classification tasks. We chose the best model among the four models by comparing 
the average F1-scores on outer CV test splits.

Jittering. Jittering is a useful tool to mitigate  overfitting32. We added random noises to the training set of the 
original data before normalization and feature selection. The noise followed a normal distribution of

where I is the intensity of noises and the variance σ 2
= 1 . Although jittering might reduce the classification 

accuracy of the model on training sets, proper noises could increase the robustness of the algorithm, narrowing 
the performance gap between training and test sets, and therefore reducing the possibility of overfitting. Note 
that jittering is only performed on the transcriptome data in the training set. It is because the microbiota data 
contain many zero values and thus adding noises to it will distort the data.

Thresholding. Moreover, we consider the effect of changing the probability threshold (pt) in prediction. A sam-
ple is predicted to be a case by the model if the predicted probability is greater than a certain threshold (pt) where 
the default value is 0.5. Different probability thresholds should be examined to see whether they could further 
improve the model performance. For this improvement, we first selected the model with the best performance 
using the default probability threshold (0.5). Then we changed the machine learning model such that it generates 
the probability (pt) as output. We tested different thresholds and chose the best one based on the outer CV test 
split evaluation.

Feature importance. After comparison, we selected the Chi-squared test as our feature selection method. We 
used the “SelectedKBest" function in the scikit-learn  package25 to implement the Chi-squared test. After iden-

s ∼ N(0, σ 2I)
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tifying k features, we also want to rank the features based on a certain criterion. This function has an attribute 
named “scores_", and it returns the scores of features. The Chi-squared test is used to test the independence of 
two events.

In our binary classification problem, we have X as the input data with the size of (n_sample, n_feature), 
which are the number of samples and features respectively, and also y as the label of each sample with the size 
of n_sample. For calculation, we expand the size of y to (n_sample, 2). The first column of y represents the first 
class and the second stands for the second class. For each row, the elements will either be (1, 0) or (0, 1), which 
indicates that the sample of this row belongs to the first class or the second class.

After that, we calculated the observed result fobs,

Next, we calculated the expected result fexp . To do this, first, we acquired feature_count, which is a (1, n_fea-
ture) matrix, and each column is the sum of this feature in each sample. Secondly, we obtained class_prob, which 
is a (1, 2) matrix, and each column is the mean of this class. Now we can get fexp,

Finally, we calculated the χ2 value by the following equation,

where χ2 is a (2, n_feature) matrix. We summed up the result along the column and calculated the scores_ vector 
of size n_feature. It represents the scores of the features, where column i of scores_ is the score of the i-th feature.

In our task, higher values suggest higher importance of features. Therefore, we could compare each feature 
relatively from their feature importance.

Integration of microbiota data. In addition to the transcriptome data, we integrated the microbiota data to 
improve the performance of the AD classifier. We tested four methods when incorporating the microbiota data 
and evaluated their performance using the outer CV test set:

(1) a method that uses microbiota data only, (2) a method that uses transcriptome data only, (3) a method 
that combines transcriptome and microbiota data first, then performs feature selection and trains the model, and 
(4) a method that performs feature selection on transcriptome and microbiota data separately, then combines 
the two types of data and trains the model. We used similar feature selection methods as described above for 
microbiota data. The comparison of these four methods is in Supplementary Table S1.

Performance evaluation. We evaluated the prediction accuracy of the AD classifier using the test set, which 
is not used in training. We calculated several performance metrics including accuracy, precision, recall, and 
F1-score. In binary classification problems, we calculated those metrics as follows:

Predicted class

Actual class

True False

True a (True Positive) b (False Nega-
tive)

False c (False Positive) d (True Nega-
tive)

We used F1-score as the main evaluation metric in this paper as it is a harmonic mean of precision and recall, 
leading to a more general and reliable assessment of the model performance, especially when classes are imbal-
anced. F1-score ranges from 0 to 1 where the performance is better when the F1-score is closer to 1. In addition 
to these metrics, we plotted the Receiver Operating Characteristic (ROC) curve by plotting the true positive rate 
(TPR) against the false positive rate (FPR) at different threshold settings. We then calculated the area under the 
ROC curve (AUC), which also ranges from 0 to 1 where 1 represents the perfect performance.

Assumptions in experimental settings. In building and testing the AD classifier pipeline, we have several hyper-
parameters such as feature numbers, feature selection methods, and training models. As examining all combina-
tions of hyper-parameters is exponential in the number of hyper-parameters, our experiments are based on the 
assumption that every variable or hyper-parameter is weakly correlated to each other. It means that optimizing 
a hyper-parameter one at a time yields a similar model when optimizing all hyper-parameters at the same time.

Ethics approval. The parents and guardians of all subjects provided written informed consent for their 
participation, and this study protocol was approved by the human ethics committee at Asan Medical Center 

fobs = yTX

fexp = class_probT · feature_count

χ2
=

(

fobs − fexp
)2

fexp

Precision = p =
a

a+ c
, Recall = r =

a

a+ b
, Accuracy =

a+ d

a+ b+ c + d
, F1−score =

2pr

p+ r
=

2a

2a+ b+ c
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(Institutional Review Board No. 2008-0616, 2015-1031, and 2017-0923). All research was performed in accord-
ance with relevant guidelines and regulations.

Results
Data description. We acquired the transcriptome profiles and the microbiota data of 161 subjects, who 
were recruited from the Cohort for Childhood Origin of Asthma and Allergic Diseases birth cohort and the 
Asthma Atopy Center of Asan Medical Center, Seoul, Korea. After preprocessing, there are 88 cases (patients 
with AD) and 73 controls (healthy individuals). As summarized in Table 1, the mean age was higher in the AD 
patient group than the controls (17.37 ± 3.48 month vs. 10.81 ± 2.15 month, P = 0.001), and the serum total IgE 
levels were significantly higher in the AD group (243.06 ± 160.21 IU/ml vs. 22.83 ± 9.46 IU/ml, P = 0.004). On 
average, subjects without AD are 3.16 months younger than individuals with the disease. After preprocessing 
and normalizing the raw gene expression and the microbiota data, there are 44,608 gene expression probes and 
366 taxa of microorganisms used for developing a machine learning pipeline.

Table 1.  Baseline characteristics of the subjects in this study. a SCORAD: SCOring AD value, an AD 
assessment index that is only available for patients.

All Cases (AD) Control (No AD) Cases (AD) vs control (No AD) t test p value

Average age: months 14.21 ± 2.14 17.37 ± 3.48 10.81 ± 2.15 0.001

Sex: female 72 32 40 –
aSCORAD – 32.86 ± 5.49 – –

Total IgE (IU/ml) 135.191 ± 83.53 243.06 ± 160.21 22.83 ± 9.46 0.004

(a)

prepocessing

feature selection fine-tune by cross

validation

transcriptome dataset

(n=165, 44608 genes)

training set

(n=131)

test set

(n=30)

: process

: object

classification evaluationselected

features

(b)

prepocessing

feature selection fine-tune by cross

validation

transcriptome dataset

(n=165, 44608 genes)

training set

(n=131)

test set

(n=30)

: process

: object

classification evaluationselected

features

microbiota dataset

(n=165, 366 genes)

data intergration

Figure 1.  The overview of atopic dermatitis classification pipelines in two settings. (a) Transcriptome dataset 
only, and (b) transcriptome and microbiota data.
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Developing atopic dermatitis classifiers. To accurately predict AD incidence, we design two machine 
learning classifiers: one using only transcriptome data (Fig.1a) and the other using both transcriptome and 
microbiota data (Fig.1b). Both classifiers consist of several computational steps, and we describe each step briefly 
here (see “Materials and methods” for details). First, we preprocess the data such as removing duplicates, imput-
ing missing values, splitting the data into training and test sets, and performing normalization. Second, we per-
form feature selection using the training set with the cross-validation to identify the best set of features for pre-
diction (e.g., expression of specific genes or specific taxa) as well as to choose the best machine learning model. 
To improve the performance of the classifier, we consider changing a few hyper-parameters such as adding 
certain levels of noise to expression data and changing the probability threshold to classify cases and controls. 
Lastly, we apply the trained machine learning model and selected features to the test set for classification and 
evaluate the performance of the machine learning model. As our dataset consists of a high-dimensional feature 
set from a limited sample size, we primarily focus on developing a machine learning classifier that is robust with 
the small sample size, prevents overfitting, and prioritizes genes or features for prediction.

Evaluation of transcriptome only classifier. The transcriptome data are available from 161 individuals 
whose gene expression profile is measured at 44,608 probes (“features”). As a large number of features have nega-
tive effects on classification performance such as causing overfitting, we perform feature selection to identify a 
subset of informative features. We use a fivefold cross-validation approach using a training set (n = 131) and test 
several feature selection methods such as recursive feature elimination (RFE), support vector machine (SVM), 
and chi-squared test. We measure the performance of feature selection methods using F1 score and find that 
the chi-squared test approach selecting about 35 features from the training set has the best performance. So we 
decide to select 35 features with feature importance ≥ 0.95 which can achieve the highest performance (Sup-
plementary Fig. S3).

Once we identify the set of best features or genes for prediction, we next seek to identify the best machine 
learning model for prediction. We test several machine learning (ML) models such as Logistic Regression (LR), 
Support Vector Machine (SVM), Random Forest Classifier (RFC), and XGBoost. We use a 5-fold cross-validation 
with a training set and 35 features to evaluate the performance of each ML model and find that SVM with the 
rbf kernel has the highest F1 score (Supplementary Table S2). To improve the performance of our ML classifier, 
we vary the probability threshold (pt) when making predictions on the case-control status; an individual is pre-
dicted to be a case if the predicted probability is greater than pt and by default, pt = 0.5. Results show that pt = 0.3 
generates the best F1 score using 5-fold cross-validation (Supplementary Table S3). Lastly, another improvement 
we make to the ML classifier is jittering, which is adding random noises to transcriptome data. With jittering, it 
may be difficult for the machine learning models to fit the data, and therefore it may enhance the generalization 
ability and reduce the overfitting. We add different levels of noise and observe the highest F1 score with a noise 
level of I = 0.001 using SVM on 5-fold cross-validation (Supplementary Table S4).

After we identify the best ML model and features as well as improvements based on the performance using 
the training set, we evaluate the AD classifier on the test set (n = 30). We use a variety of metrics such as F1 score, 
accuracy, precision, recall, and the area under the curve (AUC) under the receiver operating characteristic (ROC) 
curve. In addition to the best AD classifier we identified, we also test classifiers without feature selection and the 
improvements to observe their impact on the performance. Specifically, we test four models: (1) SVM with all 
features, (2) SVM with the best 35 features, (3) SVM with all features and with jittering and best pt threshold, 
and (4) SVM with the best 35 features and with jittering and best pt threshold.

Results show that feature selection improves the performance as expected; both SVM models with feature 
selection have higher F1 scores (0.76) than models without feature selection (0.71 and 0.73, Table 2). However, 
the impact of feature selection is not dramatic as the F1 score improves by at most 0.05, similar to the enhance-
ment in the training set (from an F1 score of 0.7397 without feature selection to an F1 score of 0.7809 with feature 
selection). Also, improvements that include jittering and the best pt threshold do not increase the performance 
as the F1 score of the SVM model with those improvements is identical to that without the improvements in the 
test set, although we observe higher F1 scores with the improvements in the training set where we observed F1 
score of 0.80 with the best pt threshold and F1 score of 0.78 without the improvement. In terms of AUC under the 
ROC curve, the best AUC is observed when using all features (AUC of 0.75) while the SVM models with feature 
selection have slightly lower AUC (0.72, Fig. 2). The modest enhancement in performance by feature selection 
and other improvements in the test set may be due to the small sample size of the test set. We also examined the 

Table 2.  The results on different methods with transcriptome data only. The first method trained the model 
on the original training set without feature selection. The second method performed feature selection by 
chi-squared test and selected 35 features. For the last two methods, they are similar with the first two methods 
respectively while the only difference was that they added the noise and changed the probability threshold. The 
random seed of the noise was 21, which was the best result on this intensity (I = 0.001).

Feature selection method (number of features) + Classification method F1 score Accuracy Precision Recall

All features (44,608) + SVM (rbf) 0.7272 0.6000 0.5714 1.0000

chi-squared test (35) + SVM (rbf) 0.7647 0.7333 0.7222 0.8125

All features (44,608) + SVM (rbf), with noise (I = 0.001) and probability threshold = 0.3 0.7111 0.5667 0.5517 1.0000

chi-squared test (35) + SVM (rbf), with noise (I = 0.001) and probability threshold = 0.3 0.7647 0.7333 0.7222 0.8125
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performance of our AD classifier with only 19 of the 35 selected probes, which explicitly represents expressed 
genes with gene symbols (Supplementary Table S5). We observed the greatly increased performance of our AD 
classifier, which achieved an F1 score of 0.84 (Supplementary Table S6). Interestingly, applying jittering and 
thresholding did not further improve its performance. It was probably due to the smaller number of selected 
features that were more representative and informative. So the overfitting issue might be mitigated and thus it 
is unnecessary to use jittering and thresholding.

Evaluation of the classifier with microbiota data. In addition to the transcriptome data, we have 
microbiota data from 161 individuals with 366 phylum and genus features, and we build the ML classifier that 
uses both transcriptome and microbiota data (Fig. 1). Similar to the transcriptome-only classifier, we first per-
form feature selection on the microbiota features using a training set (n = 131) with the same cross-validation 
approach and feature selection methods. If using microbiota data only, we observe the best performance in terms 
of F1 score (0.73) with the SVM approach using 25 microbiota features (Supplementary Table S1). Additionally, 
we perform feature selection after combining microbiota and transcriptome data and find that 50 microbiota 
and 35 transcriptome features generate higher F1 scores (Supplementary Table S1). As for the other improve-
ments in the ML model, we use the same probability threshold (pt = 0.3) and noise level (I = 0.001) as ones we 
used for the transcriptome-only classifier; these thresholds and noise levels also generate the best performance 
(Supplementary Table S7, S8).

Next, we evaluate the prediction ability of the microbiota data on AD using six different classifiers with a test 
set (n = 30): (1) SVM using all microbiota features, (2) SVM using the best 25 microbiota features, (3) SVM using 
the best 50 microbiota and 35 transcriptome features, (4) the first, (5) the second, and (6) the third models with 
pt and jittering improvements. Results show that the classifiers that combine microbiota and transcriptome data 

Figure 2.  The ROC curve of the test set with transcriptome data only. (a) All features (44,608) + SVM (rbf). (b) 
Chi-squared test (35) + SVM (rbf). (c) All features (44,608) + SVM (rbf), with noise (I = 0.001) and probability 
threshold = 0.3. (d) Chi-squared test (35) + SVM (rbf), with noise (I = 0.001) and probability threshold = 0.3.
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(the third and sixth models) are most accurate in predicting AD, achieving an F1 score of 0.78 (Table 3). The 
classifiers that use only microbiota data generally have lower accuracy (F1 scores between 0.69 and 0.74) than 
ones that use both microbiota and transcriptome data. Compared to the previous transcriptome-only classifiers 
that have the best F1 score of 0.76, the microbiota data marginally improve the classifier performance to an F1 
score of 0.78. In terms of area under the ROC curve (AUC), the microbiota data does not improve the perfor-
mance compared to the transcriptome-only classifiers as the best AUC is identical (0.75) between the classifier 
that combines microbiota and transcriptome data and the transcriptome-only classifier (Fig. 3). Additionally, 
we selected 19 transcriptomic features with gene names and 50 microbiota features to train our AD classifier. 
We found that it did not perform better than using all 35 selected transcriptome features and 50 microbiota 
features, where it achieved an F1 score of 0.7273 initially and 0.7778 after applying jittering and thresholding 
(Supplemental Table S9).

Top genes selected in the AD classifier. Our feature selection algorithm using the transcriptome data 
identifies 35 features or probes (Fig. 4) that span over 19 unique genes. These genes are selected as they are most 
informative in predicting AD, which suggests they may be implicated in AD. Hence, we perform a literature 
search for these 19 genes to examine whether they are known to be related to AD and find a few cases. First, 
we find that GRP1 (Probe ID: 16907572) is associated with a type of scaffold protein (Grasp) that potentially 
influences p53-mediated apoptotic responses in the  skin33. It is known that apoptosis is a crucial process in the 
development of  AD34,35. Second, another gene called CCL22 (Probe ID: 16819478) is known to play an important 
role in AD pathogenesis. It encodes chemokine (C–C motif) ligand 22, which is involved in the immunoregula-
tory and inflammatory processes of T cells. Additionally, CCL22 is found to be one of the important biomark-
ers of severity in infantile AD according to a study involving 34  patients36. This gene has also been reported to 
be significantly up-regulated with AD in a high-throughput proteomic  assay37 and a transcriptomic  analysis38. 
Association studies and functional studies further suggest that the mutations in CCL22 affect the susceptibility 
to AD in a gain-of-function  manner39. Lastly, according to a genome-wide association study, four SNPs associ-
ated with Alopecia are mapped to our selected gene, TTC27 (Probe ID: 16878890)40. A previous study found that 
patients with Alopecia have a higher risk for  AD41. Overall, these examples demonstrate the clinical importance 
of our selected genes.

Top microorganisms in microbiota selected in the AD classifier. Our feature selection algorithm 
using the microbiota data and transcriptome data identifies 50 microbiota features (Fig. 5). These microorgan-
isms are chosen to be top predictors for AD, so they may be involved in AD. To validate our findings, we perform 
a literature search for these 50 kinds of bacteria to look for related studies and supporting evidence. Here are 
some examples. First, Akkermanisia has the highest feature importance in our AD classifier, indicating that the 
amounts of Akkermanisia can affect our prediction the most. A recent study found that the amounts of Akker-
manisia are high in transient AD patients but low in children with persistent  AD42. So Akkermanisia can be a 
crucial microbiota indicator for AD. Second, a metagenomic analysis of microbe-derived extracellular vesicles 
discovered that Verrucomicrobia, the bacteria with the second highest feature importance in our AD classifier, 
had significantly different relative abundances between the AD and control groups and could be used as a novel 
biomarker for AD  diagnosis43. Lastly, Propionibacterium is ranked the sixth most important microorganism 
in our AD classifier. It was reported that the relative abundance of Propionibacterium is usually reduced and 
the abundance of Staphylococcus aureus is elevated in the skin of AD  patients44, leading to dysbiosis. Another 
study observed a dysbiotic status characterized by a reduction of Propionibacterium in the gut microbiota of 
AD  patients45. And dysbiosis is considered to be an essential driving factor of  AD46,47. Hence, the selected 50 
microbiota features demonstrate the close relationship between gut microbiota and the pathogenesis of  AD48.

Table 3.  The first and second methods used microbiota data only. The first method trained the model on the 
original training set without feature selection. The second method did feature selection by chi-squared test 
and selected 25 features, while the third method used both transcriptome and microbiota data, and integrated 
the data using the fourth plan mentioned above, and selected 85 features (35 for transcriptome and 50 for 
microbiota). For the last three methods, they are similar with the first three methods respectively. The only 
difference was that they changed the threshold and added noises.

Feature selection method (number of features) + Classification method F1 score Accuracy Precision Recall

All features (366) + SVM (rbf) 0.7111 0.5667 0.5517 1.0000

chi-squared test (25) + SVM (rbf) 0.7442 0.6333 0.5926 1.0000

chi-squared test (85) + SVM (rbf) 0.7778 0.7333 0.7000 0.8750

All features (366) + SVM (rbf), with probability threshold = 0.3 0.6957 0.5333 0.5333 1.0000

chi-squared test (25) + SVM (rbf), with probability threshold = 0.3 0.7111 0.5667 0.5517 1.0000

chi-squared test (85) + SVM (rbf), with noise (I = 0.001) and probability threshold = 0.3 0.7778 0.7333 0.7000 0.8750
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Discussion
AD is a paradigmatic chronic inflammatory skin disease characterized by complex pathophysiology and a wide 
spectrum of clinical phenotypes. In particular, the phenotype of AD in early childhood may be influenced by 
genetic factors and gut microbiota. The purpose of this study was to predict the phenotype of atopic dermatitis 
in early childhood with transcriptome and microbiota data. Therefore, to understand this diversity, efforts to 
find new AD endotypes by ML technique using these multi-omics are needed. In this study, we integrated and 
took the advantage of one of the largest transcriptomic and microbial profiles for AD patients to the best of our 
knowledge. We developed an AD classifier solely based on transcriptome and microbiota data, which accurately 
distinguished subjects with AD from healthy individuals. The most accurate classifier selected 35 genes and 50 
microbial features (4 phyla and 46 genera) interpreted via a support vector machine classifier, which can auto-
matically classify AD with high precision (0.70) and recall (0.88). Also, among the selected genes/probes used 
in the AD classifier, we discovered that at least three genes are reported to be directly or indirectly associated 
with AD. In summary, our classifier represents the first step toward a precise, automated diagnosis of AD and 
provides important biological insights into the development of the biomarkers of this disease.

Recently, our colleagues have developed an estimated prediction model by multi-omics analyses and real-
ized the importance of transcriptome  data49; therefore, this study performed the extended analyses with a larger 
sample size and a different machine learning model for a more precise prediction. Our AD classifier is the first 
machine learning classifier for this disease based on the transcriptomic and microbial profiles of patients. To 
diagnose AD, clinicians typically rely on the clinical features of  AD50. However, the lack of robust objective 
measures might have negative effects on the assessment of  AD17–19,51,52. To overcome these challenges, previ-
ous studies developed machine learning classifiers for AD diagnosis or severity evaluation based on electronic 

Figure 3.  The ROC curve of the test set with microbiota data. (a) All features (366) + SVM (rbf). (b) Chi-
squared test (25) + SVM (rbf). (c) Chi-squared test (85) + SVM (rbf). (d) Chi-squared test (85) + SVM (rbf), with 
noise (I = 0.001) and probability threshold = 0.3. For panel (a,b), we only use microbiota data, while for (c,d) we 
also include transcriptome data.
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health records (EHR)53, camera  photos54, or multiphoton  tomography55. While these approaches may provide 
an unbiased diagnosis of AD, they are either not highly accurate, achieving F1 scores of 0.67 using  EHR53 and F1 
scores of 0.69 using camera  photos54, or it may be more inconvenient or expensive to obtain these kinds of data 
for the ML classifier. With the development of high-throughput microarray and sequencing technologies, it may 
be and is likely to be cheaper in near future to obtain transcriptome and microbiota data. Another advantage of 
our ML classifier is that it does not require patients to be present in the testing sites or hospitals as they can send 
their samples to the labs to generate transcriptome and microbiota data and our classifier can predict the risk of 
AD based on the data. Thus, our classifier enables the convenient, efficient, and cost-effective diagnosis of AD 
as well as improving the accessibility of medical resources for patients.

In further enrichment analysis using Enrichr (https:// maaya nlab. cloud/ Enric hr/)56 based on the featured 
genes, interleukin-7 (IL-7) interactions in the immune response pathway (P = 0.032, Supplementary Table S10) 
was enriched. IL-7 is a critical cytokine for the development of the group 2 innate lymphoid cells (ILC2s), 
which are involved in allergic diseases including  AD57. In addition, several inflammation-related processes (for 
instance, lymphocyte, chemokine, neutrophil, P < 0.05) were enriched in gene ontology observation. Inflamma-
tory responses associated with lymphocyte, chemokine, and neutrophil are important in AD mediated by CD4+ 
T  cells58. These results suggest that featured genes in this study might be potentially valuable for AD diagnosis.

There are a few study limitations. First, the sample size of our dataset is relatively small. As we only used 161 
samples recruited from the birth cohort follow-up group and outpatients group, it could cause overfitting and 
biases when training the ML classifier. To address this issue, we applied nested cross-validation to perform fea-
ture selection and model training. We also introduced jittering to add a small amount of artificial noise into the 
data to reduce overfitting. We showed that we successfully controlled the biases and overfitting as our classifier 
performed well on the independent test set. Our study also had the limited ability to assess the benefits of adding 
microbiota data to the ML classifier as we observed the marginal improvement in prediction accuracy, possibly 
due to the small sample size of the test set when we combined transcriptome and microbiota data. Second, since 
our subjects from the birth cohort follow-up group are general population and usually considered to have mild 
severity of AD, there is a possibility that the results may differ from those in the severe patient group. Therefore, 
to validate and improve the ML classifier and to more accurately assess its performance, further studies in a larger 
sample size and in an independent cohort are required. Third, age should be considered as a confounding factor 
to affect the gene expression and gut microbiota in infants through developmental stages. Fourth, it is known that 

Figure 4.  The average feature importance of the top 35 selected probes/genes. See more detailed annotation 
information in Supplementary Table S5.

https://maayanlab.cloud/Enrichr/
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the gut microbiota in infancy is largely unstable, but gradually stabilize as it grows during  childhood59. However, 
this study analyzed the gut microbiota in infants at ages from 6 to 72 months, without serial microbiome data 
of the subjects, for the prediction of AD. Therefore, further studies, including a replication study in serial paired 
subjects, are needed to resolve the differences or changes of the prediction during aging. The strengths of our 
study could be an application of non-invasive gut epithelial cells from fecal specimens and a possibility to apply 
to early prediction for AD patients with mild severity and the general population. In addition, to address the issue 
of no validation, we created an independent test set from the original dataset and demonstrated the accuracy of 
our classifier, which could serve as the independent cohort.

In this study, we developed an accurate and automated machine learning pipeline for atopic dermatitis 
classification. This pipeline can not only be used to predict this skin disease but also be generalized to classify 
other diseases based on transcriptome and microbiota data. It could assist clinicians in diagnosing and assessing 
diseases and providing timely treatment to patients. It could also provide new endotypes by performing further 
research. In addition, we demonstrated the utility of combining genomics and cutting-edge artificial intelligence 
(AI) technologies like machine learning to detect diseases or identify biomarkers. We expect that the increasing 
availability of genomics and AI technologies would improve the effectiveness and efficiency of medical diagnosis.

Data availability
The data supporting the findings of this study are included within the article.
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