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Abstract: When cellular reducing enzymes fail to shield the cell from increased amounts 

of reactive oxygen species (ROS), oxidative stress arises. The redox state is misbalanced, 

DNA and proteins are damaged and cellular transcription networks are activated. This 

condition can lead to the initiation and/or to the progression of atherosclerosis, tumors or 

pulmonary hypertension; diseases that are decisively furthered by the presence of oxidizing 

agents. Redox sensitive genes, like the zinc finger transcription factor early growth 

response 1 (Egr-1), play a pivotal role in the pathophysiology of these diseases. Apart from 

inducing apoptosis, signaling partners like the MEK/ERK pathway or the protein kinase C 

(PKC) can activate salvage programs such as cell proliferation that do not ameliorate, but 

rather worsen their outcome. Here, we review the currently available data on Egr-1 related 

signal transduction cascades in response to oxidative stress in the progression of 

epidemiologically significant diseases. Knowing the molecular pathways behind the 

pathology will greatly enhance our ability to identify possible targets for the development 

of new therapeutic strategies.  
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1. Introduction 

Redox reactions contribute to countless significant biological processes and help to maintain vital 

cellular functions. During aerobic cellular respiration, for instance, glucose is oxidized to CO2 and 

oxygen is reduced to water. This key process is elementary to gain energy in the form of adenosine 

triphosphate (ATP). Coenzymes like nicotinamide adenine dinucleotide (NAD+) participate in these 

electron transfer reactions and can act as oxidizing (NAD+) or reducing agents (NADH). NADH can 

be further metabolized during oxidative phosphorylation, the electron transport chain across the inner 

mitochondrial membrane, to generate more ATP. Its related cofactor NAD phosphate (NADP+) is 

reduced to NADPH during the oxidative phase of the pentose phosphate pathway (PPP) in the cytosol. 

NADPH is an essential reducing agent, not only for anabolic reactions like nucleic acid synthesis, but 

also for the production and elimination of reactive oxygen species (ROS). ROS—as the name 

implies—are a heterogenic group of highly reactive molecules and a normal byproduct of metabolic 

redox reactions [1]. Among them are free radicals, which hold an unpaired valence shell electron, like 

superoxide (•O2
−), nitric oxide (NO•) or the hydroxyl radical (•OH), and oxidizing molecules such as 

hydrogen peroxide (H2O2) or hypochlorus acid (HOCl). ROS are important mediators of cell signaling 

(called redox signaling) [2] and are indispensable for the immune defense in macrophages. The 

enzyme NADPH oxidase, for example, generates superoxide from molecular oxygen, which is then 

used to kill bacteria in the respiratory burst reaction within the cell [3]. Nonetheless, high levels of 

ROS contribute to cell toxicity [4], since they also damage host DNA/RNA [5], oxidize proteins [6] or 

cause lipid peroxidation [7]. Therefore, the proper balance (redox state) between ROS production and 

consumption must be maintained within the cellular compartments. Enzymes such as superoxide 

dismutase (SOD), catalases or peroxidases are capable of metabolizing accumulated ROS. Catalase, 

for example, decomposes H2O2 to H2O and O2. Glutathione uses NADPH to reduce H2O2 amounts and 

to regenerate itself. Other antioxidants, such as ascorbic acid (vitamin C) and tocopherol (vitamin E), 

are described as important radical scavengers [8]. The imbalance between the production of 

metabolically derived ROS and the organism’s deficiency to detoxify the cell and to repair the 

acquired cellular damage is called oxidative stress. This condition is related to diseases like 

atherosclerosis, diabetes, pulmonary hypertension (PH), cancer or Alzheimer’s disease [9–11]. 

Constantly increased amounts of oxidizing agents activate various signaling pathways that in turn are 

targeting the promoters of “redox sensitive” genes. One of these genes encodes the zinc finger 

transcription factor early growth response 1 (Egr-1). ROS have been shown to rapidly induce Egr-1 

mRNA and protein expression [12]. Available data focusing on Egr-1 signaling after oxidative stress is 

limited and most of it is based on in vitro experiments [12–15]. Egr-1’s involvement in these 

epidemiologically relevant diseases, however, is important to understand and to develop new 

therapeutic strategies. Here we review the current data on Egr-1 in response to oxidative stress in the 

context of pathology. 
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2. Egr-1—A Redox Sensitive Transcription Factor 

2.1. Structural Properties of Egr-1 Protein 

Two exons code for an 80–82 kDa Cys2-His2-type zinc-finger transcription factor mapping to 

chromosome 5 [16]. Egr-1 was found to be rapidly and transiently expressed in response of a heterogenic 

group of stimuli like growth factors (GFs) [17], shear stress [18], oxygen deprivation [19,20], 

(reperfusion) injury [21–23] and oxidative stress [12,24,25]. The central DNA binding domain (DBD) 

of Egr-1 consists of the three zinc-finger motives [26,27] that characteristically bind to GC-rich 

promoter sequences (GCG(G/T)GGCG), therefore named Egr binding sequence (EBS) [17]. Egr-1 

interconnects a broad variety of cascades upstream and downstream. 

2.2. Functional Motifs at the Promoter 

Besides an EBS [28], several functional response elements on the Egr-1 promoter presenting targets 

of distinct signal transduction cascades have been investigated and characterized [29]. At the 3' end of 

the promoter and next to the TATA box, five serum response elements (SRE) are located [30]. Five 

Ets-family transcription factor-binding sites are arranged adjacently to these SREs. Furthermore, two 

cyclic adenosine monophosphate (cAMP) response elements (CREs), an APETALA1 (AP1) and two 

gene-specific activator protein 1 (Sp1) binding sites have been described [31]. 

2.3. Redox Regulated Transcription Capability 

Previous in vitro studies described that redox levels influence the DNA binding capacity of Egr-1 in 

a dose-dependent manner. Cys residues within the DNA-binding domain of the protein are oxidized 

and severely diminish the DNA binding capacity of Egr-1, whereas under reducing conditions, DNA 

binding is enhanced [15]. Under non-toxic ROS levels, Egr-1’s binding ability remains preserved by 

activation of an apurinic/apyrimidinic endonuclease 1 (APE1) [15,25]. APE1 is a DNA repair enzyme 

with nuclear redox activity [32–34]. In various cell types, ROS induce nuclear translocation of  

APE1 [35,36], which in turn induces DNA binding of transcriptional regulators. APE1 restores Egr-1 

DNA binding by direct protein—to protein interactions without neosynthesis and subsequently 

enhances its transcriptional activity; most likely via posttranslational modification [25]. Evidence for a 

positive autoregulatory loop between APE1 and Egr-1 exists [25]. Egr-1 upregulates APE1 by protein 

neosynthesis and APE1 in turn preserves the DNA-binding capacity of Egr-1, therefore mutually 

maintaining their transcriptional activity under non-toxic redox conditions. However, to prevent a 

never-ending activation between APE1 [37,38] and Egr-1 [28,39], the autoregulatory loop will 

eventually shut down, since APE1 binding to its own promoter leads to a downregulation by its own 

product [37].  

2.4. MAPK Signal Transduction Cascades Aiming at the SRE 

Hydrogen peroxide at non-toxic doses was shown to upregulate Egr-1 mRNA in vitro [12]. 

Moreover, Egr-1 activation was demonstrated to be MEK/ERK and c-Jun N-terminal kinases (JNKs) 

dependent in H9c2 cells; a myogenic cell line derived from the embryonic rat ventricle [40]. P42/44 
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mitogen-activated protein (MAP) kinase (MAPK), also known as extracellular signal-regulated  

kinase (ERK) 1/2, is part of the classical MAPK pathway being described to activate the Egr-1  

promoter [41,42]. ERK1/2 has been shown to be phosphorylated and therefore directly activated 

through high levels of ROS [43], such as xanthine oxidase derived H2O2 [41], though the underlying 

mechanism still remains to be elucidated. Raf, mitogen-activated protein kinase kinase kinase 

(MAPKKK), activates mitogen-activated protein kinase kinase (MAPKK = MEK) 1/2, which in turn 

phosphorylates the dual acceptor motif ERK1/2 (Thr-Glu-Tyr). Activated ERK translocates into the 

nucleus and promotes binding of Ets-family transcription factor Elk-1 to the DNA. In close proximity 

to Elk-1, the SREs binding sites are located, indicating mutual activation. Serum response factor (SRF) 

is a MADS (Mcm1 and Arg80 in yeast, Agamous and Deficiens in plants, SRF in animals) -box 

transcription factor targeting SRE binding sites, which contain the characteristic sequence 

CC(A/T)6GG also known as CArG-box [44]. SRF has been shown to be involved in the transcriptional 

regulation of various GF-inducible genes [45,46], among them Egr-1 [47]. SRF is classically dependent 

on binding of the ternary complex factors (TCFs) Elk-1, Sap1 and Sap2, to activate transcription [45]. 

Elk-1 and SRF form a ternary complex [48] and together activate transcription [49,50] combining the 

MEK/ERK pathway with SRF associated gene regulation. There are two other MAPKs, associated 

with mechanical stress, that have been found to interact with Egr-1 [51]. These are JNKs, referred to as 

stress-activated protein kinases (SAPKs) and p38 isoforms. Both of them are responsive to 

mechanical, oxidative or environmental stress [52]. The p38 kinase, however, was not found to be 

involved in H2O2 dependent upregulation of Egr-1 [42]. 

3. Egr-1 Mediated Proliferation in Hypoxia Induced Pulmonary Fibrosis and Hypertension 

Egr-1 is highly associated with growth, vascular cell proliferation [53], cell survival  

programs [18,54] and apoptosis [55]. A proliferative response to H2O2 is thought to be a protective 

mechanism against oxidant injury. Signal transduction of the H2O2-induced mitogenic signaling has 

been described to occur via the activation of MAPK and to increase the expression of Egr-1 in aortic 

smooth muscle cells [41]. Egr-1 regulates the expression of transforming growth factor beta 1  

(TGF-β1) [56] and vice versa [57]. In an in vivo model of pulmonary fibrosis, TGF-β1 promotes 

epithelial apoptosis followed by mononuclear-rich inflammation, tissue fibrosis, myofibroblast and 

myocyte hyperplasia [55]. A null mutation of Egr-1 blocked TGF-β1 induced apoptosis in vivo, 

ameliorating collagen content, alveolar remodeling and parenchymal leukocyte infiltration [55]. 

Production of ROS has been implicated in chronic hypoxia-induced pulmonary hypertension (PH) and 

pulmonary vascular remodeling. Superoxide, generated under hypoxic conditions, contributed to PH 

through the induction of Egr-1 and its downstream gene target, tissue factor (TF) [58]. Egr-1 has been 

described to further the hypoxia induced autonomous proliferation of pulmonary artery adventitial 

fibroblasts via upregulation of the cell cycle regulator cyclin D, a key mechanism in the progression of 

disease [59]. Chronic hypoxia decreased lung SOD activity and SOD overexpression attenuated 

chronic hypoxic PH and vascular remodeling. Endothelial cell (EC) derived SOD (EC-SOD) 

overexpression also prevented the early hypoxia-dependent upregulation of Egr-1 and the procoagulant 

protein TF [58]. 
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4. Apoptosis and Tumorigenesis 

Apoptosis induced by H2O2 is thought to be a direct consequence of oxidant injury. Cellular 

Abelson murine leukemia viral oncogene homolog (c-Abl) is a tyrosine kinase that can act as a 

regulator of cell growth and apoptosis in response to oxidative stress. Significantly, H2O2-induced  

Egr-1 expression in vitro seems also to be induced by c-Abl kinase activity. Furthermore, c-Abl aims 

at the three distal SREs on the Egr-1 promoter via the MEK/ERK signaling. In addition, c-Abl-induced 

apoptosis is partially mitigated by Egr-1 activity, as cells, devoid of Egr-1 expression, undergo reduced 

rates of c-Abl-induced apoptosis [60]. 

When a transcription factor is participating in cell cycle control as a physiologic response to 

hypoxia or injury [61,62], an association with tumor growth is likely to be suspected. A number of 

tumor supressor genes are regulated directly by Egr-1, among them p53 [56], and the already 

mentioned relation betweeen GFs and Egr-1 has also been described for tumor dependent  

angiogenesis [63]. Cells expressing the breakpoint cluster region-abelson (bcr-Abl) oncogene 

demonstrate increased levels of intracellular ROS [64] and signaling initiated by the bcr-Abl kinase 

causes chronic myelogenous leukemia (CML). A recent publication reported that transcriptional 

upregulation of Fyn, a ROS sensitive src-family member, was strongly dependent on Egr-1 in an  

in vitro model [65], indicating participation of Egr-1 in the pathogenesis of CML. 

In a majority of human prostate carcinoma specimens Egr-1 protein expression control was lost, 

suggesting that high levels of Egr-1 plays a central role in the initiation of human prostate cancers [66]. 

Indeed it was evidenced that Egr-1 deficient mice demonstrated impaired prostate tumor growth [67]. 

Alterations in the androgen receptor signaling were found to be a major cause of the disease and it has 

been shown that Egr-1 promotes the translocation of the androgen receptor into the nucleus [68].  

Anti-hormonal therapy of prostate cancer becomes limited in the state of androgen-independent 

disease [69] and Egr-1 seems also capable to govern prostate cancer progression under androgen 

resistance [70,71]. Therefore, Egr-1 might be a new and interesting target of anti tumor therapy 

especially when anti-hormonal drugs are no longer effective. 

5. Involvement of Egr-1 in Viral Pathogenesis 

Several viral infections lead to the activation of Egr-1 [72–74]. Infections with the Herpesviridae 

family are not only characterized by a high prevalence in the human population, such as herpes 

simplex virus 1 and 2 (HHV1/2) [75], but also have specifically been described to promote tumors 

such as the Eppstein- Barr Virus (HHV4) or the Kaposi’s sarcoma-associated herpesvirus (KSHV) also 

known as HHV8. High stress levels can trigger and reactivate viral infections that have been latent for 

a long time or even can promote virus-associated malignancies on the long term [76,77]. Egr-1 has 

also been shown to critically participate in the KSHV reactivation process directly by mediating 

transcription of the gene encoding for replication and transcription activator (RTA) [78], a viral 

component known to control the switch from latent to lytic infection [79,80]. This seems also to be 

true for the reactivation of EBV, where Egr-1 has also been shown to positively regulate RTA via a 

positive feedback mechanism [81].  
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6. Signaling Involved in the Pathogenesis of Atherosclerosis 

6.1. NADPH-Oxidase, Hemin and Egr-1 

As mentioned above, NADPH-oxidase is a ROS generating enzyme. Many different stimuli 

including angiotensin II, glucose, and oxidized LDL activate NADPH-oxidases in the vascular  

wall [82]. Furthermore, NADPH-oxidase was found in coronary specimens and a relationship between 

plaque formation and NADPH-oxidase expression could be detected [83]. Extracorpuscular heme 

(ferroprotoporphyrin IX) released from hemoglobin is a potent proinflammatory ROS inducer. Heme 

catalyzes the oxidation of LDL, thus promoting foam cell formation and vascular smooth muscle  

cell (vSMC) proliferation. Hemin, oxidized heme, has been found to mediate redox-sensitive  

gene expression and to contribute to atherosclerotic plaque progression. Via MEK/ERK, hemin 

upregulated Egr-1 in vSMCs. This was directly dependent on NADPH-oxidase activity. The novel  

NADPH-oxidase inhibitors apocynin and diphenyleneiodonium chloride were also tested and could 

block hemin induced Egr-1 expression [84].  

6.2. PKC and Egr-1 

The role of Egr-1 for the pathogenesis of atherosclerosis is quite well described [85]. The protein 

kinase C (PKC) isoforms have been shown to lie upstream of Egr-1 [86]. In human aortic smooth 

muscle cells, PKCβII and PKCФ activation and MEK/ERK mediated Egr-1 expression were essential 

for low dense lipoprotein (LDL)-induced cell proliferation [87], furthering the progression of the 

disease. It is well established, that H2O2 also leads to PKC activation [88] and in vitro, the 

autoregulatory loop between APE1 and Egr-1 was shown to be PKC dependent [25]. In an in vivo 

study, atherosclerosis was markedly impaired in mice deficient for both PKCß and ApoE when 

compared to ApoE null mice [89]. Finally, recent reports have shown that gastrin effects on Egr-1 

expression were dependent on activation of PKC family kinases, but do not require Ras (as involved in 

GF mediated MEK/ERK activation), phosphoinositol-3-kinase (PI3K) or intracellular calcium signals 

and are therefore arguing for a PKC/Raf/MEK/ERK/Egr-1 pathway [90].  

6.3. Egr-1 and Accelerated Atherosclerosis in Diabetic Disease 

It has been shown that insulin stimulates Egr-1 protein expression in endothelial cells (ECs) [91] 

and vSMCs [92] via the MEK/ERK pathway. Moreover, oxidative stress combined with insulin as 

initial stimulus further enhanced Egr-1 activation. Insulin resistance is characterized by compensatory 

hyperinsulinemia, with a functional MEK/ERK signaling but with selective impairment of PI3K [93]. 

Glucose can also induce Egr-1 expression, but PKC dependent in EC [91]. Egr-1 influences on the 

insulin gene itself could be mediated via pancreas duodenum homeobox-1 (PDX-1) [94,95], important 

for glucose homeostasis. Egr-1 signaling, PI3K or PKC might be interesting targets for drug therapy in 

atherosclerosis and diabetic disease in the future. 
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7. Conclusion—Daily Antioxidants as Dietary Supplements for the Prevention of Disease? 

Oxidizing agents such as ROS or free radicals can be initiators and mediators of disease. When 

natural detoxifying enzymes fail, oxidative stress occurs and may cause aging, atherosclerosis or 

tumors. Egr-1 is rapidly induced after exposure to oxidants and interacts with various signaling 

partners mostly in the direction of disease progression (Figure 1). 

Since Harman postulated the free radical theory of aging (FRTA) in 1956 [96], extensive research 

has been conducted to discover the key to a longer lifespan. Prevention of the formation of oxide 

radicals became an important target of the pharmaceutical industry and today a large group of  

over-the-counter drugs flood the drug market. But can the largely propagated daily supply of 

antioxidants, like vitamin C, E or selenium, in form of pills in fact reduce the incidence or outcome of 

a disease? In recent meta-analyses, the authors analyzed clinical trials investigating the oral supply of 

vitamins in tablet form on quality of life, mortality or the incidence of cardiovascular diseases and 

colon cancer. Unfortunately, they came to the conclusion that these high doses of antioxidants had no 

proven positive effect or even led to an increased mortality [97–100]. By scavenging ROS, fine-tuned 

feed back mechanisms such as the APE1/Egr-1 relation may become deranged. In turn, reducing  

ROS levels might also increase Egr-1 binding activity and even promote tumor progression or 

atherosclerosis. Therefore, the approach of disease prevention by scavenging radicals with high-dose 

supplements is neither reasonable nor safe. Probably we underestimate the complexity of fine 

regulated cellular signals in oxygen metabolism and in diseases. NADPH-oxidase inhibitors are 

currently in the very early stages of development and serious side effects regarding immune 

competence might be expected. The best guideline for a longer lifespan and the prevention of disease 

is a healthy lifestyle. This involves a balanced diet with high intake of fiber and natural antioxidants 

found in fruit and vegetables as well as daily physical activity and the cessation of smoking. Further 

studies at the molecular level are necessary to dissect the pathophysiological mechanisms behind  

ROS-induced signaling. Not until then, will we be able to design a distinct and individually matched 

therapy that will help to improve the outcome of diseases induced by oxidative stress. 

Figure 1. Overview of signaling partners involved in oxidative stress mediated Egr-1 

signaling. Oxidative stress leads to Egr-1 activation (↑) and promotes atherosclerosis, 

diabetes, apoptosis and pulmonary hypertension. The MEK/ERK pathway is the main 

signal transduction cascade involved. Depending on the targeted cell type and in vitro or  

in vivo data, different elements are involved.  
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