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SUMMARY

The concentrations of insulin selectively regulate multiple cellular functions. To understand how insu-

lin concentrations are interpreted by cells, we constructed a trans-omic network of insulin action in

FAO hepatoma cells using transcriptomic data, western blotting analysis of signaling proteins, and

metabolomic data. By integrating sensitivity into the trans-omic network, we identified the selective

trans-omic networks stimulated by high and low doses of insulin, denoted as induced and basal insulin

signals, respectively. The induced insulin signal was selectively transmitted through the pathway

involving Erk to an increase in the expression of immediate-early and upregulated genes, whereas

the basal insulin signal was selectively transmitted through a pathway involving Akt and an increase

of Foxo phosphorylation and a reduction of downregulated gene expression. We validated the selec-

tive trans-omic network in vivo by analysis of the insulin-clamped rat liver. This integrated analysis

enabled molecular insight into how liver cells interpret physiological insulin signals to regulate cellular

functions.
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INTRODUCTION

Metabolic disorders involving insulin resistance are a major health concern (Zimmet et al., 2001).

Insulin controls organismal metabolic homeostasis by regulating multiple cellular functions, including

gene expression, metabolism, and protein synthesis in target organs, such as the liver, skeletal

muscle, and adipose tissue (Jastrzebski et al., 2007; Saltiel and Kahn, 2001; Whiteman et al., 2002).

Understanding how cells interpret this physiologically dynamic hormone may provide new insights

into preventing or treating metabolic disorders associated with insulin resistance. In the liver, insulin

activates signaling proteins, such as the kinases Akt, and extracellular-signal-regulated kinase (Erk)

(Lizcano and Alessi, 2002; Saltiel and Kahn, 2001); regulates protein abundance through transcriptional

or translational mechanisms (Titchenell et al., 2017); and controls cellular metabolite composition,

including glycolysis, gluconeogenesis, glycogenesis, amino acid metabolism, and lipid metabolism,

by regulating the abundance and activity of metabolic enzymes (Saltiel and Kahn, 2001; Titchenell

et al., 2017).

As with many hormones, the release of insulin varies and the cellular response is also complex and changes

over time (Brabant et al., 1992; Lindsay et al., 2003; O’Meara et al., 1993; O’Rahilly et al., 1988; Polonsky

et al., 1988). Glucose induces the secretion of insulin from the pancreas, resulting in a transient high con-

centration of insulin in the blood (induced insulin secretion) during the fed state, whereas under basal con-

ditions, a sustained low concentration of insulin (basal insulin secretion) is maintained in the blood during

the fasting state (Lindsay et al., 2003; Polonsky et al., 1988). Abnormalities in temporal patterns of insulin

secretion and the consequent abnormal concentrations of circulating insulin contribute to the pathogen-

esis of type 2 diabetes mellitus, indicating that the metabolic response to insulin depends on its temporal

patterns (Polonsky et al., 1988). To respond properly to insulin, cells must detect both induced and basal

insulin signals and properly interpret each type of insulin signal. We previously showed that signaling pro-

teins, such as Akt (Kubota et al., 2012, 2018); metabolites, such as glycogen (Noguchi et al., 2013); and

genes, such as glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase1 (Pck1) (Sano
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et al., 2016), show distinct changes in the activity, abundance, or expression in response to a transient high

dose or a sustained low dose of insulin. However, the pathways that selectively transmit the induced and

basal insulin signals to regulate selective functions have yet to be analyzed.

Various omic studies of insulin action have used phosphoproteome (Friedman et al., 2011; Humphrey et al.,

2013, 2015; Krüger et al., 2008; Monetti et al., 2011; Vinayagam et al., 2016; Yugi et al., 2014; Zhang et al.,

2017), transcriptome (Dupont et al., 2001; Hectors et al., 2012; Kim and Lee, 2014; Rome et al., 2003; Sano

et al., 2016; Versteyhe et al., 2013), or metabolome data (Everman et al., 2016; Noguchi et al., 2013; Yugi

et al., 2014). Individually, each of these can be studied with existing technologies, but the challenge is inte-

grating disparate types of omic data to generate a more comprehensive view of the cellular response than

can be gained from one type of data alone (Yugi and Kuroda, 2017; Yugi et al., 2016). We propose ‘‘trans-

omics’’ as a discipline for constructing molecular interaction networks across multiple omic datasets using

inferred or measured direct molecular interactions rather than indirect statistical relationships (Yugi and

Kuroda, 2017; Yugi et al., 2014, 2016). Trans-omic analyses of networks controlling metabolism have

been reported for Escherichia coli (Gerosa et al., 2015; Ishii et al., 2007), Bacillus subtilis (Buescher et al.,

2012), Saccharomyces cerevisiae (Gonçalves et al., 2017; Hackett et al., 2016; Oliveira et al., 2012), Chinese

hamster ovary cells (Yusufi et al., 2017), and human T cells (Geiger et al., 2016). We have previously con-

structed trans-omic networks of the regulation of metabolism through phosphorylation in response to

acute insulin action, in which cells were stimulated with 1 nM insulin for 60 min, with phosphoproteomic

and metabolomic data (Yugi et al., 2014). However, how induced and basal insulin signals selectively regu-

late the trans-omic network is yet to be analyzed.

Here, we explored how the hepatoma cell line FAO cells interpret a physiologically dynamic stimulus,

induced and basal insulin stimulation. We extended the method for performing trans-omics analysis

and constructed a multi-omic network connecting the transcriptome to signaling proteins and transcrip-

tion factors (TFs) and connecting the transcriptome to the metabolome to explore the role of gene regu-

lation in the metabolic response to insulin. We measured the time course of transcriptomic changes,

changes in the activity of signaling proteins by western blotting, and metabolomic changes with different

doses of insulin. We used the sensitivity and time constant of the response to insulin to classify insulin-

responsive genes (IRGs), signaling molecules, and insulin-responsive metabolites (IRMs) into those that

selectively responded to induced or basal insulin stimulation. With the trans-omic network constructed

from the multi-omic data, we identified the selective trans-omic network that mediated transcriptional

responses to induced and basal insulin stimulation. We validated the physiological relevance of the se-

lective trans-omic networks in the insulin-clamped rat liver. Our study identified mechanisms by which

insulin dynamics programs cellular metabolism through transcriptional regulation and regulation of pro-

tein translation. This integration of sensitivity and response time data into a trans-omic network can be

applied to other complex dynamic regulatory systems to understand the principles by which cells inter-

pret dynamic stimuli.
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RESULTS

Procedures for the Trans-omic Network Construction by Induced and Basal Insulin

Stimulation

During the postprandial state, insulin secretion is induced producing a transiently high concentration

(approximately in the nanomolar range) in the blood (induced insulin); in the fasting state, insulin

secretion is low, resulting in a low concentration (approximately in the tens to hundreds of picomolar

range) of insulin in the blood (basal insulin) (Lindsay et al., 2003; Polonsky et al., 1988), meaning that

sub-nanomolar level of insulin is the threshold between induced and basal insulin secretion (Figure 1A).

Induced and basal insulin stimulation selectively regulate physiological functions, such as metabolism

(Polonsky et al., 1988). How induced and basal insulin signals are selectively decoded by cells remain

unknown. We constructed a trans-omic network to discover the selective pathways of transcriptional

regulation and regulation of protein translation that mediate the changes in cellular metabolism

by induced and basal insulin stimulation (Scheme S1). We quantified the amounts or the activities of

cellular components of rat FAO hepatoma cells stimulated with various doses of insulin and time

points—RNA (transcriptomic analysis), key signaling proteins and TFs (western blotting), and metabolites

(metabolomic analysis). We classified the transcripts, proteins, and metabolites according to sensitivity to

insulin concentration and the time constant of their change in response to 100 nM insulin. With the

multi-omic datasets, we constructed the trans-omic network in 3 steps (Figure 1B, Steps I–III). In Step I,
iScience 7, 212–229, September 28, 2018 213

mailto:skuroda@bs.s.u-tokyo.ac.jp
https://doi.org/10.1016/j.isci.2018.07.022
https://doi.org/10.1016/j.isci.2018.07.022


Insulin

-

-

-

-

-

Step I

Step II

Step IV: Selective trans-omic networks by induced and basal insulin using EC50 and T1/2
Step V: in vivo validation in insulin-clamped rat liver 

Step III

Transcriptome data

Western blotting

Metabolome data

Trans-omic network

C

Signaling layer

Transcription factors (TFs)

Insulin-responsive
genes (IRGs)

Metabolic enzymes

Insulin-responsive
metabolites (IRMs)

Induced insulin secretion (Fed state)
  - High dose and rapid

Basal Insulin secretion (Fasting state)
  - Low dose and slow

B
lo

od
 in

su
lin

 le
ve

l 

Clock time (h) 

Meal

Sub
nM

A

N
or

m
al

iz
ed

 v
al

ue

0 240

100 nM insulin
=

=

T1/2

Time (min) 

B

102

=

=

EC50

Insulin dose (nM) 
10010-2

lo
g 2 (

AU
C

)
(Figure 3)

(Figure 2)

(Figure 4)

(Figure 5)

(Figure 6)

Figure 1. Summary of Procedures for Trans-omic Network Construction

(A) Induced and basal insulin secretion in vivo (Polonsky et al., 1988).

(B) The trans-omic network was constructed through Steps I to III by integrating transcriptome, protein (western blotting), and metabolome data. The

detailed procedures can be found in Methods.

(C) Definition of EC50, an index of sensitivity to insulin doses (left), and T1/2, an index of time constant (right).
we integrated the IRGs identified by transcriptomic analysis and the TFs predicted to regulate the IRGs. In

Step II, we integrated the TFs and the signaling layer. In Step III, we integrated the IRMs identified by

metabolomic analysis and the IRGs that encode proteins involved in the synthesis and catabolism of

the IRMs.

In Step IV, we integrated the result of Steps I–III and constructed a trans-omic network of insulin action with

connections within (intra-omic) and between (inter-omic) the layers that mediate signaling responses, tran-

scriptional responses, and changes in cellular metabolism. To map induced and basal insulin-stimulated

pathways through the trans-omic network, we estimated the sensitivity (EC50) and time constant (T1/2) of

the changes in IRG expression, signaling protein activity, and IRM abundance to different concentrations

of insulin and periods of exposure to insulin (Figure 1C). Using the sensitivity (EC50) and response time (T1/2)

data, we identified how induced or basal insulin stimulation resulted in selective inter- and intra-omic path-

ways through the trans-omic network. In Step V, we tested the accuracy of the FAO cell responses to insulin

by comparing a subset of the responses to those obtained with the insulin-clamped rat liver and showed

how the data could be integrated with the trans-omic network to understand how signaling through the

trans-network resulted in the observed outcomes.
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Step I: Connection of the IRGs and the TFs

Step I-I: Selective Gene Expression of Cellular Functions by Induced and Basal Insulin Stimulation

We previously measured the transcriptome in insulin-stimulated FAO cells and analyzed only 13 upregu-

lated and 16 downregulated genes in detail (Sano et al., 2016). Here, we used the complete transcriptomic

dataset consisting of 3 doses of insulin (0.01, 1, 100 nM) at 7 time points up to 4 hr. First, we defined 433

genes as IRGs. Using criteria that identify IRGs with smaller variation and larger responses, we categorized

the IRGs as 114 upregulated, 144 downregulated, and 175 other IRGs that exhibited variable responses

(Figures S1A–S1C, see Methods). The downregulated IRGs included G6pase and Pck1 (Table S1), known

to be downregulated in response to insulin (Sano et al., 2016). We estimated the sensitivity from the

EC50 of the IRGs, which we defined as the dose of insulin that produced 50% of the maximal area under

the curve (AUC) of a time series of gene expression (Figure 1C, see Methods). The distribution of the

EC50 values of the IRGs was bimodal (Figure 2A) with the threshold between themodes being an EC50 value

of 0.70 nM, between the concentrations of induced and basal insulin (Figure 1A), suggesting that induced

and basal insulin stimulation selectively control the expression of different gene sets. Furthermore, most of

the upregulated IRGs had EC50 values higher than 0.70 nM andmost of the downregulated IRGs had values

lower than 0.70 nM (Figure 2A; Table 1), indicating that the majority of the upregulated IRGs respond to

induced insulin stimulation, whereas the majority of the downregulated IRGs respond to basal insulin stim-

ulation. This finding is consistent with our previous study (Sano et al., 2016).

To delineate the functional roles of the up- and downregulated IRGs, we performed Gene Ontology (GO)

analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis against the

gene sets classified by EC50 values. The upregulated IRGs showing high sensitivity to insulin were enriched

for genes associated with the cytoskeleton, whereas the downregulated IRGs showing low sensitivity to

insulin were enriched for genes involved in metabolism (Table S2), indicating that the up- and downregu-

lated IRGs control different cellular functions.

We estimated the response time from the T1/2, which we defined as the time when the change in gene

expression reached 50% of the peak amplitude (Figure 1C, seeMethods). The distribution of the T1/2 values

of the IRGs was also bimodal (Figure 2A). Unlike EC50 values, the T1/2 values of the up- and downregulated

IRGs showed similar distributions (Figure 2A). The threshold of the bimodal distribution of the T1/2 values

was 88 min (Table 1). With these calculations, we categorized the IRGs into those with a fast response to

induced insulin stimulation (<T1/2 of 88 min) and those with a slow response (>T1/2 of 88 min). GO analysis

of the upregulated IRGs revealed that the upregulated IRGs with a fast response include TFs, such as the

immediate-early genes (IEGs), Egr1, Hes1, and Srf. Those showing a slow response include genes related to

GO terms such as ‘‘actin-filament binding’’ and ‘‘enzyme binding.’’ Finding TFs as fast responding IRGs

indicated the stimulation of a successive transcriptional cascade such that induced insulin stimulation

initially upregulates the IEGs and the expressed IEG products subsequently induce genes of various

cellular functions. Many downregulated IRGs relate to metabolism. Taken together, these results indicated

that induced and basal insulin stimulation of FAO cells elicit selective expression of genes with distinct

cellular functions.

Step I-II: Prediction of the TFs that Regulate the IRGs according to Sensitivity and Time Constants

Within the up- or downregulated IRGs, we identified 4 classes using the EC50 threshold to set high and low in-

sulin sensitivity and theT1/2 threshold to set fast and slow response times. The 4 classes are IRGswith high sensi-

tivity (EC50 < threshold) and fast response times (T1/2 < threshold) (Class 1), high sensitivity and slow response

times (Class 2), low sensitivity and fast response times (Class 3), and low sensitivity and slow response times

(Class 4) (Figures 2B and S1D; Table S1). These different properties of the IRGs suggested that each class is

regulated by different sets of TFs. We identified the over-represented TF binding motifs within the promoters

of the IRGs and assigned TFs to each class of the up- and downregulated IRGs (see Methods). Approximately

50%of the upregulated IRGs belong toClass 3 (low sensitivity and fast response) and include thegenes encod-

ing TFs such as Hes1, Srf, and Egr1, indicating that expression of these genes increased mainly in response to

induced insulin stimulation.More than 80%of thedownregulated IRGsbelong toClass 1 and2 (high sensitivity)

and include the genes encoding metabolic enzymes, such as G6pase (Class 1) and Pck1 (Class 2) (Table S1).

Genes in Classes 1 and 2 are expected to respond to basal insulin stimulation.

Using TRANSFAC, we identified consensus binding motifs for 282 TFs in the 114 upregulated and the 144

downregulated IRGs (Table S3, see Methods). We determined the common TFs predicted to regulate the
iScience 7, 212–229, September 28, 2018 215
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Figure 2. Step I: Connection of the IRGs and the TFs

(A) Distributions of EC50 (upper) and T1/2 (lower) values estimated for the upregulated IRGs (red bars) and the downregulated IRGs (blue bars). The dashed

lines indicate the thresholds of the bimodal distributions.

(B) Time courses of the IRGs in each class classified by the EC50 and T1/2 values of the IRGs with high or low sensitivity and with fast or slow time constant. Blue,

green, and red bold lines represent the averaged responses to 0.01, 1, and 100 nM insulin, respectively. Dashed lines indicate the time series of each IRG in

the class. The y axis indicates the base 2 logarithm of fold change against expression of each gene at time 0 (log2FC).

(C) The TFs predicted for each class of IRGs. Gray dashed arrows indicate the transcriptional regulation by the TFs, and red dashed arrows indicate that the

Class 3 IRGs encode the TFs. The color code of the class is the same as in (B). The colored TFs are encoded by TFs of the matching class in Figure 3B: Creb1,

Foxo, Foxo1A encoded by Class 1 TF; Hes1 and Egr1 encoded by Class 3 TFs.

See also Figure S1, and Tables S1, S2, and S3.
IRGs in each class. A total of 22 TFs were assigned to the upregulated IRGs and 12 TFs to the downregu-

lated IRGs (Figure 2C; Table S3). We confirmed the TF predictions using data from the ChIP-Seq Atlas (Fig-

ure S2). Consistent with reported transcriptional regulation, our analysis identified Foxo1 as a TF for

G6pase and Pck1 (Titchenell et al., 2017) and Srf as a TF for the IEGs Jun and Egr1 (Gregg and Fraizer,

2011). Except for Foxo1, the TFs assigned to the up- or downregulated IRGs were mutually exclusive, sug-

gesting that the up- and downregulated IRGs are regulated by different upstream signaling pathways (Fig-

ure 2C). The TFs of the upregulated IRGs included Creb, Srf, Hes1, and Egr1, which are downstream of Erk
216 iScience 7, 212–229, September 28, 2018



Average Median p Value Adjusted p Value Mode

< Threshold > Threshold

EC50 (nM) Upregulated IRGs 1.6 2.2 9.64 3 10�15 3.86 3 10�14 0.25 6.3

Downregulated IRGs 0.25 0.16 0.10 1.0

Increased IRMs 4.9 6.6 1.34 3 10�10 5.36 3 10�10 0.40 1.6

Decreased IRMs 1.3 1.2 0.060 0.63

T1/2 (min) Upregulated IRGs 68 50 9.82 3 10�5 3.93 3 10�4 45 120

Downregulated IRGs 86 59 45 120

Increased IRMs 56 68 1.90 3 10�3 7.60 3 10�3 0 105

Decreased IRMs 18 11 15 60

Table 1. Averages and Medians of EC50 and T1/2 Values in Insulin-Responsive Genes (IRGs) and Insulin-Responsive Metabolites (IRMs)
(Deak et al., 1998; Murphy et al., 2004; Nakayama et al., 2008; Shaul and Seger, 2007). Hes1 and Egr1 were

both Class 3 (low sensitivity and fast response) upregulated IRGs, and many of the upregulated Class 3 and

Class 4 IRGs had consensus motifs for these 2 TFs, suggesting that Hes1 and Egr1 are key transcriptional

regulators of a successive transcriptional cascade activated by the Erk signaling pathway. Downregulated

IRGs of each class included those with consensus motifs for TFs of the Foxo family, either Foxo1 or Foxo1A.

The transcriptional regulatory activity of Foxo1 and Foxo1A is inhibited by Akt-mediated phosphorylation

(Biggs et al., 1999; Brunet et al., 1999), indicating that the inhibition of these proteins is a key mechanism by

which the Akt pathway downregulates gene expression.

Given that the majority of the upregulated IRGs responds to induced insulin stimulation, induced insulin

stimulation is likely to regulate the upregulated IRGs through Erk signaling pathway followed by the suc-

cessive transcriptional cascade initiated by the IEGs. Given that the majority of the downregulated IRGs

responds to basal insulin stimulation, basal insulin stimulation is likely to regulate the downregulated

IRGs through the Akt pathway followed by Foxo proteins’ phosphorylation in a posttranscriptional manner.

Thus, the analysis indicated that induced and basal insulin stimulation selectively regulate the up- and

downregulated IRGs by different mechanisms, induction of a 2-part transcriptional cascade or direct post-

translational regulation of a master TF, respectively.
Step II: Connection of the TFs and the Signaling Layer

To integrate the signaling proteins into the trans-omic network, we connected the signaling proteins to

the TFs, which were connected to the IRGs. We used the KEGG signaling pathways to connect the TFs

to signaling proteins from phosphoproteomic analysis of acute insulin action in our previous study (Yugi

et al., 2014). Using the 1,947 insulin-responsive phosphoproteins (Yugi et al., 2014), we constructed a

signaling layer by integrating 15 KEGG signaling pathways in which the phosphoproteins were significantly

over-represented into the trans-omic network (Figures 3A and S3A; Table S4). Hereafter, we denoted this

integrated signaling layer as the signaling layer. On this signaling layer, insulin transmits its signal to 2 ma-

jor signaling pathways, Akt and Erk pathways through the phosphorylation of Irs via insulin receptor. The

signaling layer also includes major kinases; protein synthesis-related factors, which are downstream of Akt-

mTOR pathway; and TFs, 10 of which were estimated in Figure 2C (Figure 3A). Several other proteins in the

signaling layer connected insulin-responsive signaling events to the TFs that are connected to the IRGs.

We performed sensitivity and response time analysis of a subset of the proteins in the signaling layer and a

subset of the TFs predicted to regulate the IRGs. In the signaling layer, we selected proteins involved in the

regulation of protein synthesis and proteins involved in the regulation of transcription. We measured the

amount or phosphorylation level of these proteins using commercially available antibodies and estimated

their EC50 and T1/2 values (Figures 3B, 3C, S3B, and S3C; Table S5). We divided the signaling proteins into

classes by determining thresholds of the EC50 and the T1/2 values using Otsu’s method (Otsu, 1979). We

classified the signaling proteins, as we did the IRGs, into 4 classes (Figure 3C). The threshold for signaling

proteins was 0.63 nM, which is similar to that of IRGs (0.70 nM).
iScience 7, 212–229, September 28, 2018 217
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Figure 3. Step II: Connection of TFs and the Signaling Layer

(A) A signaling layer constructed by integrating signaling pathways in which the proteins that exhibited insulin-regulated phosphorylation were significantly

over-represented. The colors of the molecules indicate the classes classified by the EC50 and T1/2 values of the signaling proteins. The size of nodes indicates

the number of its interactions with other molecules. Orange edges indicate phosphorylation; black edges, direct interaction; and dashed edges, indirect

interaction.
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Figure 3. Continued

(B) Time courses of the abundance of the signaling proteins in response to the indicated doses of insulin were plotted from data obtained by western

blotting (Figure S3C). The means and SEMs of 3 independent experiments are shown. Lowercase ‘‘p’’ preceding the name of a protein indicates the

detection of the phosphorylated form of the protein. Numbers and letters in parentheses represent the phosphorylated amino acid residue recognized by

the antibody and are numbered according to human proteins.

(C) Distribution of the EC50 and T1/2 values estimated for the signaling proteins (red), the TFs (blue), and the protein synthesis-related factors (green). Vertical

and horizontal dashed lines indicate the thresholds of the EC50 and T1/2 values, respectively.

(D) The signaling proteins, some of which are TFs (Elk1, Nfat, Sap1a, NF-kB), predicted as upstream regulators of the predicted TFs regulating the IRGs.

Black lines indicate regulation of the activity of the TFs included in the signaling layer, and gray dashed lines indicate regulation of the activity of the TFs not

included in the signaling layer. The color of the signaling protein reflects its class: dark blue, Class 1; cyan, Class 2; red, Class 3; pink, Class 4.

See also Figures S2 and S3, and Tables S4 and S5.
Focusing on the intra-omic Akt pathway, the EC50 and T1/2 values for the phosphorylation of Akt place this

kinase in the same category as Class 3 IRGs (Table 2), indicating that Akt activity is enhanced by induced

insulin stimulation. However, the EC50 values of phosphorylated Akt (pAkt) were higher than those of the

phosphorylated Akt substrates, phosphorylated Tsc2 (pTsc2), phosphorylated Gsk3b (pGsk3b), and phos-

phorylated Foxo1 (pFoxo1), and the T1/2 value of Akt was almost the same as those of Akt substrates (Fig-

ure 3C). The finding of similar T1/2 values for Akt and its substrates and lower EC50 values for its substrates,

which are consistent with a Class 1 response, indicated that Akt rapidly phosphorylates these substrates

even in response to basal insulin stimulation and that this kinase responds to basal insulin stimulation to

control this intra-omic pathway.

For intra-omic mTOR signaling downstream of Akt in the signaling layer, we evaluated the phosphoryla-

tion of eIF4ebp (peIF4ebp), S6K (pS6k), S6 (pS6), and eIF4b (peIF4b), all of which contribute to the

activation of translation machinery for protein synthesis. The phosphorylated forms of these proteins ex-

hibited low EC50 values and low T1/2 values (Table 2), suggesting that basal insulin stimulation promotes

protein synthesis through rapid activation of the Akt-mTOR pathway, a finding also consistent with basal

insulin stimulation promoting Akt activity (Figures 3C and S3B; Table S5). We measured protein synthesis

based on the incorporation of puromycin into newly synthesized proteins (see Methods) and found that

the EC50 of protein synthesis was 0.035 nM (Figures S3C and S3D), indicating that protein synthesis

showed high sensitivity to insulin. The sensitivity and response time analysis of pAkt indicated that

this kinase mediates fast responses to induced insulin stimulation, whereas the sensitivity and response

time analysis of its substrates and downstream effectors indicated that this kinase mediates the fast

response to basal insulin stimulation.

Focusing on the mitogen-activated protein kinase (MAPK) family (Erk, Jnk, and p38), we found that these

3 MAPK families had different sensitivities and response times to insulin stimulation (Figures 3C and

S3B; Tables 2 and S5). The insulin-mediated stimulation of pCreb (downstream of Erk) (Vanhoutte et al.,

1999) and pAtf (downstream of p38) (Sano et al., 1999) showed high sensitivity and fast response, whereas

that of pJun (downstream of pJnk) (Ip and Davis, 1998) showed low sensitivity and fast response. Further-

more, we determined that the total amount of Jun increased in response to induced insulin stimulation

(Figure 3C) and that Jun was an upregulated IRG of Class 3 (Table S1), indicating that the activity of Jun

is regulated by induced insulin stimulation at both the transcriptional (increase in abundance through

increased gene expression) and posttranslational (increased phosphorylation) levels, representing intra-

omic pathway from the signaling layer to the TF layer and inter-omic pathway from the signaling layer to

the TF layer to the IRG layer and back to the TF layer.

Focusing on Hes1 and Egr1, which our analysis indicated are key transcriptional regulators of an intra-omic

successive transcriptional cascade, we determined that the change in the abundance of these TFs showed

low sensitivity and slow response to insulin. This is consistent with the measured increase in the expression

of the encoding genes (Figure 2C and Table S2) at the initial stage and the products subsequently inducing

IRGs at a later phase of induced insulin stimulation (Figures 3C and S3B). Many proteins in the signaling

layer regulated TFs predicted to control the upregulated IRGs (Figures 3A and 3D). In contrast, only 2 of

the 13 TFs that regulated the downregulated IRGs were controlled by proteins in the signaling layer; these

were Foxo1, which was connected to 7 kinases in the signaling layer, and Gata, which was connected to the

GTPase Rho in the signaling layer (Figures 3A and 3D). With 3 exceptions, the signaling proteins for the TFs

controlling the up- and downregulated IRGs did not overlap. The exceptions were the regulation of Foxo1

for downregulated IRGs and Creb1 for upregulated IRGs, both of which are targets of the kinases CamkII,
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Akt and Substrates

pAkt (Ser473) pAkt (Thr308) pGsk3b pFoxo1

EC50 (nM) 3.5 4.5 0.24 0.42

T1/2 (min) 2.7 2.7 2.7 8.0

mTOR Substrates and Effectors

pS6K peIF4ebp pS6 peIF4b

EC50 (nM) 0.22 0.079 0.13 0.50

T1/2 (min) 7.3 16 20 11

MAPK and Substrates

pErk1/2 pCreb pp38 pAtf1 pJnk pJun

EC50 (nM) 1.2 0.23 0.065 0.22 8.9 3.7

T1/2 (min) 2.5 2.7 2.5 5.5 20 27

Table 2. Averages and Medians of EC50 and T1/2 Values in Insulin-Responsive Kinases and their Substrates
Akt, and Erk1/2. Thus, the FAO cells appeared to use mostly separate signaling factors to regulate distinct

sets of TFs that control the up- or downregulated IRGs in response to induced or basal insulin stimulation.

Together with the analysis of transcriptomic data, our observations revealed that cells sensed the different

concentrations of insulin and engaged mostly independent pathways to control protein abundance

through transcriptional or posttranscriptional mechanisms. Our analysis indicated that basal insulin stimu-

lation activates the translational machinery through an intra-omic Akt-mTOR pathway in the signaling layer

and suppresses gene expression through the inter-omic Akt-Foxo1 pathway. Induced insulin stimulation

promoted a transcriptional cascade of enhanced gene expression through an inter-omic Erk-IEG pathway.

The time constants of protein synthesis-related factors—peIF4ebp, pS6K, pS6, and peIF4b—were much

shorter than those of TFs—Hes1 and Egr1 (Figures 3B, 3C, and S3B; Table S5), indicating that basal insulin

stimulation quickly promotes protein synthesis without requiring changes in gene expression and induced

insulin stimulation promotes a slower transcriptional reprogramming by triggering a successive transcrip-

tional cascade.

Step III: Connection of the IRMs and the IRGs of Metabolic Enzymes

Step III-I: Classification of IRMs by EC50 and T1/2
Metabolic regulation is an important cellular function of insulin action. KEGG pathway enrichment analysis

of IRGs revealed that genes related to metabolism were significantly enriched in the downregulated IRGs

(Table S2). Therefore, we measured metabolomic data from FAO cells stimulated with 7 doses of insulin up

to 4 hr by capillary electrophoresis-mass spectrometry. We identified 93 IRMs that exhibited significant

changes (false discovery rate < 0.1) in response to insulin stimulation using 3-way ANOVA. Using the

same criteria that we used for the IRGs (see Methods), we categorized them into 42 increased,

43 decreased, and 8 other IRMs (Figure S4A; Table S6). We then estimated the EC50 and T1/2 values of

the IRMs. The distributions of the EC50 values and the T1/2 values were significantly different between

the increased and decreased IRMs, and the average values of the EC50 and the T1/2 for the increased

IRMs were larger than those for the decreased IRMs (Figure 4A; Table 1). The EC50 values of both the

increased and decreased IRMs had distinct unimodal distributions with a threshold separating them of

0.40 nM. Most increased IRMs showed low sensitivity, whereas most decreased IRMs showed high sensi-

tivity, indicating that induced insulin stimulation primarily regulated the increased IRMs and basal insulin

stimulation regulated the decreased IRMs. The T1/2 values of the increased IRMs had a bimodal distribu-

tion, whereas those of the decreased IRMs had a unimodal distribution (Figure 4A; Table 1).

Using the thresholds of the EC50 and T1/2 values, we classified the IRMs into 4 classes (analogous to the clas-

ses for the IRGs) and mapped them on KEGG metabolic pathways (Figures 4B and S4B and Table S7). In

central carbon metabolism (Figure 4C), the IRMs were divided into 3 functional blocks: (1) a block with
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Figure 4. Step III: Connection of the IRMs and the IRGs of Metabolic Enzymes

(A) Distributions of EC50 (left) and T1/2 (right) values estimated for the increased IRMs (red bars) and the decreased IRMs (blue bars). To identify a high

confidence set of IRMs from multiple experimental datasets, we performed a 3-way ANOVA with the insulin doses, stimulation times, and data acquired on

different days as main factors (see Methods).

(B) IRMs projected onto the KEGG metabolic pathways. Arrows indicate whether an IRM increased or decreased by insulin stimulation. The colors of the

outline and the labels indicate the classes classified by the EC50 and T1/2 values of the IRMs: dark blue, Class 1; cyan, Class 2; red, Class 3; pink, Class 4.

(C) Metabolites in the central carbon metabolism. The black frames indicate the metabolites that did not show significant changes in response to insulin in a

3-way ANOVA, and gray frames indicate those with unmeasured points at one and more time points (NaN). The other colors correspond to the classes

classified by the EC50 and T1/2 values of IRMs.

(D) The IRGs of metabolic enzymes predicted to regulate the indicated IRMs. The colors of the IRGs and IRMs indicate the classes classified by the EC50 and

T1/2 values.

See also Figure S4, and Tables S6, S7, S8, and S9.
IRMs upstream of glycolysis—glucose-1-phosphate, fructose-6-phosphate, fructose 1,6-bis phosphate,

and dihydroxyacetone phosphate—were Class 1 with high sensitivity and fast response times to insulin;

(2) a block with IRMs downstream of glycolysis (3-phosphoglycerate and phosphoenolpyruvate) and tricar-

boxylic acid (TCA) in the TCA cycle (citrate) were all Class 2 with high sensitivity and slow response time; and

(3) a block with dicarboxylic acids in TCA cycle—succinate, fumarate, and malate—were Class 4 with low

sensitivity and slow response times (Figure 4C). For the IRMs in amino acid metabolism (Figure 4B), those

that were decreased by insulin stimulation—Val, Leu, and Ile—were Class 1, indicating that these were

regulated by basal insulin stimulation. Those that were increased by insulin stimulation—Ala, Ser, and

Arg—are only a few enzymatic steps away from the central carbon metabolism and were Class 4, indicating

that induced insulin stimulation regulates the abundance of these amino acids (Figure 4B). Thus, amino

acid metabolism was divided into 2 blocks according to the sensitivity and response time to insulin

stimulation.

The activities of the metabolic enzymes are regulated by allosteric effectors (activators or inhibitors) that

are metabolites (Yugi and Kuroda, 2018; Yugi et al., 2014). We extracted the information of allosteric regu-

lation mediated by IRMs from the BRENDA database and classified the metabolic enzymes regulated by

allosteric effectors into 4 classes according to the EC50 and the T1/2 values of the allosteric effectors

(Table S8). Consistent with the changes of the corresponding IRMs (Figure 4B), the IRMs in Class 1 (high

sensitivity and fast response) are allosteric effectors that decreased amino acids by promoting their use

in glutamate synthesis for entry into the ornithine cycle and the IRMs in Class 4 (low sensitivity and slow

response) are allosteric effectors that increase glutamate by inhibiting its entry into the ornithine cycle

and the TCA cycle, indicating that basal and induced insulin stimulation regulate amino acid metabolism

through different allosteric effectors (Figure S4C).

Step III-II: Connection of the IRGs of Metabolic Enzymes and the IRMs

The last step in building the trans-omic network is connecting the IRGs to the IRMs.We examined the effect

of transcriptional regulation onmetabolism. We identified 23 IRGs encoding metabolic enzymes, including

G6Pase and Pck1 encoding the rate-limiting enzymes in gluconeogenesis (Guo, 2014), Pklr encoding a rate-

limiting enzyme of glycolysis (Nguyen et al., 2016), Hmgcr encoding a rate-limiting enzyme of cholesterol

synthesis (Ding et al., 2008), and Mat2a encoding a rate-limiting enzyme of methionine metabolism (Kera

et al., 2013) (Figures 4D and S4D; Table S9). For gluconeogenesis and glycolysis, G6Pase was a Class

1 downregulated IRG and Pck1 and Pklr were Class 2 downregulated IRGs, indicating that the expression

of the IRGs encoding the enzymes of gluconeogenesis and glycolysis is reduced in response to basal insulin

stimulation. For lipid metabolism, Hmgcr was a Class 3 upregulated IRG, Ehhadh (encoding a bifunctional

enzyme involved in peroxisomal lipid metabolism) was a Class 1 downregulated IRG. For methionine meta-

bolism, Mat2a was a Class 1 upregulated IRG. The presence of IRGs encoding rate-limiting enzymes in

several metabolic pathways indicated that insulin globally affected metabolism through inter-omic tran-

scriptional regulation.
Step IV: Construction of the Trans-omic Network by Insulin Stimulation

We integrated the networks of Steps I, II, and III and generated the trans-omic network of insulin stimulation

starting with transcriptional regulation of IRGs that were connected to TFs through the consensus motifs in

the IRG sequences (Figure 5). The TFs were connected to the insulin-responsive signaling proteins in the

signaling layer through direct connections (some TFs were in both the inferred TFs from the IRG sequences
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Figure 5. Step IV: Construction of the Trans-omic Network by Insulin Stimulation

The trans-omic network contains 5 layers and the regulatory relationships among them. The colors of molecules and metabolic terms on the trans-omic

network indicate the classes classified by the EC50 and T1/2 values of the IRGs, the same as in Figure 2B. The representative molecules in the selective trans-

omic network by induced (right, red) or basal insulin stimulation (left, blue) are shown. See also Figure S5.
and in the signaling layer as proteins that changed in abundance or phosphorylation status in response to

insulin) and through inferred connections based on consensus phosphorylation motifs or known

interactions with other TFs in the TF layer. Finally, IRMs were connected to the network through the

IRGs encoding enzymes involved in their biosynthesis and metabolism. In addition to these 5 layers—

signaling, TFs, IRGs, metabolic enzymes, and IRMs—connections between the layers were identified using

the IRGs as the anchor. The data used to generate the trans-omic network included information about the

dynamics of the response to insulin as well as the sensitivity to insulin, thereby providing a tool for inves-

tigating the pathways by which induced and basal insulin signals regulate gene expression and

metabolism.

According to sensitivity and time constant, we divided the trans-omic network into the 2 selective trans-

omic networks by induced (Figure 5; right, red) and basal (Figure 5; left, blue) insulin stimulation across

signaling factors, TFs, IRGs, and IRMs (seeMethods), and demonstrated how induced and basal insulin sig-

nals are selectively transmitted across the trans-omic network according to the sensitivity of each molecule

(Figures 5 and S5). The molecules responding to induced insulin were signaling proteins such as Akt and

Erk, which are hub molecules in signaling layer; TFs such as Egr1 and Hes1 (protein expression);

and gene expression of the majority of the upregulated IRGs including genes coding TFs. On the

other hand, the molecules responding to basal insulin stimulation were signaling molecules related

to translational machinery, TFs such as Creb1 and Foxo1 (phosphorylation), gene expression of the

majority of the downregulated IRGs including those encoding metabolic enzymes such as G6pase

and Pck1, and IRMs such as most amino acids. One of the selective trans-omic network by induced insulin

stimulation was the Erk-dependent successive transcriptional cascade including pCreb, Egr1, Egr1, and

Actg1 (Figure S5), whereas that by basal insulin stimulation was the Akt-dependent transcriptional
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regulation of metabolism, including pFoxo1,G6pase, and G6P (Figure S5). Thus, induced and basal insulin

stimulation selectively regulate different sets of signaling proteins, TFs, and genes across the trans-omic

network.

Step V: In Vivo Validation of Selective Trans-omic Networks by Induced and Basal Insulin

Stimulation

We validated the selective trans-omic network by induced and basal insulin stimulation using high (20 mM)

and low (2 mM) doses of insulin injection (insulin clamp) in the rat liver (seeMethods). By high (20 mM) and low

(2 mM) doses of insulin injection, the blood insulin dose reached at 2.5 nM and 0.1 nMaround 20min, respec-

tively, which are consistent with the induced and basal insulin stimulation (Figure 6A). Therefore, we used

high (20 mM) and low (2 mM) doses of insulin injection as induced and basal insulin stimulation in vivo and

measured the time course of signaling factors, TFs, and the IRGs of the rat liver by low and high dose of in-

sulin injection (Figures 6B, 6C, and S6A–S6C). The signaling factors, TFs, and IRGs that significantly changed

at more than one time point by both low- and high-dose insulin injection were determined as low-dose in-

sulin-responsive molecules and those that significantly changed only by high-dose insulin injection were

determined as high-dose insulin-responsive molecules. Among the 4 molecules included in the selective

trans-omic network by basal insulin stimulation (pGsk3b, pS6k, pFoxo1, and pS6), 3 were low-dose insu-

lin-responsive molecules (pGsk3b, pS6k, and pFoxo1) (Figures 6B, 6D, S6A, and S6C). Among the

6 molecules included in the selective trans-omic network by induced insulin stimulation (pAkt [Ser473],

pErk, pJun, Hes1, Egr1, and Jun), 3 (pErk, pJun, and Jun) were high-dose insulin-responsive molecules

(Figures 6B, 6D, S6A, and S6C). Therefore, 6 of the 10 molecules showed similar sensitivity between FAO

cell and rat liver. Note that although pAkt (Ser473), which is included in the selective trans-omic network

by induced insulin stimulation, was a low-dose insulin-responsive molecule, the AUC in response to high-

dose insulin injection was larger than that in response to low-dose insulin injection, indicating that pAkt

(Ser473) can effectively discriminate high and low dose of insulin and selectively transmit induced and basal

insulin signals. Among the 5 IRGs included in the selective trans-omic network by basal insulin stimulation

(Msmo1, Ehhadh, G6Pase, Pck1, and Creb3l2), 2 (G6Pase and Pck1) were low-dose insulin-responsive

molecules. On the other hand, among the 3 IRGs included in the selective trans-omic network by induced

insulin stimulation (Hmgcr, Jun, Srf), none was a high-dose insulin-responsive molecule (Figures 6C, 6D,

S6B, and S6C). Therefore, only 2 of the extracted 8 IRGs indicated similar sensitivity in FAOcells and the liver.

These differences may be caused from differences of insulin concentration between in vitro and in vivo

experiments.

Taken together, many signaling proteins, TFs, and protein synthesis-related factors, but only part of the

IRGs such as G6pase and Pck1 showed similar selectivity by induced and basal insulin stimulation in the in-

sulin-clamped rat liver.

Among the 12 signaling molecules predicted in vitro, 6 signaling molecules were confirmed in vivo (Figures

6D and 6E). Among the 15 IRGs predicted in vitro, 2 IRGs were confirmed in vivo (Figures 6D and 6E). Not all

of the analyzed proteins or genes exhibited a response to insulin that was consistent with the responses

observed in the FAO cells. For responses that were slow in the FAO cells, such as changes that involved

intra-omic pathways that stimulated gene expression through the IRG layer, this may reflect complex signal

integration in vivo resulting from the exposure of the liver to signals other than insulin. Such additional sig-

nals may alter either the time course of the response in vivo from that in the cultured cells or may change the

outcome of the signal. For those responses that involved phosphorylation, events that occur proximally to

activation of the insulin receptor, we observed greater consistency between the FAO cells and the insulin-

clamped rat livers, suggesting that the intra-omic events in the signaling layer can be accurately classified

according to basal or induced insulin responses from the FAO cell data.

DISCUSSION

In this study, we constructed a trans-omic network of insulin action by connecting transcriptomic data,

western blotting analysis of signaling proteins, and metabolomic data. We classified each gene, protein,

and metabolite into one of 4 classes according to sensitivity and time constant to insulin. Using the

trans-omic network and the sensitivity and response time data, we identified pathways mediating induced

and basal insulin stimulation both in cultured rat hepatoma cells and in rat liver. Because the induced and

basal insulin stimulation represented the ‘‘fed’’ and ‘‘fasting’’ states, our results revealed how these 2 states

direct distinct physiological outcomes. We have previously shown that induced and basal insulin
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Figure 6. In Vivo Validation of Selective Trans-omic Networks by Induced and Basal Insulin Stimulation

(A) Time courses of the concentrations of blood glucose (left) and insulin (right) in response to low-dose (blue) and high-dose (red) insulin injection in rats.

The means and SEMs of 3 independent experiments each with 3 animals are shown.

(B) Time courses of the changes in the abundances of the indicated signaling molecules and TFs in rat liver in response to intravenous injection of low-dose

(blue) and high-dose (red) insulin. The means and SEMs of 3 independent experiments each with 3 animals are shown. Lowercase ‘‘p’’ preceding the name of

a protein indicates the detection of the phosphorylated form of the protein. The y axis indicates relative intensity corrected by the mean of the values

at 0 min. The color of the name of the protein indicates the protein responds to induced (red) or basal (blue) insulin stimulation in FAO cells.

(C) Time courses of the expression of the indicated IRGs in rat liver in response to intravenous injection of low dose (blue) and high dose (red) insulin. The

means and SEMs of 3 independent experiments each with 3 animals are shown. The y axis indicates relative intensity corrected bymean of the values at 0min.

The color of the name of the protein indicates whether the protein responds to induced (red) or basal (blue) insulin stimulation in FAO cells.

(D) Comparison of the signaling proteins (upper) and IRGs (lower) of the in vivo and FAO response to low (basal) and high (induced) concentrations of insulin. Low-

dose response in vivo indicates that a significant responseoccurredatmore thanone timepointwith a lowdose regardless ofwhether a highdose also stimulateda

response. High-dose response only produced a significant response at more than one time point in response to the high dose of insulin. Other indicated the

proteins or genes that showed a significant change in response to only low-concentration insulin injection or did not show a significant change. Class designations

for the FAO response are based on the EC50 and T1/2 values. Those proteins or genes with matching rat liver and FAO responses are shaded.

(E) The selective trans-omic network by induced and basal insulin stimulation in vivo. The low-dose insulin-responsive molecules (blue), high-dose insulin-

responsive molecules (red), and others (gray) are shown.

See also Figure S6, and Tables S10 and S11.
stimulation regulate different physiological functions both in FAO hepatoma cells (Kubota et al., 2012) and

in the rat liver (Kubota et al., 2018; Sano et al., 2016). Insulin signals through a single receptor, the insulin

receptor; thus, different pathways downstream of insulin receptors are responsible for regulation of the

different physiological functions. We used the trans-omic network and kinetic data to identify where

such differences emerge in the response to insulin. We found one point of divergence downstream of

Akt for high sensitivity to basal insulin stimulation and downstream of Erk for low sensitivity to induced in-

sulin stimulation. In particular, our results indicated that Akt targeted Foxo to control the downregulated

IRGs, and Erk targeted a transcriptional cascade mediated through the IEGs to control the upregulated

IRGs. These pathways provide a mechanistic explanation for the predominantly downregulated IRG

response to basal insulin stimulation and the predominantly upregulated IRG response to induced insulin

stimulation that we previously reported (Sano et al., 2016).

Induced and basal insulin stimulation selectively controlled the expression of different gene sets

for different functional roles. Our data indicated that through the posttranslational regulation of Foxo pro-

teins by Akt, basal insulin downregulated IRGs. In contrast, induced insulin stimulation controlled the

upregulated IRGs through Erk-mediated activation of 2-step transcriptional cascade, initiated by

the increased expression of Hes1, Egr1, and Srf, the products of which regulated Classes 3 and 4 upregu-

lated IRGs.

Basal insulin stimulation also phosphorylated the translational machinery through the Akt pathway and

increased protein synthesis, indicating that basal insulin stimulation increases protein amount through a

general increase in translation, rather than in a transcription-dependent manner. One of the advantages

of the translational regulation rather than transcriptional regulation is quickness; it is much faster to

increase protein abundance by changing the translation rate of pre-existing mRNA than synthesizing

de novo mRNA (Brant-Zawadzki et al., 2007). Indeed, all the protein synthesis-related factors we

examined showed a fast response to insulin stimulation. Our results indicated that induced and basal insu-

lin stimulation selectively regulate protein abundance through changes in transcription and translation,

respectively, and thereby elicit distinct cellular functions during fed and fasting states in different time

scales.

We constructed the trans-omic network of insulin action using a combination of data generated in this

study (transcriptomic and metabolomic data and, protein data from western blot analysis). We acknowl-

edge that some data and regulatory components required for a comprehensive trans-omic network are

not included in the trans-omic network that we constructed. These missing elements include proteome

abundance, other types of posttranslational modifications, protein-protein interactions, metabolic flux in-

formation, and epigenomic data. Another limitation is that we did not consider synergistic effects among

the regulatory components in the trans-omic network. A limitation of the predicted TF-IRG regulatory

interactions is that we used a limited genomic region surrounding the consensus transcription start

site as the flanking region of each IRG to predict connections to TFs. Other potentially important

regions, such as enhancers, were not considered, which means the TF-IRG connections may be
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underestimated. In contrast, our attempt to validate the predicted TF-IRG connections using a database

of chromatin immunoprecipitation sequencing analysis (ChIP-Atlas) (http://chip-atlas.org) and found

that, on average, only 30% of the predicted TFs have been reported to bind to the promoter region

of the IRGs (Figure S2). However, the data from rat and liver or hepatic cells were limited in the database.

Thus, it remains difficult to construct or validate trans-omic networks using omic datasets available in

public databases, because the available data may not match the experimental conditions under which

the trans-omic network is tested.

Here, we identified the selective pathways within layers (intra-omic pathways) or between layers (inter-omic

pathways) of the trans-omic network that mediate the response to induced or basal insulin stimulation.

Furthermore, by integrating sensitivity and response time data, we classified the insulin-responsive compo-

nent of the trans-omic network according to dynamics and insulin concentration. Future studies can expand

the trans-omic network of this study to include other types of data. The methods that we describe for con-

struction of trans-omic networks and integration of sensitivities and time constants of molecules in the

trans-omic network enables the exploration of dynamic cellular responses to other stimuli.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods, 6 figures, 1 scheme, and 11 tables, and can be

found with this article online at https://doi.org/10.1016/j.isci.2018.07.022.

ACKNOWLEDGMENTS

We thank our laboratory members for critically reading this manuscript and for their technical assistance

with the experiments. The computational analysis of this work was performed in part with support of the

super computer system of National Institute of Genetics (NIG), Research Organization of Information

and Systems (ROIS). This manuscript was edited by Nancy R. Gough (BioSerendipity, LLC). This work was

supported by the Creation of Fundamental Technologies for Understanding and Control of Biosystem Dy-

namics, CREST (JPMJCR12W3) from the Japan Science and Technology Agency (JST) and by the Japan So-

ciety for the Promotion of Science (JSPS) KAKENHI Grant Number (17H06300, 17H06299, 18H03979). K.Y.

receives funding from JSPS KAKENHI Grant Number JP15H05582 and JP18H05431, and ‘‘Creation of Inno-

vative Technology for Medical Applications Based on the Global Analyses and Regulation of Disease-

Related Metabolites’’, PRESTO (JPMJPR1538) from JST. H.K. was supported by JSPS KAKENHI Grant

Number 16H06577. M.F. receives funding from a Grant-in-Aid for Challenging Exploratory Research

(16K12508). S.U. receives funding from a Grant-in-Aid for Scientific Research on Innovative Areas

(18H04801). K.I.N. and Y.S. were supported by the JSPS KAKENHI Grant Number (17H06301) and

(17H06306), respectively. T.S. receives funding from the AMED-CREST (JP18gm0710003) from the Japan

Agency for Medical Research and Development, AMED.

AUTHOR CONTRIBUTIONS

K. Kawata, K.Y., A. Hatano, and S.K. conceived the project. K. Kawata, K.Y., A. Hatano, T.K., Y.T., T.S., K.Y.T.,

M.F., and S.U. analyzed the data. A. Hatano, H.K., and S.K. designed the experiments. A. Hatano performed

the western blotting experiments. H.K. performed insulin-clamped rat experiment. M.M. and K.I.N. per-

formed the phosphoproteome measurements. Y.S. performed the RNA-seq experiments. K.S., K. Kato,

A.U., M.O., A. Hirayama, and T.S. performed the metabolome measurements. A. Hatano, K. Kawata,

K.Y., and S.K. wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: October 31, 2017

Revised: July 13, 2018

Accepted: July 26, 2018

Published: September 10, 2018
iScience 7, 212–229, September 28, 2018 227

http://chip-atlas.org
https://doi.org/10.1016/j.isci.2018.07.022


REFERENCES

Biggs, W.H., Meisenhelder, J., Hunter, T.,
Cavenee, W.K., and Arden, K.C. (1999). Protein
kinase B/Akt-mediated phosphorylation
promotes nuclear exclusion of the winged helix
transcription factor FKHR1. Proc. Natl. Acad. Sci.
USA 96, 7421–7426.

Brabant, G., Prank, K., and Schofl, C. (1992).
Pulsatile patterns in hormone secretion. Trends
Endocrinol. Metab. 3, 183–190.

Brant-Zawadzki, P.B., Schmid, D.I., Jiang, H.,
Weyrich, A.S., Zimmerman, G.A., and Kraiss, L.W.
(2007). Translational control in endothelial cells.
J. Vasc. Surg. 45 (Suppl A ), A8–A14.

Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z.,
Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C.,
Blenis, J., and Greenberg, M.E. (1999). Akt
promotes cell survival by phosphorylating and
inhibiting a Forkhead transcription factor. Cell 96,
857–868.

Buescher, J.M., Liebermeister, W., Jules, M., Uhr,
M., Muntel, J., Botella, E., Hessling, B., Kleijn, R.J.,
Le Chat, L., Lecointe, F., et al. (2012). Global
network reorganization during dynamic
adaptations of bacillus subtilis metabolism.
Science 335, 1099–1103.

Deak, M., Clifton, A.D., Lucocq, L.M., and Alessi,
D.R. (1998). Mitogen- and stress-activated protein
kinase-1 (MSK1) is directly activated byMAPK and
SAPK2/p38, andmaymediate activation of CREB.
EMBO J. 17, 4426–4441.

Ding, J., Jiang, D., Kurczy, M., Nalepka, J.,
Dudley, B., Merkel, E.I., Porter, F.D., Ewing, A.G.,
Winograd, N., Burgess, J., et al. (2008). Inhibition
of HMG CoA reductase reveals an unexpected
role for cholesterol during PGC migration in the
mouse. BMC Dev. Biol. 8, 120.

Dupont, J., Khan, J., Qu, B.-H., Metzler, P.,
Helman, L., and LeRoith, D. (2001). Insulin and
IGF-1 Induce different patterns of gene
expression in mouse fibroblast NIH-3T3 cells:
identification by cDNA microarray analysis.
Endocrinology 142, 4969–4975.

Everman, S., Meyer, C., Tran, L., Hoffman, N.,
Carroll, C.C., Dedmon, W.L., and Katsanos, C.S.
(2016). Insulin does not stimulate muscle protein
synthesis during increased plasma branched-
chain amino acids alone but still decreases whole
body proteolysis in humans. Am. J. Physiol.
Endocrinol. Metab. 311, E671–E677.

Friedman, A.A., Tucker, G., Singh, R., Yan, D.,
Vinayagam, A., Hu, Y., Binari, R., Hong, P., Sun, X.,
Porto, M., et al. (2011). Proteomic and functional
genomic landscape of receptor tyrosine kinase
and ras to extracellular signal-regulated kinase
signaling. Sci. Signal. 4, rs10.

Geiger, R., Rieckmann, J.C., Wolf, T., Basso, C.,
Feng, Y., Fuhrer, T., Kogadeeva, M., Picotti, P.,
Meissner, F., Mann, M., et al. (2016). L-arginine
modulates t cell metabolism and enhances
survival and anti-tumor activity. Cell 167, 829–
842.e13.

Gerosa, L., Haverkorn van Rijsewijk, B.R.B.,
Christodoulou, D., Kochanowski, K., Schmidt,
T.S.B., Noor, E., and Sauer, U. (2015). Pseudo-
transition analysis identifies the key regulators of
228 iScience 7, 212–229, September 28, 2018
dynamic metabolic adaptations from steady-
state data. Cell Syst. 1, 270–282.
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Figure S1. Classification of IRGs according to insulin sensitivity and response time, Related to 
Figure 2. (A) Definition of the upregulated and downregulated IRGs. (B) Definition of Pt value, an index 
of expression variation (left), and AUC_ratio, an index of response (right). (C) Distribution of Pt values 
and AUC_ratios in the upregulated IRGs (red dots) and downregulated IRGs (blue dots). Gray dots 
indicate the IRGs defined as neither upregulated nor downregulated IRGs. Horizontal and vertical dashed 
lines indicate thresholds of Pt values and AUC_ratios, respectively. (D) Distribution of the EC50 and T1/2 

values estimated for the upregulated (red dots) and downregulated IRGs (blue dots). Vertical and 
horizontal dashed lines indicate the thresholds of the EC50 and T1/2 values, respectively. 



 

Figure S2. Positive predictive values of the predicted TFs, Related to Figure 2. We validated the 
matching of TFs to IRGs with ChIP-Atlas (http://chip-atlas.org), which is a database of chromatin 
immunoprecipitation sequencing (ChIP-seq) data. We used ChIP-seq data related to mouse transcription 
factors, instead of rat transcription factors, because the available rat data was too limited. Extracted data 
from ChIP-Atlas were not limited to only liver or hepatocytes. We regarded the TFs identified for each 
IRG from ChIP-Atlas as positive examples. We calculated positive predictive values (PPVs) of the 
predicted TFs for each IRG. The PPV was calculated for each upregulated (upper) and downregulated 
IRG (lower) from the frequency of occurrence of the predicted TF at the IRG in ChIP-seq data 



 

Figure S3. Classification of the signaling proteins, TFs and protein synthesis-related factors, 
according to insulin sensitivity and response time, Related to Figure 3. (A) Number of the proteins 
in the KEGG signaling pathways. The light gray bars indicate the total numbers of proteins and the dark 
gray bars indicate the numbers of phosphoprotein included in each signaling pathway. (B) Distribution 
of the EC50 and T1/2 values estimated for the signaling proteins (red), the TFs (blue), and the protein 
synthesis-related factors (green). Dashed lines indicate the thresholds of the EC50 (left) and T1/2 (right) 
values. (C) All Western blot data for three independent experiments are shown. IS indicates internal 
standard. Antibodies recognized the indicated protein or protein phosphorylated at the residues indicate. 
Residue number is human. (D) Relative amount of new protein synthesis based on the incorporation of 
puromycin into newly synthesized proteins at the indicated dose of insulin stimulation. Data are 
normalized to those at 0.01 nM insulin stimulation. The means and SEMs of four independent 
experiments are shown. Dashed line indicates the EC50 value. 



 



Figure S4. Classification of the IRMs according to insulin sensitivity and response time, Related to 
Figure 4. (A) Distribution of Pt values and AUC_ratios in the increased IRMs (red dots) and decreased 
IRMs (blue dots). Gray dots indicate the IRMs defined as neither increased nor decreased. Vertical 
dashed lines indicate the threshold of AUC_ratios. (B) Distribution of the EC50 and T1/2 values calculated 
for the IRMs. Vertical and horizontal dashed lines indicate the thresholds of the EC50 and T1/2 values, 
respectively. (C) Allosteric regulation by the allosteric effectors in Class 1 and Class 4 in Figure S2B 
projected onto the KEGG metabolic pathways (upper) and schemes (lower). Arrows on the KEGG 
metabolic pathways indicate whether an IRM increased or decreased by insulin stimulation. The colors 
of the box outlines and the labels indicate the classes classified by the EC50 and T1/2 values of the IRMs: 
Dark blue, Class 1; cyan, Class 2; red, Class 3; magenta, Class 4. In the schemes, the reactions regulated 
by allosteric effectors were colored in red (activation), blue (inhibition), and black (not regulated). The 
IRM text color indicated the classes of the IRMs in the schemes. Because the activities of the metabolic 
enzymes are regulated by allosteric effectors (activators or inhibitors) that are metabolites, such effectors 
that are IRMs and change in response to insulin stimulation is a key modulatory mechanism of the 
metabolic network (Yugi and Kuroda, 2018; Yugi et al., 2014). Therefore, we extracted the information 
of allosteric regulation mediated by the IRMs from BRENDA database, and classified the allosteric 
regulation into four classes according to the EC50 and the T1/2 values of allosteric effectors and mapped 
to KEGG metabolic pathway. We identified marked changes of allosteric regulation related to amino 
acid degradation pathway. For Class1, the pathways related to amino acids degradation and ornithine 
cycle were activated. These results were supported by fast decrease in most of the amino acids in 
response to basal insulin stimulation. For Class4, glutamate dehydrogenase and ornithine cycle were 
inhibited. (D) Enzymatic reactions of metabolic enzymes encoded by IRGs projected on the KEGG 
metabolic pathways. Arrows indicate whether an IRG increased or decreased by insulin stimulation. 
IRG text color indicates the Class of the IRGs, and reactions are colored to match the class of the 
associated IRG: blue, Class 1; cyan, Class 2; red, Class 3; green, IRGs not included in upregulated or 
downregulated IRGs. 
 
 
 
 
 
 



 

Figure S5. Representative pathways of the selective trans-omic network, Related to Figure 6. 
Akt-Foxo-downregulated genes (left) and Erk-IEG-upregulated genes (right), as representative pathways 
of the selective trans-omic network by basal and induced insulin stimulation, respectively. The molecules 
in Akt-Foxo-downregulated genes pathway, including Akt (signaling factor), Foxo1 (TF), G6pase (gene) 
and G6P (metabolite) pathway respond to basal insulin stimulation. The majority of molecules in Erk-
IEG-upregulated genes pathway, including Erk (signaling factor), Creb (TF), Egr1 (gene), Egr1 (TF) and 
Actg1 (gene) pathway respond to induced insulin stimulation. “Trans-omics” indicates the steps for 
integration of two layers in Figure 1B. “Functional relationship” indicates the relationship between 
molecules in biological function.  

 



 
Figure S6. in vivo Validation of the selective trans-omic network by high- and low-doses of insulin 
injection, Related to Figure 6. (A) AUCs calculated from the time courses of mean intensities in response 
to each dose of insulin injected. AUCs in response to 2 and 20 μM insulin injection were normalized by 
those with the mean intensities without insulin injection. (B) AUCs calculated from the time courses of 
mean relative expression in response to each dose of insulin injected. The AUCs in response to 2 and 20 
μM insulin injection were normalized by those with the mean relative expression without insulin injection. 
In A and B, an AUC above the uninjected sample indicates an increase in abundance; an AUC below the 
uninjected sample indicates a decrease in abundance. Text color indicates if the protein or gene responded 
to basal or induced insulin signaling in FAO cells. (C) All Western blot data are shown. 



 
Scheme S1. Scheme of procedures for trans-omic network construction, Related to Figure 1. The 
trans-omic network was constructed in four main steps (Step I-IV) by defining five layers based on 
phosphoproteomic, transcriptomic, and metabolomic data, and connecting between the layers. The 
detailed procedures can be found in Methods. 



Table S1. Classification of insulin-responsive genes (IRGs), Related to Figure 2. 

  



Table S2. Enrichment analysis of IRGs classified according to the sensitivity and time 

constants, Related to Figure 2. 

  



Table S3. Prediction of transcription factors (TFs) for each class of IRGs, Related to 

Figure 2. 

  



Table S4. Pathway over-representation analysis using insulin-responsive 

phophoproteins (IRpPs), Related to Figure 3. 

  



Table S5. Classification of signaling proteins, transcription factor, and protein-synthesis 

related factors, Related to Figure 3 
Name Function EC50 (nM) T1/2 (min) Class 

pGsk3β Signaling protein 0.2362  2.7308  Class 1 

pp38 Signaling protein 0.0649  2.5000  Class 1 

pS6k Signaling protein 0.2158  7.2863  Class 1 

pTsc2 Signaling protein 0.0972  3.0700  Class 1 

pAmpk Signaling protein 0.1306  58.6959  Class 2 

pAkt (S473) Signaling protein 3.4715  2.6472  Class 3 

pAkt (T308) Signaling protein 4.5216  2.6716  Class 3 

pErk Signaling protein 1.1824  2.5000  Class 3 

pIrs1 (Y612) Signaling protein 1.5696  4.0356  Class 3 

pIrs1 (Y632) Signaling protein 0.7986  2.6141  Class 3 

pJnk Signaling protein 8.8729  19.6254  Class 3 

pAtf2 Transcription factor 0.2231  5.4705  Class 1 

pCreb Transcription factor 0.2283  2.7301  Class 1 

pFoxo1 Transcription factor 0.4154  7.9761  Class 1 

pJun Transcription factor 3.6857  26.7482  Class 3 

Jun Transcription factor 4.0469  60.1416  Class 4 

Egr1 Transcription factor 4.6078  45.7199  Class 4 

Hes1 Transcription factor 6.6499  74.7393  Class 4 

peIF4ebp1 Protein-synthesis related factor 0.0791  15.6366  Class 1 

peIF4b Protein-synthesis related factor 0.4978  11.3228  Class 1 

pS6 Protein-synthesis related factor 0.1263  19.5381  Class 1 

  



Table S6. Time series of metabolome data in response to insulin stimulation, Related to 

Figure 4. 

  



Table S7. Classification of insulin-responsive metabolites (IRMs), Related to Figure 4. 

  



Table S8. Identification of allosteric regulators, Related to Figure 4. 

  



Table S9. Identification of responsible metabolic enzymes, Related to Figure 4. 

  



Table S10. Primer sequences used for qRT-PCR measurements, Related to Figure 6. 
Gene name Forward Reverse 

B3galt1 AATGGCGGGCCAATCAG CAGGGTACAAATCCCTAGGCATA 

Creb3l2 TGGTCGTTGTGCTTTGCTTT GATACAGCCCGTAGCCTTGAAA 

Creb3l3 TGGATCCGCTAACGTTGCA GCCCCTCGCCTTGCTT 

Egr1 GACCACAGAGTCCTTTTCTGA TCACAAGGCCACTGACTAGG 

Ehhadh TCCGGGCAGGCTAAAGC TGACCACTTATTTGCAGACTTTTCA 

G6pase CAGCCCGTGTAATGAGTAGC GATGAGTCCTATGGCACGCAGACCT 

Hes1 CAACACGACACCGGACAAAC CGGAGGTGCTTCACTGTCAT 

Hmgcr CTGGGCCCCACGTTCA ATGGTGCCAACTCCAATCACA 

Jun TGGGCACATCACCACTACAC GGGCAGCGTATTCTGGCTAT 

Lpin1 CCGTGTCATATCAGCAATTTGC GACCACGAGGTTGGGATCAT 

Mat2a CTTGGTTACGCCCAGATTCTAAA CACAGCACCTCGATCTTGCA 

Msmo1 TCACGATTTCCACCACATGAA TGTCCCACCACGTGAAGGT 

Pck1 CGCTATGCGGCCCTTCT AGCCAGTGCGCCAGGTACT 

Srf CACGACCTTCAGCAAGAGGAA CAGCGTGGACAGCTCATAAGC 

Upp2 TGGTGGGAGCTCGAACAGA AACCCGAGTTCCTTGTGCAT 

  



Table S11. Details of resources, Related to Figure 6. 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Anti-Phospho-Irs Tyr612 Abcam 
Cat#ab66153;  

RRID:AB_1140753 

Anti-Phospho-Irs Tyr632 Santa Cruz 
Cat#SC17196; 

RRID:AB_669445 

Anti-phospho-Akt Ser473 
Cell signaling 

technology 

Cat#4060; 

RRID:AB_2315049 

Anti-Phospho-Akt Thr308 
Cell signaling 

technology 

Cat#9275; 

RRID:AB_329828 

Anti-Phospho-S6k Thr389 
Cell signaling 

technology 

Cat#9205; 

RRID:AB_330944 

Anti-Phospho-Gsk3β Ser9 
Cell signaling 

technology 

Cat#9336; 

RRID:AB_331405 

Anti-Phospho-Erk1/2 Thr202/Tyr204 
Cell signaling 

technology 

Cat#9101; 

RRID:AB_331646 

Anti-Phospho-p38 Thr180/Tyr182 
Cell signaling 

technology 

Cat#9211; 

RRID:AB_331641 

Anti-Phospho-Sapk/Jnk Thr183/Tyr185 
Cell signaling 

technology 

Cat#4668; 

RRID:AB_2307320 

Anti-Phospho-Ampkα Thr172 
Cell signaling 

technology 

Cat#2531; 

RRID:AB_330330 

Anti-Phospho-Tsc2 Thr1462 
Cell signaling 

technology 

Cat#3617; 

RRID:AB_490956 

Anti-Phospho-Foxo1 Ser256 
Cell signaling 

technology 

Cat#9461; 

RRID:AB_329831 

Anti-Phospho-Creb Ser133 
Cell signaling 

technology 

Cat#9191; 

RRID:AB_331606 

Anti-Phospho-Atf2 Thr71 
Cell signaling 

technology 

Cat#9221; 

RRID:AB_2561045 

Anti-Phospho-c-Jun Ser73 
Cell signaling 

technology 

Cat#3270; 

RRID:AB_2129572 



Anti-Egr1 
Cell signaling 

technology 

Cat#4154; 

RRID:AB_2097035 

Anti-c-Jun 
Cell signaling 

technology 

Cat#9165; 

RRID:AB_2130165 

Anti-HES1 
Cell signaling 

technology 
Cat#11988 

Anti-Phospho-S6 Ser235/236 
Cell signaling 

technology 

Cat#2211; 

RRID:AB_331679 

Anti-Phospho-4eIf4ebp1 Ser65 
Cell signaling 

technology 

Cat#9451; 

RRID:AB_330947 

Anti-Phospho-eIf4b Ser422 
Cell signaling 

technology 

Cat#3591; 

RRID:AB_10080112 

Anti-Rabbit IgG, Peroxidase-conjugated GE Healthcare 
Cat#NA9340V; 

RRID:AB_772206 

Anti-Mouse IgG, Peroxidase-conjugated GE Healthcare 
Cat#NXA931; 

RRID:AB_772209 

Anti-Goat IgG, Peroxidase-conjugated Sigma-Aldrich 
Cat#A-5420; 

RRID:AB_258242 

Anti-Puromycin Kerafast 
Cat#EQ0001 

RRID:AB_2620162 

Chemicals, Peptides, and Recombinant Proteins 

Human Insulin SIGMA Cat#12643-50MG 

Deposited Data 

Raw phosphoproteome data Yugi et al, 2014 S0000000476 

Raw RNA-seq data Sano et al., 2016 DRA: DRA004341 

Experimental Models: Cell Lines 

Rat hepatoma cell lines 
Laboratory of Shinya 

Kuroda 
RRID:CVCL_0269 

 

 

 



Software and Algorithms 

Kyoto Encyclopedia of Genes and Genomes 

(KEGG) 
Kanehisa et al., 2017 

http://www.kegg.jp/; 

RRID:SCR_012773 

NetPhorest 
Miller et al., 2008; 

Horn et al., 2014 
http://netphorest.info/ 

bioDBnet Mudunuri et al., 2009 
https://biodbnet-

abcc.ncifcrf.gov/ 

VANTED Junker et al., 2006 

https://immersive-

analytics.infotech.mo

nash.edu/vanted/; 

RRID:SCR_001138 

enoLOGOS Workman et al., 2005 

http://biodev.hgen.pitt

.edu/cgi-

bin/enologos/enologo

s.cgi 

iceLogo Colaert et al., 2009 

http://iomics.ugent.be

/icelogoserver/index.

html 

TRANSFAC Pro Matys et al., 2006 

http://www.gene-

regulation.com/pub/d

atabases.html#transf

ac; 

RRID:SCR_005620 

Match Kel et al,. 2003 
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Transparent Methods 

 

Step I: Connection of the IRGs and the TFs 

FAO Rat Hepatoma Cells  
Rat FAO hepatoma cells (RRID:CVCL_0269, male) were seeded at a density of 3 × 106 cells 

per dish on 6-cm dishes (Corning) or 1.3 × 106 cells per well on six-well plates (Iwaki) and 

cultured in RPMI 1640 supplemented with 10% (v/v) fetal bovine serum at 37ºC under 5% 

CO2 for 2 days before deprivation of serum (starvation). The cells were washed twice with 

phosphate-buffered saline (PBS) and starved for 16 hours in serum-free medium including 

0.01 nM insulin (Sigma-Aldrich) and 10 nM dexamethasone (Wako), which increases the 

expression of gluconeogenesis genes, such as G6pase and Pck1 (Lange et al., 1994). We 

continuously added 0.01 nM insulin before the stimulation, and 0.01 nM insulin was present 

throughout the experiments unless otherwise specified to mimic in vivo basal secretion during 

fasting (Polonsky et al., 1988). The medium was changed at 4 and 2 hours before the 

stimulation. Cells were stimulated with the indicated doses of insulin.  
 

Identification of the IRGs 
In this study, we used published datasets of the RNA-sequence (RNA-seq) (DDBJ: 
DRA004341) (Sano et al., 2016) of a time series of insulin stimulation of FAO cells 
(RRID:CVCL_0269, male). FAO cells were stimulated with 0.01, 1, and 100 nM insulin for 
0, 15, 30, 60, 90, 120, and 240 min. In our previous study (Sano et al., 2016), the fragments 

per kilobase of transcript per million mapped reads (FPKM) values were calculated using 
Cufflinks (Trapnell et al., 2009, 2012), and 490 differentially expressed transcripts were 

identified using Cuffdiff (Trapnell et al., 2009, 2012). Among the genes corresponding to 

these 490 differentially expressed transcripts, the 433 genes, of which FPKM values were 

calculated at all time points, were defined as IRGs. 
 

Definition of upregulated and downregulated IRGs 
The fold changes of FPKMs against those at 0 min were calculated for each IRG. The fold 

changes were logarithmically transformed to make the range of upregulation and 

downregulation comparable, and the logarithms were normalized between 0 and 1 to exclude 

the influence of constitutive expression. We defined the Pt value as an index of expression 



variation by taking the sum of the absolute values of the differences in the slopes at specific 

time points and at earlier or later time points, in response to 0.01 nM and 100 nM insulin 

stimulation (Figure S1B). A smaller Pt value indicates that the time series of gene expression 

has less variability. We defined AUC_ratio as an index of response by taking the ratio of AUC 

in response to 100 nM and that in response to 0.01 nM insulin (Figure 1C). The larger the 

absolute value of the AUC_ratio indicates that the response to insulin is larger. Here, genes 

with a Pt value larger than 0.2 were excluded from IRGs because of low quality of 

quantification. Among the IRGs with Pt values that were less than 0.2, those with an 

AUC_ratio of more than 20.5 were defined as upregulated IRGs, and those with an AUC_ratio 

of less than 2-0.5 were defined as downregulated IRGs (Table S1). 
 

Calculation of the EC50 and the T1/2 values 
EC50 was defined as the dose of insulin that gives the 50% of the maximal AUC of time series 

of responses (Figure 1C). A smaller EC50 indicates a higher sensitivity to insulin dose. To 

exclude the influence of variability in response over time, we used the AUC of the time 

courses in response to each dose of insulin to calculate EC50. T1/2 was defined as the time 

when the response reached 50% of the peak amplitude (Figure 1C). A smaller T1/2 indicates 

a faster response. The T1/2 values for the IRGs, the IRMs, and proteins were calculated from 

the time course in response to 100 nM insulin stimulation. The distributions of the EC50 and 

T1/2 values for IRGs under various thresholds of Cuffdiff (FDR < 0.01, 0.03, 0.05, 0.07, and 

0.10; default: FDR < 0.05) were compared to confirm that the distributions of the EC50 and 

the T1/2 were stable. 
 

Wilcoxon rank sum test 
Statistical comparisons of the medians of the EC50 and T1/2 values between the upregulated 

and downregulated IRGs or between the increased and decreased IRMs were performed 

using Wilcoxon rank sum test (Gibbons and Chakraborti, 2011; Hollander et al., 2015). The 

p values were adjusted for multiple testing with the Benjamini-Hochberg correction 

(Bonferroni, 1936) using MATLAB function mafdr. 
 
 
 



Classification of the IRGs 
To characterize the upregulated and the downregulated IRGs by sensitivities and time 

constants against insulin stimulation, we used EC50 and the T1/2 values. For the distributions 

of the EC50 and the T1/2 values estimated based on the transcriptomic data, we determined the 

thresholds dividing high or low sensitivity and fast or slow responses using Otsu’s method 

(Otsu, 1979). Using the thresholds, we classified the upregulated or the downregulated IRGs 

into four classes: Class 1, high sensitivity (EC50 < threshold) and fast response (T1/2 < 

threshold) and; Class 2, high sensitivity and slow response (T1/2 > threshold); Class 3, low 

sensitivity (EC50 > threshold) and fast response, and Class 4, low sensitivity and slow 

response. 
 

Functional Enrichment Analysis 
The functions of the IRG sets classified by the time constants (fast and slow responsive) or 

the sensitivity (high and low sensitive) were statistically determined using the DAVID tool 

(https://david.ncifcrf.gov/home.jsp) (Huang et al., 2009b, 2009a), by examining Gene 

ontology (GO) of biological process (GOTERM_BP_DIRECT), cellular component 

(GOTERM_CC_DIRECT), and molecular function (GOTERM_MF_DIRECT), and KEGG 

pathways (KEGG_PATHWAY). Whole rat genome was used as the background (default). 

The p values were adjusted for multiple testing with the Benjamini-Hochberg correction 

(Bonferroni, 1936) using MATLAB function mafdr. 
 

Inference of TFs regulating each IRGs 
We predicted the TFs that regulate the expression of the classified IRGs by TF binding motif 

prediction and motif enrichment analysis. The flanking regions around the major 

transcription start site of each IRG were extracted from Rnor_5.0 (Ensembl, release 73) using 

Ensembl BioMart (Kinsella et al., 2011). We considered the genomic regions from -300 bp 

to +100 bp of the consensus transcription start sites as the flanking regions, according to the 

FANTOM5 time course analysis (Arner et al., 2015). We predicted the TF binding motifs that 

can bind to each flanking region using a TF database, TRANSFAC Pro (Matys et al., 2006), 

and Match, a TF binding motifs prediction tool. We used extended 

vertebrate_non_redundant_min_SUM.prf, one of the parameter sets prepared in TRANSFAC 

Pro for the threshold of similarity score calculated by Match. Because some of the TFs known 

to be regulated by insulin, including Foxo1, are not included in this parameter set, we 



extracted from vertebrate_non_redundant.prf the TF binding motifs that were not included 

in vertebrate_non_redundant_min_SUM.prf but were present in TFs included in KEGG 

insulin signaling pathway (rno4910), and we appended these TF binding motifs and their 

parameters to vertebrate_non_redundant_min_SUM.prf. The binding sites within each 

flanking region were predicted using Match with the extended 

vertebrate_non_redundant_min_SUM.prf.  
 

Motif Enrichment Analysis 
The upregulated and the downregulated IRGs were classified into four classes according to 

individually estimated EC50 and T1/2 values, and enrichment of binding sites of TF binding 

motifs in each class was determined using motif enrichment analysis. The enrichment of TF 

binding motif binding sites in the flanking regions of IRGs in each class were determined by 

Fisher’s exact test (Fisher, 1922) with FDR using Storey’s procedure (Storey et al., 2004). 

The TFs related to significantly enriched TF binding motifs (FDR < 0.1) were identified as 

the TFs regulating IRGs in each class. 
 

Confirmation of the TF predictions using data from the ChIP-Seq Atlas 
The genomic regions from ±1000 bp of the consensus transcription start sites as the flanking 

regions of genes interest bind with the TFs at one or more datasets were defined as target 

genes for each TF. ChIP-Atlas includes the major TFs in insulin signaling such as Foxo1, 

Creb1, Egr1, and Hes1. Note that some TFs, such as Foxo1, are not included in the datasets 

in the liver or hepatocytes. 
 
Step II: Connection of the TFs and the signaling layer 

Identification of the IRpPs 
In this study, we used published datasets of the quantitative phosphoproteome (JPOST: 
S0000000476) (Yugi et al., 2014) of a time series of insulin stimulation of FAO cells. FAO 
cells were stimulated with 1 nM insulin for 0, 2, 5, 10, 30, 45, and 60 min. Cell lysate digested 

with LysC and trypsin were subjected to Fe-IMAC and iTRAQ labeling for the enrichment 

of phosphopeptides and quantification by mass spectrometry. All samples were analyzed with 

a QSTAR Elite (AB Sciex) instrument equipped with a Paradigm MS4 HPLC pump and 

HTC-PAL autosampler (CTC Analytics AG). The peak lists were generated using Analyst 



Mascot.dll v1.6b27 (AB SCIEX). A MASCOT search was performed with the following 

parameter settings: Trypsin as the enzyme used; the allowed number of missed cleavages as 

2; iTRAQ label at the NH2-terminus, Lys, and carbamidomethylation of Cys as fixed 

modifications; oxidized Met, iTRAQ label on Tyr, pyroglutamination of NH2-terminal Glu 

or Gln, and phosphorylation on Ser, Thr, and Tyr as variable modifications; precursor mass 

tolerance as 100 ppm; and tolerance of MS/MS ions as 0.2 Da. Assigned rank 1 peptide 

sequences (MASCOT score >20) were extracted. Evaluation of phosphorylation sites were 

performed at a post-MASCOT search with in-house script. Because the phosphoproteome 
data consists of two different time series from two separate experiments (0, 5, 10, and 45 min 
and 2, 10, 30, and 60 min), some of the phosphopeptides were identified and quantified in 
data from only one of the time series. Therefore, we calculated a fold change of 
phosphorylation intensity as a ratio of the phosphorylation intensity at each time point to the 
phosphorylation intensity at t = 0 or 2 min. A phosphopeptide with a phosphorylation 
intensity greater than a 1.5-fold increase or less than a 0.67-fold decrease at more than one 
time point was defined as a quantitatively changed phosphopeptide. We obtained 3,288 

phosphopeptides that changed in response to insulin stimulation and defined the proteins 

including the phosphopeptides as insulin-responsive phosphoproteins (IRpPs).  
 

Over-representation analysis of the IRpPs 
We performed over-representation analysis of the IRpPs in signaling pathways, which were 

the pathways in KEGG database including the character string of “signaling pathway” in 

their names. To define the signaling layer, we integrated the 15 signaling pathways in which 

the IRpPs were significantly over-represented, and then removed the proteins for which 

transcripts were not expressed in FAO cells (Sano et al., 2016) and those that are not located 

in downstream of InsR (Figure 3A). The identifiers of the IRpPs provided as IPI (Kersey et 

al., 2004) were converted to KEGG gene identifiers using bioDBnet (Mudunuri et al., 2009). 

Over-representation of the IRpPs in each signaling pathway was determined by Fisher’s exact 

test (Fisher, 1922) with FDR using Storey’s procedure (Storey et al., 2004). The signaling 

layer was constructed by integrating the significantly over-represented signaling pathways 

(FDR < 0.1). 
 
 
 



Identification of signaling proteins regulating the TFs 
Using the accession numbers from TRANSFAC, we associated the significantly enriched TF 

binding motifs with TFs using the correspondence obtained from matrix.dat in TRANSFAC 

Pro. The accession numbers of TFs provided in TRANSFAC Pro are associated with the gene 

IDs for DATF, EMBL, FLYBASE, MIRBASE, PATHODB, PDB, SMARTDB, SWISSPROT, 

TRANSCOMPEL, or TRANSPATH. To identify regulators of the TFs, the gene IDs of 

EMBL, PDB, or SWISSPROT that were associated with the accession numbers of human, 

mouse, and rat TF were converted to KEGG gene IDs using bioDBnet (https://biodbnet-

abcc.ncifcrf.gov/) (Mudunuri et al., 2009). We manually determined the upstream molecules 

of the TFs from the pathway information of KEGG, and except for those in the diseases 

related pathways (rno05XXX), these were defined as regulators. The regulators included in 

the signaling layer were extracted and connected to the predicted TFs. 
 

Western blotting of signaling proteins and TFs 
We measured the abundance or phosphorylation status of the predicted TFs and the signaling 

proteins in the signaling layer using Western blotting. The FAO cells were washed with ice-

cold PBS and proteins were extracted with 50 mM Tris-Cl pH 8.8 + 1% SDS at the indicated 

times after insulin stimulation. The lysates were sonicated and centrifuged at 12,000 × g at 4 

ºC for 15 min to remove debris. Total protein concentration of the resulting supernatants was 

determined with the bicinchoninic acid assay (Thermo Fisher Scientific) and adjusted to 0.75 

mg/mL. Equal amounts of total protein were loaded for SDS-PAGE followed by Western 

blotting with the antibodies recognizing the indicated proteins or phosphoproteins. Band 

intensities were measured by using TotalLab Quant software (Nonlinear Inc.). Lysate mixture 

of FAO cells stimulated with or without 100 nM insulin for 5 min was used as an internal 

standard to normalize the band intensities for each membrane. 
 

Classification of the signaling proteins and the TFs 
To characterize the signaling molecules and the TFs by sensitivities and time constants for 

insulin stimulation, we classified these using the EC50 and the T1/2 values, as with the 

upregulated and the downregulated IRGs. For the distributions of the EC50 and the T1/2 values 

from Western blotting data, we determined the thresholds dividing high or low sensitivity 

and fast or slow responses using Otsu’s method (Otsu, 1979). Using the thresholds, we 

classified the signaling molecules and the TFs into four classes: Class 1, high sensitivity 



(EC50 < threshold) and fast response (T1/2 < threshold) and; Class 2, high sensitivity and slow 

response (T1/2 > threshold); Class 3, low sensitivity (EC50 > threshold) and fast response, and 

Class 4, low sensitivity and slow response. 
 

Measurement of protein synthesis 
Protein synthesis was measured as described (Aviner et al., 2014). Briefly, cells were 

stimulated with the indicated doses of insulin for 3 hours, and 1 μM puromycin was added 

for the last 2 hours. Cells were washed with ice-cold PBS and proteins were extracted with 

50 mM Tris-Cl pH 8.8 including 1% SDS at 3 hours after insulin stimulation. The lysates 

were sonicated and centrifuged at 12,000 × g at 4 ºC for 15 min to remove debris. Total 

protein concentration of the resulting supernatants was determined with the bicinchoninic 

acid assay (Thermo Fisher Scientific) and adjusted to 0.75 mg/mL. Equal amounts of total 

protein were loaded for SDS-PAGE followed by Western blotting with the antibodies to 

puromycin. All band intensities were measured by using TotalLab Quant software (Nonlinear 

Inc.) and summed. The values were normalized with cells stimulated with that at 0.01 nM 

insulin. 
 
Step III: Connection of the IRMs and the IRGs of metabolic enzymes 

Metabolomic analysis 
The FAO cells were washed at the indicated times after insulin stimulation with 4 mL ice-

cold 5% mannitol twice and metabolites were extracted with 1 mL of ice-cold methanol that 

included the reference compounds [25 μM L-methionine sulfone (Wako), 25 μM 2-

Morpholinoethanesulfonic acid, monohydrate (Dojindo), and 25 μM D-Camphor-10-sulfonic 

acid (Wako)] for normalization of peak intensities of mass spectrometry among samples. The 

resulting supernatant (400 μL) was sequentially mixed with 200 μL of water and 400 μL of 

chloroform and then centrifuged at 12,000 × g for 15 min at 4ºC. The separated aqueous layer 

was filtered through a 5 kDa cutoff filter (Millipore) to remove proteins. The filtrate (320 

μL) was lyophilized and dissolved in 50 μL water including reference compounds [200 μM 

each of trimesate (Wako) and 3-aminopyrrolidine (Sigma-Aldrich)] for migration time and 

then injected into the capillary electrophoresis time-of-flight mass spectrometry (CE-

TOFMS) system (Agilent Technologies) (Ishii et al., 2007; Soga et al., 2006, 2009). 
 



Identification of the IRMs 
We obtained metabolomic data with nine doses of insulin over a time course of 240 min. We 

identified IRMs based on the metabolomic data by comparing three factors: temporal changes 

of metabolites against the value at 0 min, changes in response to 0.01 and 100 nM insulin 

stimulation at each time point, and the data acquired on different days (n=3). Response of 

each metabolite to insulin doses was determined by three-way analysis of variance (ANOVA) 

comparing three factors: temporal changes of metabolites against the value at 0 min, 

responses to 0.01 and 100 nM insulin stimulation at each time points, and the data acquired 

on different days (n=3). The fold change of abundance of metabolites relative to the mean 

abundance at 0 min was calculated for each metabolite. We calculated log2 values of the fold 

changes so that ranges of increased and decreased IRMs become comparable. We performed 

three-way ANOVA with insulin doses (0.01 and 100 nM), time points after insulin stimulation 

(0, 5, 15, 30, 60, 90, 120, and 240 min), and data sets using the logarithmic values of fold 

changes. The p values against insulin doses were calculated and the FDR for each metabolite 

was calculated by Storey’s procedures (Storey et al., 2004). The λ value to calculate FDR 

was set to 0.8 with reference to the distribution of p values. The metabolites showing 

significance (FDR < 0.1) were defined as IRMs. 
 

Definition of the increased and the decreased IRMs 
Increased and decreased IRMs were defined using the same procedure that we used to 

identify the upregulated and downregulated IRGs. For each IRM, the fold change in the 

abundance of metabolites at each time point relative to the mean abundance at 0 min was 

calculated. We calculated log2 values of the fold changes so that the ranges of increased and 

decreased IRMs were comparable. The logarithmic values of fold change were normalized 

between 0 and 1, and the AUC_ratio was determined as the ratio of AUC with 100 nM insulin 

to AUC with 0.01 nM stimulation. The metabolites with an AUC_ratio of more than 20.5 were 

defined as increased IRMs, and those with the AUC_ratio of less than 2-0.5 were defined as 

decreased IRMs. 
 

Classification of the increased and the decreased IRMs 
To characterize the increased and the decreased IRMs by sensitivities and time constants 

against insulin stimulation, we used the EC50 and the T1/2 values, as with the upregulated and 

the downregulated IRGs. For the distributions of the EC50 and the T1/2 values calculated from 



the metabolomic data, we determined the thresholds dividing high or low sensitivity and fast 

or slow responses using Otsu’s method (Otsu, 1979). Using the thresholds, we classified the 

increased or the decreased IRMs into four classes: Class 1, high sensitivity (EC50 < threshold) 

and fast response (T1/2 < threshold) and; Class 2, high sensitivity and slow response (T1/2 > 

threshold); Class 3, low sensitivity (EC50 > threshold) and fast response, and Class 4, low 

sensitivity and slow response. 
 

Identification of allosteric regulation 
Many metabolic enzymes are regulated allosterically by metabolites; therefore, we identified 

IRMs that function as allosteric regulators for metabolic enzymes using the BRENDA 

database, which is a database with information regarding allosteric effectors and their target 

enzymes (Schomburg et al., 2013). A metabolite can operate as an activator for some enzymes 

and as an inhibitor for others. We identified allosteric regulation for metabolic enzymes using 

procedures from Yugi et al., 2014. We obtained the entries for metabolic enzymes from the 
BRENDA database (http://www.brenda-enzymes.org) (Schomburg et al., 2013) and 
extracted their allosteric effector (activator and inhibitor) information, as reported for 
mammals (Bos Taurus, Felis catus, Homo sapiens, “Macaca”, “Mammalia”, “Monkey”, Mus 
booduga, Mus musculus, Rattus norvegicus, Rattus rattus, Rattus sp., Sus scrofa, “dolphin”, 

and “hamster”). Then, we associated the standard compound names of allosteric effectors 
used in BRENDA with metabolite names that were used in KEGG to obtain the KEGG 
compound ID related to each allosteric effector. We defined as “activating event”, if the 

amount increases for an allosteric effector that positively regulates the enzymatic activity or 

if the amount decreases for an allosteric effector that negatively regulates the enzymatic 

activity. We defined as “inhibitory event”, if the amount decreases for an allosteric effector 

that positively regulates the enzymatic activity or if the amount increases for an allosteric 

effector that negatively regulates the enzymatic activity. These “activating events” and 

“inhibitory events” were classified into four classes according to the sensitivity and time 

constant of the IRMs that are allosteric effectors and projected onto KEGG metabolic 

pathway (Figure S4C, Table S8). 
 
 
 
 



Step IV: Construction of the trans-omic network by insulin stimulation 

Identification of IRGs encoding metabolic enzymes 
The genes in the transcriptome data were annotated based on Rnor_5.0 (Ensembl, release 73), 
and the Ensembl gene identifiers of the IRGs were converted to KEGG gene identifiers using 

bioDBnet (https://biodbnet-abcc.ncifcrf.gov/) (Mudunuri et al., 2009). The genes encoding 

metabolic enzymes were defined as those included in metabolic pathways (rno01100), a 

global metabolic pathway of KEGG database. We determined 23 of the upregulated or 

downregulated IRGs encoded metabolic enzymes. 
 
 
Step V: in vivo validation of selective trans-omic networks by induced and basal insulin 

stimulation 

Sprague-Dawley rats (insulin-clamp) 
All rat studies were approved by the Kyushu University Institutional Animal Care and Use 

Committee. The Sprague-Dawley (SD) rats (RRID:RGD_1566457) (male, 10 week old) 

were purchased from Japan SLC Inc. After overnight fasting, we anesthetized rats with 

isoflurane. To suppress endogenous insulin secretion, we administered somatostatin through 

the jugular vein (3 μg/kg per min). Insulin was administered through the mesenteric vein at 

the indicated dose, maintaining the blood glucose concentration at a constant amount (150 

mg/dl). Blood was sampled at the indicated time points, and blood insulin amounts were 

measured using a rat insulin enzyme-linked immunosorbent assay kit (Shibayagi Co. Ltd.). 

At the indicated time points, the rats were killed, and the livers were immediately frozen with 

liquid nitrogen (Matveyenko et al., 2012). 
 

Western blotting for the insulin-clamped rat livers 
The insulin-clamped rats were killed at the indicated time points, and the livers were 

immediately frozen with liquid nitrogen (Matveyenko et al., 2012). The livers were washed 

with ice-cold PBS and proteins were extracted with 50 mM Tris-Cl pH 8.8 + 1% SDS at the 

indicated times after insulin injection. The lysates were sonicated and centrifuged at 12,000 

× g at 4 ºC for 15 min to remove debris. Total protein concentration of the resulting 

supernatants was determined with the bicinchoninic acid assay (Thermo Fisher Scientific) 

and adjusted to 0.75 mg/mL. Equal amounts of total protein were loaded for SDS-PAGE 



followed by Western blotting with the indicated antibodies. Band intensities were quantified 

by using TotalLab Quant software (Nonlinear Inc.). The Western blotting measurements were 

performed three times independently. Details of the antibodies are described in Table S11. 
 

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) for the insulin-

clamped rats 
The insulin-clamped rats were killed at the indicated time points, and the livers were 

immediately frozen with liquid nitrogen (Matveyenko et al., 2012). The livers were harvested, 

and total RNA was isolated using RNeasy Mini Kit (Qiagen). Total RNA was reverse-

transcribed into cDNA using the QuantiTect Reverse Transcription Kit (Qiagen) according 

to the manufacturer’s protocol. qRT-PCR was performed as previously described (Kubota et 

al., 2012). Briefly, total RNA was extracted from the rat livers using RNeasy Mini Kit 

(Qiagen) and reverse-transcribed into complementary DNA (cDNA) using the High-Capacity 

RNA-to-cDNA Kit (Applied Biosystems) according to the manufacturer’s protocol. The 

cDNA samples were amplified using the Power SYBR Green PCR Master Mix (Applied 

Biosystems) and the 7300 Real-Time PCR system (Applied Biosystems) according to the 

manufacturer’s protocol. The primer sequences used in the qRT-PCR analysis are listed in 

Table S10. The qRT-PCR analyses were performed three times independently. 
 

Identification of low- and high-dose insulin responsive molecules and genes 
We tested the sensitivity of the rat liver response to insulin dose using data from the low-dose 

(2 μM) or high-dose (20 μM) insulin-clamped rats obtained by Western blotting and qRT-

PCR (Sano et al., 2016; Kubota et al., accepted). For Western blotting data, the intensities 

were normalized for each membrane with the mean of intensity of the samples from animals 

without insulin injection. For qRT-PCR data, we calculated the relative expression with the 

ΔCt method using the expression of 36B4 as a reference gene and normalized the values using 

the mean of the relative expression in samples from animals without insulin injection. We 

confirmed the increase or decrease of the measured molecules and genes using the corrected 

values. We classified as upregulated IRGs or increased in response to insulin those proteins 

(Western blot data) or genes (qRT-PCR data) for which the AUC values in response to high-

dose insulin injection were greater than 1 were used. We classified as downregulated IRGs 

or decreased in response to insulin those proteins or genes for which the AUC values in 

response to high-dose insulin injection were smaller than 1. The significance of the changes 



of the corrected values at each time points after insulin injection against those without insulin 

injection were tested by Welch’s t-test using ttest2 function in MatLab (version R2014a, 

MathWorks) with one-sided approach. For the Western blotting and qRT-PCR data for the 

upregulated IRGs, we tested the alternative hypothesis that the population mean of the 

intensities after insulin injection is greater than that of the intensities without insulin injection. 

For the qRT-PCR data for the downregulated IRGs, we tested the alternative hypothesis that 

the population mean of the intensities after insulin injection is smaller than that of the 

intensities without insulin injection. The FDR values were calculated by Storey’s procedure 

(Storey et al., 2004) using mafdr function in MatLab. The proteins and genes significantly 

changed (FDR < 0.1) at one and more time point in response to both of low- and high-dose 

insulin injection were defined as low-dose insulin responsive, and those significantly 

changed in response to only high-dose insulin injection were defined as high-dose insulin 

responsive. The proteins or genes regarded as “Other” include those not significantly changed 

at 2 or more time points or significantly changed in response to only low-dose insulin 

injection. We compared the classification of low- and high-dose insulin responsive in vivo to 

the basal and induced responses we obtained in FAO cells.  
 
 
Data Availability 
The raw phosphoproteome data generated in previous study (Yugi et al., 2014) and used in 

this study have been deposited in the JPOST under ID code S0000000476. The raw 

transcriptomic data generated in previous study (Sano et al., 2016) and used in this study 

have been deposited in the DDBJ under ID code DRA004341. Details are described in Table 

S11. 
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