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Introduction

The incidence of breast cancer is increasing in China 
and in most other countries (1). Breast cancer is the 
most common malignant neoplasm and the primary 

cause of cancer-related death in women in the United 
States (2,3). According to the literature, approximately 
70% to 80% of breast cancers express estrogen receptor 
alpha (ERα) (4,5). Endocrine therapies have significantly 
reduced the mortality and recurrence rates of ER-positive 
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breast cancer patients. Tamoxifen, a selective estrogen 
receptor modulator (SERM), has proven effective in the 
treatment of ER-positive breast cancer in premenopausal 
women (6). A meta-analysis confirmed that tamoxifen 
was able to reduce the recurrence rate of breast cancer 
by approximately 37% and the mortality rate by 29% in 
women <45 years of age (7); however, about 50% of ER-
positive breast cancers present with an inherent resistance 
to endocrine therapy, and 30% to 40 % of those reactive 
to tamoxifen will become resistant to tamoxifen (3). The 
mechanisms of tamoxifen resistance are related to many 
factors, such as the activation of oncogenes, the inactivation 
of antioncogenes, changes in the expression of ERα, 
alterations in co-regulatory proteins, and the influence 
of growth factor signal pathways (8). Nevertheless, the 
phenomenon of tamoxifen resistance is still a major clinical 
problem in breast cancer therapy.

With the application of bioinformatics technology to 
microarray analysis, significant progress has been made 
in the study of tamoxifen resistance mechanisms. Some 
genes have been found to be associated with mechanisms 
of tamoxifen resistance; for example, the amplified in 
breast cancer 1 (AIB1) gene, also known as steroid receptor 
coactivator (SRC-3), is overexpressed in more than 50% of 
breast cancers (8). AIB1 overexpression correlates with the 
recurrence of breast tumors, shorter disease-free survival 
times, and poorer overall survival (9). Evidence has been 
provided to show that AIB1 contributes to tamoxifen 
resistance (10,11). Moreover, a knockdown of AIB1 level 
in the tamoxifen-resistant breast cancer cell line BT47 
was shown to restore the sensitivity of breast cancer cells 
to tamoxifen (9). Anterior gradient 2 (AGR2), a secretory 
protein, is a member of the protein disulfide isomerase (PDI) 
family. It has been discovered that tamoxifen may stimulate 
the expression of AGR2, and AGR2 overexpression plays 
a role in tamoxifen resistance (12). Human epidermal 
growth factor receptor 2 (HER2) and G protein-coupled 
estrogen receptor 1 (GPER) have been demonstrated to 
contribute to tamoxifen resistance (10,13). Additionally, 
the mechanisms of tamoxifen resistance are also related 
to significant pathways, such as the human epidermal 
growth factor receptor 2 (HER2) tyrosine kinase pathway 
and the phosphatidylinositol 3-kinase (PI3K) cell survival 
pathway (8). Progress has been achieved in illustrating 
the mechanisms of tamoxifen resistance. Nevertheless, 
the current knowledge on tamoxifen resistance remains 
inadequate.

In the present study, a bioinformatics method was applied 
to analyze gene expression profiles in tamoxifen-resistant 
breast cancer and to identify the differences between 
differentially expressed genes (DEGs) in tamoxifen-resistant 
and tamoxifen-sensitive breast cancer cells. A protein-
protein interaction (PPI) network of DEGs was structured 
for discovering the potential and crucial genes involved in 
tamoxifen-resistant breast cancer. The purpose of the study 
was to strengthen the understanding of the mechanisms 
of tamoxifen resistance and to identify potential novel 
therapeutic targets for tamoxifen-resistant breast cancer. 
We present the following article in accordance with the 
STREGA reporting checklist (available at https://dx.doi.
org/10.21037/tcr-21-1276).

Methods

Gene expression data analysis

Based on the GPL570 platform data (Affymetrix Human 
Genome U133 Plus 2.0 Array; Affymetrix, Inc., Santa Clara, 
CA, USA ), as reported by Elias et al. (14), the GSE67916 
gene expression profiles were downloaded from the Gene 
Expression Omnibus database (https://www.ncbi.nlm.nih.
gov/geo). These data included 4 tamoxifen-resistant MCF7/
S0.5 cell lines, TamR1, TamR4, TamR7, and TamR8, 
and 1 tamoxifen-sensitive MCF7/S0.5 cell line. In total,  
18 samples consisting of 9 tamoxifen-resistant breast cancer 
cell samples and 9 tamoxifen-sensitive breast cancer cell 
samples were analyzed in the present study.

Statistical analysis

The data were processed and analyzed using R v. 3.6.3 
statistical software (R Foundation for Statistical Computing, 
Vienna, Austria). The average expression value of the 
probes mapped to the same gene was regarded as the final 
expression value for the gene. 

Data processing and DEG analysis

The DEGs in the tamoxifen-resistant breast cancer cell line 
and the tamoxifen-sensitive cell line were analyzed using 
the Linear Models for Microarray Analysis (limma) v. 3.48.3 
software package (https://www.bioconductor.org/). Absolute 
value of log fold change >1.5 and adjusted P<0.01 were 
considered to be the threshold values for DEGs. 

https://dx.doi.org/10.21037/tcr-21-1276
https://dx.doi.org/10.21037/tcr-21-1276
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
http://www.bioconductor.org
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Gene ontology (GO) and pathway enrichment analysis

GO_produced by Gene Ontology Consortium, aims to 
conveniently and accurately represent the requests for 
updates to biological information received from scientists 
making gene and protein annotations (15). In addition, it 
classifies relevant gene sets into their respective pathways 
using the Kyoto Encyclopedia of Genes and Genomes 
(KEGG; https://www.genome.jp/kegg/) database.

To analyze the differentially expressed genes, the 
GO functions and KEGG pathway enrichment analyses 
were investigated using the Database for Annotation, 
Visualization and Integration Discovery (DAVID) v.  
6.8 software (https://david.abcc.ncifcrf.gov/).  GO 
categories, including molecular function (MF), biological 
process (BP), and cellular component (CC), were applied to 
the analysis of the classification of the DEGs. A P value of 
<0.05 was set as the cutoff criterion.

Construction of the PPI network

The PPI network was established for the DEGs employing 
the Search Tool for the Retrieval of Interacting Genes 
(STRING) v. 11 (https://string-db.org), an online database 
that gathers integrated information of PPIs (16). The 
interactions of protein pairs in the STRING database were 
displayed using a combined score, and a combined score 
of >0.4 was established as the cutoff value in the network. 
The PPI network was subsequently presented using the 
Cytoscape v. 3.5.0 software platform, and the hub genes 
were screened out according to their degree of connectivity 
in the PPI network (expressed as node degree, referring to 
number of neighbors). The subnetworks with a node degree 
>10 were appraised using the Molecular Complex Detection 
(MCODE) plugin in Cytoscape (17). Subsequently, the 
subnetwork functions were analyzed by GO and KEGG 
pathway enrichment analyses using DAVID.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Result

Identification of DEGs

A total of 438 DEGs were identified in the 9 tamoxifen-
resistant breast cancer cell samples and the 9 tamoxifen-
sensitive breast cancer cell samples using the limma 
package, of which 300 genes were upregulated and  
138 genes were downregulated (Table 1).

GO function enrichment analyses of upregulated and 
downregulated DEGs

GO functional analyses were carried out on the upregulated 
and downregulated DEGs, respectively. The top 5 GO 
terms identified in the 3 GO categories (BP, CC, and MF) 
are shown in Table 1. The GO terms significantly involved 
in the GO categories of upregulated DEGs were cytoplasm, 
cytosol, and perinuclear region of cytoplasm in the CC 
category; protein binding, poly(A) RNA binding, and 
transcription factor binding in the MF category; and protein 
transport, negative regulation of transcription from RNA 
polymerase II promoter, and transcription, DNA-templated 
in the BP category. The GO terms significantly involved in 
the GO categories of downregulated DEGs were plasma 
membrane and extracellular exosome in the CC category; 
protein binding, kinase activity, and cadherin binding 
involved in cell-cell adhesion in the MF category; and 
cellular response to estradiol stimulus, positive regulation 
of transcription, DNA template, and interferon gamma–
mediated signaling pathway in the BP category.

KEGG pathway enrichment analyses of upregulated and 
downregulated DEGs

The upregulated DEGs were significantly enriched in the 
leukocyte transendothelial migration, lysosome, and RIG-I-
like receptor signaling pathways. The downregulated DEGs 
were significantly enriched in the viral carcinogenesis 
pathways ,  the s ignal ing pathways  regulat ing the 
pluripotency of stem cells, and the HIF-1 signaling pathway 
(Table 2).

PPI network analysis

Based on the STRING database analysis, a total of 629 
protein pairs with combined scores of >0.4 were identified. 
As demonstrated in Figure 1, the PPI network consisted 
of 288 nodes and 629 edges. The nodes of MAPK1 (node 
degree 36), ESR1 (node degree 27), SMARCA4 (node 
degree 27), RANBP2 (node degree 25), and PRKCA (node 
degree 21) were hub proteins in the PPI network.

Two subnetworks (subnetworks 1 and 2) with >10 nodes 
were discerned using the MCODE plugin (Figure 2). The 
hub proteins MAPK1 and ESR1 were demonstrated to be 
involved in subnetwork 1. Subnetwork 1 was primarily 
associated with the following GO terms: protein binding, 
DNA binding, nucleoplasm, immune response, positive 

https://www.genome.jp/kegg/
https://david.abcc.ncifcrf.gov/
https://string-db.org
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regulation of transcription, and DNA template. Pathway 
analysis showed enrichment of the viral carcinogenesis 
and cancer pathways (Table 3). In contrast, subnetwork 
2 was associated with the following GO terms: nucleus, 
extracellular exosome, and the binding with protein and 
DNA (Table 4). The most significant pathway in subnetwork 
2 was the MAPK signaling pathway (Table 4).

Discussion

Tamoxifen acts as a first-line therapy in the treatment of 
ER-positive breast cancer for premenopausal women. 
Yet, the phenomenon of tamoxifen resistance has become 
a major clinical problem in breast cancer therapy. It 
is therefore critical that novel therapeutic targets for 
tamoxifen-resistant breast cancer are discovered. To date, 

Table 1 Identification of DEGs between tamoxifen resistant and tamoxifen sensitive samples

Genes

Upregulated PRKCA, HHLA3, PGM2L1, C8orf44-SGK3///SGK3, C6orf89, MR1, FBP1, SCYL2, CSGALNACT1, FAS, ZDHHC5, 
MTHFD2, SDC2, EFNA5, CEP97, ENC1, ELOVL2-AS1, EIF2AK2, LMBRD2, RERG, MAP1B, CYB5B, ARHGEF6, 
SH3BGRL, NUDT7, YPEL2, CLIC3, CLIC4, RHOBTB3, NEK2, USP47, TPBG, SMARCA4, P2RX4, CHRNA5, MYO1B, 
ZFP36L2, CAB39, POLI, C5orf24, TIA1, KCNJ8, USP42, TMEM87B, GOPC, ZGRF1, KCNK5, ACVR1C, KCTD1, 
FBXO38, DDX3X, GPATCH2, C12orf65, ASAH1, SQSTM1, NME7, ENTPD3, CTDSPL2, ACTA2, MIR612///NEAT1, 
BTN3A2, CTSO, CTNNA1, TRIM38, DGKH, SPTAN1, OSMR, NKTR, BBX, CDK13, GLUD2, TEX9, FARSA, RAB32, 
TMC5, KIAA0513, ONECUT2, BHLHE41, SLC1A4, SELM, MBNL1, HNRNPD, WDR90, SPAG9, LOC101928524, 
SETBP1, LMNB1, TMPRSS3, AGFG1, PARP9, LOC642852, TPR, GALC, VAV3, HIST1H2AM, NR2F2, CPEB4, 
FOXO3B///FOXO3, CYP4B1, HIST1H2AE, GADD45B, RAB5A, TRIM6-TRIM34///TRIM34, ARHGAP5, ARID1A, 
ID2B///ID2, SLC7A8, JUND, RBAK, MINCR, NR1D2, HLA-DQB1, AKAP1, SGMS2, IGF1R, FAM76A, PIK3R1, 
RECQL4, FUS, DLX2, MIA3, LOC101060835///LOC100996809///HLA-DRB5///HLA-DRB4///HLA-DRB1///HLA-
DQB1, CAPN8, FAM117A, FDFT1, F11R, ZNF431, MT1F, NUP210, ASAP1, TM7SF2, SP110, SDC1, SYTL2, TFPI, 
ST8SIA4, SALL4, SNX27, GALNT2, CDKL5, KIF5C, DCAF16, SNORA28///EIF5, GNB4, FREM2, LGALS3BP, ABCD3, 
ZNF850, EXPH5, EHD1, TMX1, ATP6V1A, LIPA, GBP2, MAP2, DGKA, OGDH, ADGRL2, TRIO, STIP1, NFIB, 
MAP3K1, PCDH19, PMEPA1, FAM213A, MAN1A1, AMOTL1, HIST2H4B///HIST4H4///HIST2H4A///HIST1H4L///
HIST1H4E///HIST1H4B///HIST1H4H///HIST1H4C///HIST1H4J///HIST1H4K///HIST1H4F///HIST1H4D///HIST1H4A///
HIST1H4I, C1orf115, TIAM1, FNIP1, ZYX, RBM22, GATC, CLCC1, HSPA2, U2SURP, SP100, LOC100288911, MVD, 
GDPD1, MAVS, SMTN, PHF10, C17orf80, EDEM3, LYST, PPP2R3B, SLC24A3, PAPOLA, ADCY1, RANBP2, DACH1, 
TFPI2, BCAT1, HDAC8, ZNF253, MYCBP2, TRIM59///IFT80, GGCX, PGGT1B, HMGN5, ANXA9, SLC22A15, 
LOC101929597///TBCD, HIPK1, KPNA1, NBPF1, CFL1, GSAP, WTAP, TPP1, GBP3, MYEF2, DENND4C, FNIP2, 
SCUBE2, KRIT1, CCDC83, GULP1, 6-Mar, SUGT1, FYTTD1, CLDN3, NDRG1, STX17, EFNB2, C21orf91, KDM4B, 
C14orf132, ATXN1, CENPF, MSMO1, LY6E, ACYP1, AKAP13, ERVMER34-1, AGA, ANLN, EIF5A2, GOSR2, 
KLHL20, ANOS1, RBM48, R3HCC1L, STC2, CITED1, GGT6, SECISBP2L, NDST4, EXOC6, RUNDC1, USP10, JPX, 
USP34, BTN3A2///BTN3A3, GEM, SRSF4, SLC4A7, BBS9, ITGB4, XPO7, AGR2, TANK, IRF7, CITED2, CACNG4, 
CYP1B1, PRNP, NR3C1, KRT15, SERPINI1, MAPK1IP1L, PHF23, CEBPG, GRN, ZMYM2, METTL8, CA5BP1, 
DNMT3A, TANC2, MPPED2, HERPUD2, PABPN1, TBL1X, TMEFF2, TBRG1, RAB30, ZNF711, SEC61A1, LAMP1, 
SYNRG, BRINP3, ZYG11B, MBTPS1, SRRT, ZNRF2, SEPHS1, FBXW11, PHLDA1

Downregulated SHANK2, CPSF6, MOCS3, C1GALT1, TOB2, WBSCR22, AP1S3, WLS, METTL4, DEGS1, MED30, MAPKAP1, 
HLA-A, RBM26, NCOA3, SLC39A6, SLC9A7, CD163L1, EPHA4, GFPT1, SNORD3D///SNORD3C///SNORD3B-2///
SNORD3A///SNORD3B-1, BFSP1, KIF3A, TFRC, PRKAB1, ARHGEF28, UBE2J1, PLA2G16, ZNF652, SLC18B1, 
IFNGR1, CCDC88C, RAD52, FARSB, CAPRIN1, FRMD5, CSNK1A1, MIR1908///FADS1, MRPL30, SETD5, SCPEP1, 
TIMP2, FAM83A, ATP1B1, LZTFL1, ZNF236, LOC101060835///HLA-DQB1, COL12A1, CA8, LINC00839, CHTF18, 
GPX3, PSME4, MBP, GPR87, HIST1H4H, PM20D2, SERPINA1, PSEN1, KIFAP3, SYTL4, FGFR2, ERAP1, SGK1, 
LSS, SOX2, FSIP1, TM9SF1, PCYOX1, TFF1, IRF9, ARFIP1, ZFP90, RAP2A, RBMS1, LARP4, LOC101930578///
TPTE2P2, RAMP1, ESR1, MPZL2, KBTBD2, ZNFX1, ELL2, SEPT2, SLC44A1, S100A4, EPC1, MYB, COBLL1, 
HHIPL2, B4GALT1, HSPA4, FLVCR2, SLC12A6, CA12, LOC100505984///ITGB6, SCN1B, JPH1, LNPEP, SOWAHC, 
KCTD6, PPM1E, PAPSS2, ATP10D, CDC14B, TBC1D3P1-DHX40P1///RNFT1, PJA1, ZNF703, JMY, MAPK1, 
FAM189A2, SHMT2, CD59, ARSG, HIST1H2BD, MIR4784///MZT2A///MZT2B, MGP, DLC1, STK38, CPNE4, SOX3, 
C1orf226, SPANXA2///SPANXA1, TMEM192, HOOK3, CXCL12, PGR, PIK3R3, MALRD1, SMAD5, WWP1, IL20, 
GBP1, ELOVL2, GFRA1, PLXDC2, GREB1, FCMR

438 DEGs indentified between tamoxifen resistant and tamoxifen sensitive samples are listed, of which 300 upregulated and  
138 downregulated. DEGs, differentially expressed genes.
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Table 2 GO and pathway enrichment analyses for DEGs

Category Term Count P value

Upregulated DEGs

GOTERM_CC_DIRECT GO:0005737-cytoplasm 98 4.79×10
−3

GOTERM_CC_DIRECT GO:0005829-cytosol 69 2.19×10
−3

GOTERM_CC_DIRECT GO:0016020-membrane 54 2.05×10
−4

GOTERM_CC_DIRECT GO:0048471-perinuclear region of cytoplasm 19 5.18×10
−3

GOTERM_CC_DIRECT GO:0043231-intracellular membrane-bounded organelle 17 8.95×10
−3

GOTERM_MF_DIRECT GO:0005515-protein binding 159 1.69×10
−3

GOTERM_MF_DIRECT GO:0005524-ATP binding 34 2.04×10
−2

GOTERM_MF_DIRECT GO:0044822-poly(A) RNA binding 26 3.98×10
−2

GOTERM_MF_DIRECT GO:0000166-nucleotide binding 13 7.41×10
−3

GOTERM_MF_DIRECT GO:0008134-transcription factor binding 11 1.22×10
−2

GOTERM_BP_DIRECT GO:0000122-negative regulation of transcription from RNA polymerase II 
promoter

20 1.45×10
−2

GOTERM_BP_DIRECT GO:0045892-negative regulation of transcription, DNA-templated 15 2.12×10
−2

GOTERM_BP_DIRECT GO:0015031-protein transport 12 4.04×10
−2

GOTERM_BP_DIRECT GO:0007399-nervous system development 10 3.23×10
−2

GOTERM_BP_DIRECT GO:0051260-protein homooligomerization 8 1.89×10
−2

KEGG_PATHWAY hsa05164:Influenza A 11 6.44×10
−4

KEGG_PATHWAY hsa05161:Hepatitis B 7 3.48×10
−2

KEGG_PATHWAY hsa04670:Leukocyte transendothelial migration 7 1.41×10
−2

KEGG_PATHWAY hsa04142:Lysosome 7 1.58×10
−2

KEGG_PATHWAY hsa04622:RIG-I-like receptor signaling pathway 5 2.96×10
−2

Downregulated DEGs

GOTERM_CC_DIRECT GO:0005886-plasma membrane 37 4.59×10−2

GOTERM_CC_DIRECT GO:0070062-extracellular exosome 36 1.36×10−4

GOTERM_CC_DIRECT GO:0005829-cytosol 31 4.64×10−2

GOTERM_CC_DIRECT GO:0005654-nucleoplasm 28 2.77×10−2

GOTERM_CC_DIRECT GO:0016020-membrane 25 1.04×10−2

GOTERM_MF_DIRECT GO:0005515-protein binding 80 1.03×10−3

GOTERM_MF_DIRECT GO:0005524-ATP binding 15 1.67×10−2

GOTERM_MF_DIRECT GO:0042802-identical protein binding 12 1.67×10−2

GOTERM_MF_DIRECT GO:0016301-kinase activity 5 9.09×10−3

GOTERM_MF_DIRECT GO:0098641-cadherin binding involved in cell-cell adhesion 4 3.35×10−2

GOTERM_BP_DIRECT GO:0045893-positive regulation of transcription, DNA-templated 10 1.10×10−2

GOTERM_BP_DIRECT GO:0060333-interferon-gamma-mediated signaling pathway 4 1.39×10−2

Table 2 (continued)
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Table 2 (continued)

Category Term Count P value

GOTERM_BP_DIRECT GO:0006730-one-carbon metabolic process 3 1.90×10−2

GOTERM_BP_DIRECT GO:0071392-cellular response to estradiol stimulus 3 2.03×10−2

GOTERM_BP_DIRECT GO:0060348-bone development 3 3.57×10−2

KEGG_PATHWAY hsa04919:Thyroid hormone signaling pathway 6 2.56×10−3

KEGG_PATHWAY hsa05203:Viral carcinogenesis 6 2.81×10−2

KEGG_PATHWAY hsa04550:Signaling pathways regulating pluripotency of stem cells 5 2.95×10−2

KEGG_PATHWAY hsa04960:Aldosterone-regulated sodium reabsorption 4 4.14×10−3

KEGG_PATHWAY hsa04066:HIF-1 signaling pathway 4 4.87×10−2

Top five GO terms in diversetables and major pathways are listed. Count, number of DEGs; GO,gene ontology; DEGs, differentially 
expressed genes; MF, molecular function; BP, biological process; CC, cellular component; KEGG, KyotoEncyclopedia of Genes and 
Genomes.

Figure 1 Construction of the PPI network. Identification of hub proteins in the PPI network, among 288 nodes and 629 edges, using the 
STRING database analysis. PPI, protein-protein interaction; STRING, Search Tool for the Retrieval of Interacting Genes.
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Subnetwork 1 Subnetwork 2

Figure 2 Construction of 2 subnetworks in the PPI network. Differentiation of the subnetworks with 10 more nodes using the MCODE 
plugin. PPI, protein-protein interaction; MCODE, Molecular Complex Detection. 

Table 3 GO and pathway analysis for genes in subnetwork 1

Category Term Count P value

GOTERM_CC_DIRECT GO:0005654-nucleoplasm 6 1.71×10
−2

GOTERM_CC_DIRECT GO:0000139-Golgi membrane 3 4.76×10
−2

GOTERM_MF_DIRECT GO:0005515-protein binding 11 8.43×10
−3

GOTERM_MF_DIRECT GO:0003677-DNA binding 6 2.64×10
−3

GOTERM_MF_DIRECT GO:0042802-identical protein binding 5 9.88×10
−4

GOTERM_MF_DIRECT GO:0019899-enzyme binding 3 1.89×10
−2

GOTERM_MF_DIRECT GO:0001077-transcriptional activator activity, RNA polymerase II core promoter 
proximal region sequence-specific binding

3 9.85×10
−3

GOTERM_BP_DIRECT GO:0060333-interferon-gamma-mediated signaling pathway 6 5.30×10
−10

GOTERM_BP_DIRECT GO:0060337-type I interferon signaling pathway 5 6.21×10
−8

GOTERM_BP_DIRECT GO:0045893-positive regulation of transcription, DNA-templated 5 2.43×10
−4

GOTERM_BP_DIRECT GO:0006955-immune response 4 2.22×10
−3

GOTERM_BP_DIRECT GO:0006366-transcription from RNA polymerase II promoter 4 3.89×10
−3

KEGG_PATHWAY hsa05203:Viral carcinogenesis 5 8.43×10
−5

KEGG_PATHWAY hsa05168:Herpes simplex infection 4 1.36×10
−3

KEGG_PATHWAY hsa04914:Progesterone-mediated oocyte maturation 3 5.33×10
−3

KEGG_PATHWAY hsa04114:Oocyte meiosis 3 8.26×10
−3

KEGG_PATHWAY hsa05200:Pathways in cancer 3 8.91×10
−3

Top five GO terms in diversetables and major pathways are listed. Count, number of DEGs; GO,gene ontology; DEGs, differentially 
expressed genes; MF, molecular function; BP, biological process; CC, cellular component; KEGG, KyotoEncyclopedia of Genes and 
Genomes.
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many relevant proteins and pathways have been identified. 
The receptor tyrosine kinase (RTK) family and activation of 
the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian 
target of the rapamycin (mTOR) receptor pathway 
are thought to be important mechanisms of tamoxifen 
resistance (18). In recent years, it has been proven that low 
expression of ERα36 increases the tamoxifen sensitivity of 
breast cancer cells by blocking the epidermal growth factor 
receptor/extracellular signal-regulated kinase (EGFR/ERK) 
signaling pathway (19). Gao et al. found that the LEM4 
structural protein inhibits the sensitivity of breast cancer 
cells to tamoxifen by accelerating the G1 to S phase (G1/S)  
transition (20). In addition, it is reported that highly 
expressed cell division cycle–associated protein 8 (CDCA8) 
may increase tamoxifen resistance in breast cancer cells (21).  
Elias et al. (14) reported that several functional genes, 
including FYN, PRKCA, ITPR1, DPYD, DACH1, LYN, 
GBP1, and PRLR, are related to a reduction in tamoxifen 
sensitivity. In the present study, we reanalyzed the updated 
data. A total of 438 DEGs in tamoxifen-resistant and 

tamoxifen-sensitive breast cancer cell-lines were identified, 
including 300 upregulated and 138 downregulated genes. 
GO function and KEGG pathway enrichment analysis 
were used to analyze the DEGs, which were associated 
with protein binding and immune response. In addition, 
signaling pathway analysis revealed that these DEGs 
were mainly involved in the MAPK signaling pathway in 
cancer. Subsequently, the PPI network and subnetworks 
were constructed in order to explore the interactions of 
the DEGs. The top t nodes (by maximum node degree, 
referring to number of neighbors) were identified, including 
MAPK1, ESR1, SMARCA4, RANBP2, and PRKCA. 

MAPK1, also known as ERK, encodes the protein which 
is involved in a wide variety of cellular processes, such as 
proliferation, differentiation, transcription regulation, and 
development (22,23).With the phosphorylation of 90 kDa 
ribosomal S6 kinases (p90RSK2), ERK mediates mitogen-
induced proliferation signals from the cell membrane to 
the nucleus (24). MAPK1 mutations are associated with 
many human cancers, such as breast cancer, prostate 

Table 4 GO and pathway analysis for genes in subnetwork 2

Category Term Count P value

GOTERM_CC_DIRECT GO:0005634-nucleus 17 3.84×10
−5

GOTERM_CC_DIRECT GO:0005654-nucleoplasm 11 7.49×10
−2

GOTERM_CC_DIRECT GO:0070062-extracellular exosome 10 3.58×10
−3

GOTERM_CC_DIRECT GO:0000790-nuclear chromatin 4 1.55×10
−3

GOTERM_CC_DIRECT GO:0000786-nucleosome 4 1.91×10
−4

GOTERM_MF_DIRECT GO:0005515-protein binding 20 8.13×10
−4

GOTERM_MF_DIRECT GO:0003723-RNA binding 7 5.39×10
−5

GOTERM_MF_DIRECT GO:0003677-DNA binding 7 1.75×10
−2

GOTERM_MF_DIRECT GO:0008270-zinc ion binding 6 1.54×10
−2

GOTERM_MF_DIRECT GO:0044822-poly(A) RNA binding 6 1.34×10
−2

GOTERM_MF_DIRECT GO:0019899-enzyme binding 4 8.87×10
−3

GOTERM_BP_DIRECT GO:0000398-mRNA splicing, via spliceosome 5 1.80×10
−4

GOTERM_BP_DIRECT GO:0031124-mRNA 3’-end processing 3 1.93×10
−3

GOTERM_BP_DIRECT GO:0006369-termination of RNA polymerase II transcription 3 3.14×10
−3

KEGG_PATHWAY hsa05034:Alcoholism 5 9.61×10
−4

KEGG_PATHWAY hsa05322:Systemic lupus erythematosus 4 4.70×10
−3

KEGG_PATHWAY hsa04010:MAPK signaling pathway 4  2.69×10
−2

Top five GO terms in diversetables and major pathways are listed. Count, number of DEGs; GO, geneontology; MF, molecular function; BP, 
biological process; CC, cellular component; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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cancer, and ovarian cancer (23,25,26). Furthermore, some 
studies have proven that MAPK1 hyperactivation plays a 
role in tamoxifen resistance (27,28). ERα is phosphorylated 
by increased ERK activity, which leads to a ligand-
independent transcription of ERα and an agonistic activity 
of tamoxifen (29). The present study indicated that MAPK1 
was a hub protein with a node degree score of 36 in the 
PPI network. Therefore, the MAPK1 gene may be a crucial 
regulator in tamoxifen-resistant breast cancer.

S W I / S N F - r e l a t e d ,  m a t r i x - a s s o c i a t e d ,  a c t i n -
dependent regulator of chromatin, subfamily a, member 
4 (SMARCA4), also known as brahma-related gene-1 
(BRG1), codes a core protein of the SWI/SNF chromatin-
remodeling complex, which impacts chromatin and 
the transcription of target genes via the energy of ATP 
hydrolysis. Moreover, it also controls many cellular 
processes, such as DNA repair (30). BRG1 mutations are 
found in lung cancer and Burkitt’s lymphoma (31,32). High 
BRG1 expression has been associated with poor survival 
and cell proliferation of triple-negative breast cancer 
(TNBC) (33). Furthermore, prior reports have indicated 
that BRG1 is related to estrogen receptor and is recruited 
to estrogen-responsive promoters (34). Therefore, BRG1 
may play a role in the mechanism of estrogen antagonists. 
Nacht et al. demonstrated the function of BRG1 in 
hormone-dependent gene repression in breast cancer 
cells. BRG1 plays a key role in hormone-dependent cell 
proliferation and apoptosis (35). In addition, SMARCA4 
was observed acting as a potential regulator of differentially 
expressed proteins in male breast cancer (36); however, the 
linkage between BRG1 and tamoxifen resistance is rarely 
reported. A later mechanistic study revealed that SOX4 
and SMARCA4 cooperatively regulate PI3K/Akt signaling 
and lead to the genesis and/or progression of TNBC (37). 
In our study, the SMARCA4 gene was elevated in the 
tamoxifen-resistant samples and was a hub protein in the 
PPI network. Thus, SMARCA4 may be a potential target 
in the treatment of tamoxifen-resistant breast cancer.

The ESR1 gene has been found to encode the ERα 
and a ligand-dependent transcription factor of the nuclear 
receptor family (38). ERα can regulate the activities of genes 
in various biological and tumor progression processes, and 
plays a key role in endocrine therapies for ER-positive breast 
cancer (39). Significant research efforts have demonstrated 
that the loss of ERα expression or function may contribute to 
resistance to tamoxifen therapy (8). The ligand-independent 
activity of ERα mutants may mediate resistance to tamoxifen 
(38,40). In accordance with the findings of the present study, 

decreased ESR1 expression was reported in tamoxifen-
resistant samples of a previous study by Kim et al. (41), and 
ESR1 was found to act as a hub gene in the PPI network. 
All of these findings suggest that ESR1 has a central role in 
resistance to tamoxifen.

The RAN-binding protein 2 (RANBP2) is located at 
chromosomal region 2q13 and was initially considered to 
be a regulated factor of nucleo-cytoplasmic trafficking (42).  
RANBP2 encodes a nucleoporin with 358-kDa that 
functions in nuclear export or import, including mitotic 
progression (43,44). Felix et al. reported that, compared to 
plasma cells, the overexpression of RANBP2 was found in 
>50% of multiple myeloma cases (45). In addition, the gene 
is implicated in some tumorigenic pathways, for example, 
indirectly in the p53 and PI3K/Akt pathways (46,47). 
Recently, there has been increasing evidence to show that 
the upregulation of RANBP2 promotes cancer cell growth 
in cholangiocarcinoma, cervical cancer, and hepatocellular 
carcinoma (48-50). From the present study, it is evident 
that RANBP2 serving as an upregulated gene may impact 
tamoxifen resistance. Due to the function of RANBP2 in 
cancer, it is likely to become a viable therapeutic approach 
for treating tamoxifen resistance.

The protein kinase C alpha (PRKCA) gene, one of the 
protein kinase C (PKC) family members, is activated by a 
variety of stimuli, including tyrosine kinase receptors and 
guanine nucleotide-binding protein-coupled receptors, 
and plays critical roles in many different cellular processes, 
including the cellular functions of proliferation, apoptosis, 
and differentiation (51). Kim et al. (52) indicated that PKC-
α mediated cell invasion and migration in breast cancer 
cells. Moreover, it was found that PKC-α could inhibit 
ER-α expression by suppressing c-Jun phosphorylation and 
that the level of PKC-α phosphorylation was significantly 
increased in the tamoxifen-resistant cell line (41). These 
data imply that PKC-α is a potential biomarker in tamoxifen 
resistance.

Conclusions

A total of 438 DEGs were revealed in tamoxifen-resistant 
breast cancer and tamoxifen-sensitive samples using gene 
expression profiles. Among these DEGs, MAPK1, ESR1, 
SMARCA4, RANBP2, and PRKCA were found to act as hub 
genes, and they may participate in the important biological 
processes and pathways involved in the mechanism of 
tamoxifen resistance. Further research, however, is required 
to validate these potential therapies.
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