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Abstract

Extracellular vesicles (EVs) in body fluids constitute heterogenous populations, which mirror

their diverse parental cells as well as distinct EV-generation pathways. Various methodolo-

gies have been proposed to differentiate EVs in order to deepen the current understanding

of EV biology. Equilibrium density-gradient centrifugation has often been used to separate

EVs based on their buoyant densities; however, the standard conditions used for the

method do not necessarily allow all EVs to move to their equilibrium density positions, which

complicates the categorization of EVs. Here, by prolonging ultracentrifugation time to 96 h

and fractionating EVs both by floating up or spinning down directions, we allowed 111 EV-

associated protein markers from the whole saliva of three healthy volunteers to attain equi-

librium. Interestingly, the determined buoyant densities of the markers drifted in a specimen-

specific manner, and drift patterns differentiated EVs into at least two subclasses. One class

carried classical exosomal markers, such as CD63 and CD81, and the other was character-

ized by the molecules involved in membrane remodeling or vesicle trafficking. Distinct pat-

terns of density drift may represent the differences in generation pathways of EVs.

Introduction

Body fluids contain large numbers of extracellular vesicles (EVs), which collectively refer to

the membranous particles secreted from cells [1]. These EVs are released from various types of

parental cells via distinct generation pathways, making EVs heterogeneous populations [1–4].

Numerous studies have revealed the pivotal roles of EVs in various biological activities, includ-

ing normal development such as spermatogenesis [5] as well as the progression of various dis-

orders, including cancer, neurodegenerating diseases, etc. [6–8]; however, a complete picture

of EVs has not yet been well elucidated, and an in-depth understanding of these EV-involved

biological activities requires systemized classification of the heterogeneous EV populations [1,
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9]. When certain molecules (proteins, nucleic acids, lipids, or glycans) are specifically linked to

a parental cell or a certain generation route, they can be used as molecular tags to concentrate

or isolate the EV subclass [10–12]. In most cases, however, the expressions of EV markers

overlap between cell types or generation routes and, therefore, the strategy does not always

work for defining specific EV subclasses [1, 2]. Besides the marker-based classifications, the

physical-chemical properties of EVs have also been used to define subclasses of EVs. In partic-

ular, sedimentation profile of EVs in centrifugation have been frequently used to fractionate

EVs [13–15]. For instance, a sequential centrifugation at 300, 2,000, 10,000, and 160,000 g cen-

trifugation deposited cells, large EVs, medium EVs, and small EVs as pellets, respectively. In

this differential centrifugation experiment, the pelleted fraction from 160,000 g (P160) is often

called "exosomes", although the fraction contains nonvesicular entities as well as nonendo-

some-originated EVs [4, 15–18]. In some instances, the P160 fraction is further differentiated

based on their densities running through the density-gradient medium [2, 15, 17, 19, 20]. This

method is called "equilibrium density-gradient centrifugation," in which molecules are

expected to stop moving at a point where the density of the particles equals the density of the

solution around them [14]. However, the standard conditions used for the method do not nec-

essarily allow all EVs to move to a state of equilibrium; that is, some EVs still remain in the

process of movement through density-gradient media, complicating the categorization of EVs

based on densities [2, 20–22]. For this reason, to determine the innate densities of subclasses of

EVs, we first prolonged the ultracentrifugation time from 17 h to 96 h and allowed the EVs to

move in two directions: floating up and spinning down. With this protocol, 111 proteins out

of 1,420 identified from mass-spectroscopy achieved equilibrium from the whole saliva sample

of three healthy volunteers, because they resided at the identical density fraction irrespective of

movement directions. Interestingly, the determined buoyant densities of the markers drifted

in a specimen-specific manner, and the pattern of these drifts differentiate 111 markers into

two subclasses. One class contained classical exosomal markers, and the other carried mole-

cules involved in membrane remodeling or vesicle trafficking. Distinct patterns of density drift

may represent differences in the generation pathways of the EVs. Our findings would boost

the development of a salivary-based liquid biopsy system for oral-associated lesions as well as

for systemic diseases [23–25].

Material and methods

Reagents

Iodixanol (OptiPrep™), 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES) and

polyoxyethylene (20) sorbitan monolaurate (Tween-20) (P1379) were purchased from Axis-

Shield PoC (1114542, Oslo, Norway), Nacalai Tesque, Inc. (17547–95, Kyoto, Japan) and

Sigma-Aldrich (MO, USA), respectively.

Whole saliva collection

Whole saliva or oral fluid (OF) samples were collected following the modified method by Iwai

et al. [20], after approval by the medical ethics committee at the Japanese Foundation for Can-

cer Research (approval number: JFCR 2013–1112 and 2016–1097). This study was conducted

according to the principles of the Declaration of Helsinki, and the informed consent was

obtained from all participants. Briefly, 30 mL of whole OFs were collected from three healthy

volunteers with a mean age of 30 years (28, 30, and 34 years), who were prohibited from eating,

drinking, smoking, and performing oral hygiene procedures for at least 1h before sampling.

Immediately after collection, specimens were divided between 2 x 15 mL in 50 mL plastic

tubes (227261, Greiner Bio-One International, Kremsmünster, Austria), mixed with 2 x 15 mL
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of phosphate buffer saline (PBS, 137 mM NaCl, 2.68 mM KCl, 8.10 mM Na2HPO4, 1.47 mM

KH2PO4, pH 7.4) and were sonicated using a closed-type sonication system (Bioruptor, Diage-

node, Inc., Liege, Belgium) at a total run time of 10 min, comprised of 30-sec pulses, 1-min

intervals at medium power with level of three to reduce the viscosity of OF samples. The neces-

sity of the sonication step for density-gradient-based isolation and its effects on EVs are shown

in S1 Fig.

Extensive equilibrium density-gradient centrifugation

After sonication, specimens were centrifuged at 2,600 g for 30 min at 4˚C (model 5500,

Kubota, Osaka, Japan). The supernatants were collected in 38.5 mL ultraclear tubes (#344058,

Beckman Coulter, CA, USA) and were centrifuged at 160,000 g for 70 min at 4˚C (L-90K with

SW32Ti rotor, Beckman Coulter) to prepare crude EVs. In this study, centrifugations with

medium speed were omitted to analyze not only small EVs but also medium and large EVs.

For downward separation, the EV pellets were resuspended in 500 μL of PBS and layered on

the 8% to 47% continuous density of iodixanol in 0.02 M HEPES [4-(2-hydroxyethyl)-1-piper-

azine ethanesulfonic acid]/NaOH, pH 7.2, which was formed in 32 mL thickwall polycarbon-

ate tube (#355631, Beckman Coulter) using a gradient mixer No.3 (SAN4024, Sanplatec,

Osaka, Japan). For upward separation, the pellets were resuspended in 500 μL of 47% iodixanol

in 0.02 M HEPES/NaOH, pH 7.2 and put at the bottom of the centrifugation tube. Subse-

quently, continuous density gradient was formed as described above. After centrifugation (L-

90K with SW32Ti rotor) at 160,000 g for 96 h or 17 h at 4˚C, 10 individual 3-mL fractions

were collected in ultraclear tubes (#344058, Beckman Coulter) from the top, and the density of

each fraction was measured using a refractometer (RX-5000a, Atago Co. Ltd, Tokyo, Japan).

Each fraction was centrifuged at 160,000 g for 120 min at 4˚C (L-90K with SW32Ti rotor) after

adding 30 mL of PBS, and pellets were resuspended in 500 μL of PBS. These samples were

stored at 4˚C until analysis.

Western blotting and silver staining

For Western blotting (WB) and silver staining, 18 μL samples of each fraction were mixed with

6 μL of 4 x reducing SDS sample buffer (0.25 M Tris HCl, pH 6.8, 20% sucrose, 8% SDS, 20%

2-mercaptoethanol, 0.008% bromophenol blue) or 4x nonreducing SDS sample buffer (with-

out 2-mercaptoethanol, for anti-CD63 antibody) followed by incubation at 95˚C for 5 min.

Proteins were electrophoresed through 10% or 15% polyacrylamide gel (Extra PAGE One Pre-

cast Gel, Nacalai Tesque, Inc.), and they were transferred unto PVDF membrane using the dry

blotting system (iBlot, Thermo Fisher Scientific, Carlsbad, CA, USA). The blotted membrane

was blocked with Blocking One (03953–95, Nacalai Tesque) for 1 h and incubated with mouse

anti-CD63 (ab8219, Abcam, Cambridge, UK, 1:1,000 dilution) for 15 h at 4˚C with mild shak-

ing. After washing with TBS-T (10 mM Tris-HCl, 150mM NaCl, 0.02% Tween-20) 3 times for

5 min, the membrane was incubated with goat anti-mouse IgG (H + L)-HRP conjugate

(1706516, Bio-Rad, Hercules, CA, USA, 1:2,000) for 2 h at 4˚C with mild shaking, followed by

3 x 5 min washing with TBS-T and incubation with enhanced chemiluminescence (ECL) sys-

tem (A-8511, C-9008, Sigma-Aldrich) The signals were imaged using ChemiDoc camera sys-

tem (1708265, Bio-Rad) with default parameters. For silver staining, gels were stained using

Sil-Best Stain One (Nacalai Tesque, Inc.) according to the manufacturer’s protocol. Molecular

weights markers of BLUE Star Prestained Protein-Ladder (Nippon Genetics Co., Ltd., Tokyo,

Japan) and DAIICHI-III (DAIICHI PURE CHEMICALS CO., Ltd, Tokyo, Japan) were used

for WB and silver staining, respectively.

PLOS ONE Drift of densities defines subclasses of EV in saliva

PLOS ONE | https://doi.org/10.1371/journal.pone.0249526 April 8, 2021 3 / 19

https://doi.org/10.1371/journal.pone.0249526


Mass spectrometric analysis

Protein samples were purified and concentrated using the 2-D Clean-Up Kit (80648451, GE

Healthcare, Chicago, IL) according to the manufacturer’s instructions. Samples were then

reduced in 1 × Laemmli’s sample buffer (32.9mM Tris HCl, pH6.8, 1.05% SDS, 13.15% glyc-

erol, 0.005% bromophenol blue) with 10 mM tris(2-carboxyethyl)phosphine at 100˚C for 10

min, alkylated with 50 mM iodoacetamide at ambient temperature for 45 min, and subjected

to SDS-PAGE. The electrophoresis was stopped at the migration distance of 2 mm from the

top edge of the separation gel. After coomassie brilliant blue-staining, protein bands were

excised, destained, and cut finely prior to in-gel digestion with Trypsin/Lys-C Mix (V5071,

Promega, Madison, WI, USA) at 37˚C for 12 h. The resulting peptides were extracted from gel

fragments and analyzed with Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Sci-

entific, Waltham, MA) combined with UltiMate 3000 RSLC nano-flow HPLC (Thermo Fisher

Scientific). The MS/MS spectra were searched against the “Homo sapiens” protein sequence

database in SwissProt using Proteome Discoverer 2.2 software (Thermo Fisher Scientific), in

which peptide identification filters were set at “false discovery rate < 1%”.

Analyses of the quantified values of mass spectrometric data

Mass spectrometric data assigned with human proteins were analyzed using a custom Perl

script. Each entry consisted of a specimen number, the direction of the gradient movement,

fraction number, an MS quantified value, and an assigned protein ID. MS quantified values

were first processed with the base 10 logarithm. Since the three saliva specimens were divided

into two groups for the two opposite movements, six units of samples were available for analy-

sis. For each protein, we searched for the fraction where the protein was the most abundantly

detected within a unit. The logarithm values in a unit were normalized by the maximum. The

Perl script used in these analyses is available from GitHub repository (https://github.com/

yamamoto-tdc/EV-saliva).

EV-TRACK

We have submitted all relevant data pertaining to our experiments to the EV-TRACK knowl-

edgebase (EV-TRACK ID: EV190057).

Results

Extensive equilibrium density-gradient centrifugation allows more

molecules to reach a state of equilibrium

In this study, to allow more EVs to attain their state of equilibrium in density gradient centri-

fugation, the running time was prolonged to 96 h from 17 h. Furthermore, the specimens that

were collected from three healthy volunteers were fractionated using two methods: spinning

down (downward) or floating up (upward) directions through a density gradient of iodixanol

(Fig 1). After centrifugation, ten fractions (F1–F10) were collected and analyzed using

SDS-PAGE and silver staining (S2 Fig). After 17 h of centrifugation, distributions of silver

staining signals through fractions differed between samples centrifuged for fractionation in the

downward direction and those centrifuged for fractionation in an upward direction, indicating

that many of molecules were still en route to their corresponding density positions. In contrast,

signal patterns obtained from the 96 h centrifugation were almost identical between samples

centrifuged in the downward direction and those centrifuged in an upward direction, demon-

strating that most molecules had already reached their state of equilibrium. To verify the states

of equilibrium for specific molecules, WB analyses were conducted using anti-CD63, CD81,

PLOS ONE Drift of densities defines subclasses of EV in saliva

PLOS ONE | https://doi.org/10.1371/journal.pone.0249526 April 8, 2021 4 / 19

https://github.com/yamamoto-tdc/EV-saliva
https://github.com/yamamoto-tdc/EV-saliva
https://doi.org/10.1371/journal.pone.0249526


PLOS ONE Drift of densities defines subclasses of EV in saliva

PLOS ONE | https://doi.org/10.1371/journal.pone.0249526 April 8, 2021 5 / 19

https://doi.org/10.1371/journal.pone.0249526


CD9, α-amylase, HSP70, AQP5, and TSG101 antibodies (S3 Fig). From 96 h centrifugation, all

proteins except α-amylase provided the strongest signals in the identical fractions both down-

ward and upward directions, whereas, from 17 h centrifugation, the strongest signals of CD81,

HSP70, APQ5 and α-amylase were not in the identical positions between downward and

upward directions, indicating that they were not in equilibrium. Although many proteins

attained equilibrium in the 96 h centrifugation time, some proteins including α-amylase were

still in the course of movement in the medium (S3 Fig), suggesting that these molecules them-

selves or their associated carriers have peculiar structures or surface properties that hinder

their movement in the media.

Idiosyncratic densities of CD63 on different specimen

In the preceding analyses, it should be noted that the fractions that contained CD63 had differ-

ent densities among the three specimens with 96 h centrifugation. The strongest signals in WB

were observed at F7 from Specimen 1 in both the downward and upward direction, and the

densities of these fractions were 1.12 g/ml (Fig 2). By contrast, from Specimens 2 and 3, the

fractions containing CD63 had densities of 1.10 g/ml (F6 in both the downward and upward

directions) and 1.09 g/ml (F6 in downward and F5 in upward), respectively (Fig 2). Because

each fraction from different tubes had slightly different density after centrifugation, a total of

60 fractions (three specimens, 10 fractions for two sample groups, one centrifuged in the

downward direction and the other centrifuged in the upward directions) were mapped on the

abscissa of determined densities, which clarifies specimen specific differences in densities of

CD63 (Fig 2B, in which blue, green and red represent Specimen 1, 2 and 3, respectively). The

density of CD63 from Specimen 2 was 1.10 g/ml. From Specimen 1, the strongest signal for

CD63 was observed from the fraction with 1.12 g/ml but not from the one with 1.10 g/ml. Sim-

ilarly, from Specimen 3, CD63 was localized at 1.09 g/ml but not at 1.12 g/ml. Thus, the data

suggested that dominant EVs containing CD63 possessed specimen-specific idiosyncratic

densities.

Comprehensive analyses of fractionated proteins by mass spectrometry

Western blot analyses revealed that the density of the vesicles containing CD63 differed

among specimens (Fig 2). To determine if this phenomenon was specific to CD63, compre-

hensive analyses of the proteins of each of the 60 fractions using mass spectrometry (MS) were

performed. This process identified a total of 11,749 proteins that contained 1,429 nonover-

lapped proteins. The total number of proteins identified in Specimens 1, 2, and 3 were 1,097,

920 and 672, respectively. Out of them, 476 were common among all three specimens (Fig

3A). The complete list of 1,429 proteins is provided in S1 Dataset.

Among the 476 proteins that were detected from all three specimens in both sample groups

(centrifuged or fractionated in the downward and upward directions), we identified those that

had identical densities within a given specimen; that is, the proteins that reached a state of

equilibrium. For this purpose, the total area obtained by MS was quantified with Proteome

Discoverer 2.2 and used as relative quantities, which have often been employed in label-free

proteomic analyses [26]. When the density of the fraction with the highest quantitative value

Fig 1. Scheme of EV fractionation using density gradient centrifugation. Large particles in whole saliva such as desquamated epithelia

and blood cells were first removed by centrifugation at 2,600 g for 30 min. Then the resultant supernatants were centrifuged at 160,000 g

for 70 min to obtain the pellets of particles containing various sizes of EVs. These particles were fractionated by both spinning down

(downward, D) and floating up (upward, U) through the density gradient of iodixanol at 160,000 g for 96 h. After centrifugation, ten

fractions (F1 to F10) were recovered from the top and analyzed after being concentrated through centrifugation at 160,000 g for 120 min.

https://doi.org/10.1371/journal.pone.0249526.g001
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was the same in both the sample group centrifuged in the downward direction and the sample

group centrifuged in the upward direction for a given specimen, the protein was regarded as

having attained equilibrium, and this density was defined as "peak fraction density (PFD)."

Out of 476 proteins, the PFD values of 111 were determined; that is, 111 proteins achieved

equilibrium in all of three specimens (Fig 3A). These 111 proteins were categorized as

Group I.

Specimen-specific PFD values of 111 proteins outline two EV

subpopulations

In agreement with the results of WB analyses (Fig 2), PFD values of CD63 in MS analyses were

determined to be 1.12 g/ml, 1.10 g/ml, and 1.09 g/ml for Specimen 1, Specimen 2, and Speci-

men 3, respectively. Furthermore, out of 111 proteins, we identified 16 proteins (including

CD63) that possessed an identical pattern of PFD values observed in CD63; these proteins

were classified into IA-1 (Fig 3B). The remaining 95 proteins were sorted into two major

groups (IA-2 and IB) and 5 minor groups (IA-3, IA-4, IA-5, IA-6 and IA-7). Subgroup IA-2

consisted of 59 proteins, and it also demonstrated idiosyncratic PFD values (1.12 g/ml, 1.13 g/

ml and 1.09 g/ml for Specimens 1, 2 and 3, respectively), the pattern of which was distinct

from subgroup IA-1. Unlike the proteins categorized into Group IA, 29 proteins had identical

PFD values among the three specimens and were classified into IB (Fig 3B). Proteins in IB

included many globulin group proteins, such as Igα1 and Igα2 (S1 Dataset). In summary,

Groups IA-1 and IA-2 showed a specimen-specific drift of densities, and Group IB showed an

identical high density among the specimens.

Group IA-1 and Group IA-2 subclasses outline two EVs having distinct

functionalities

Sixteen proteins classified into Group IA-1 included CD63, CD81, CD9, and others, most of

which were membrane proteins or membrane anchored (via lipidic modifications) proteins,

except for CIB1, LITAF, and UBC (Table 1). Among them, CD63, CD81, and CD9 have often

been referred to as classical or canonical exosome markers.

Group IA-2 was composed of 59 proteins (Table 2), many of which are involved in mem-

brane dynamics and membrane trafficking. Group IA-2 was also characterized by the presence

of the proteins involved in the innate immune system.

Discussion

In this study, soluble fractions of human whole saliva after 2,600 g centrifugation were spun at

160,000 g to obtain sediment of particles. Then, these particles were fractionated using density

gradient centrifugation, which has often been used to separate vesicular particles (which have

low density) from nonvesicular entities, such as supramolecular complex that display high

density [4]. The methodology has also been used to subtype EVs based on their slight differ-

ences in density [2, 15, 17, 19, 20]. However, the kinetics of particles in media are influenced

by the size, shape, and frictional characteristics of particles [52], and therefore it is very difficult

to configure the conditions that allow all particles to achieve equilibrium, especially for EV

Fig 2. Specimen-specific density drift. (A) Western blotting for CD63 from specimen 1 (S.1), Specimen 2 (S.2) and Specimen 3 (S.3) both in the

downward (D) and upward (U) centrifugation. A position of 48 KDa molecular weight marker is indicated at the right side of S.1 D panel, and the

fraction numbers are indicated on the top. (B) The densities of 60 fractions from three specimens (Specimen 1 in blue, 2 in green and 3 in red) both in

downward (circles) and in upward (squares) centrifugation are plotted, including those fractions with the strongest signals of CD63 (filled circles and

squares).

https://doi.org/10.1371/journal.pone.0249526.g002

PLOS ONE Drift of densities defines subclasses of EV in saliva

PLOS ONE | https://doi.org/10.1371/journal.pone.0249526 April 8, 2021 8 / 19

https://doi.org/10.1371/journal.pone.0249526.g002
https://doi.org/10.1371/journal.pone.0249526


PLOS ONE Drift of densities defines subclasses of EV in saliva

PLOS ONE | https://doi.org/10.1371/journal.pone.0249526 April 8, 2021 9 / 19

https://doi.org/10.1371/journal.pone.0249526


populations that display a wide range of diversity. Standard conditions for density gradient

centrifugation (e.g., 160,000 g for 17 h) have been shown to be insufficient for achieving equi-

librium [2, 20–22]. In order to determine the innate density of subclasses of EV, a prolonged

time (96 h) for density gradient centrifugation was employed in this study. In addition, parti-

cles were centrifuged for fractionation both in downward and upward directions, and if a

given cargo protein was recovered from the same density fraction irrespective of movement

directions, the particle carrying the protein was regarded as being in equilibrium. We tripli-

cated these analyses using whole saliva from three healthy volunteers, and we discovered that

111 proteins (Group I) achieved equilibrium in all three specimens (Fig 3A). By using the total

area obtained by MS as the index of quantitative evaluation, the fraction that contained the

Fig 3. Proteomic analyses of the density fractions from three specimens in downward and upward separation. (A)

Venn diagram shows the number of proteins that were detected common to Specimens 1 and 2; the number of

proteins that were detected common to Specimens 1 and 3; the number of proteins that were detected common to

Specimens 2 and 3; the number of proteins that were detected only in Specimen 1; the number of proteins that were

detected only in Specimen 2; and the number of proteins that were detected only in Specimen 3. The blue-colored area

represents the number of proteins that were detected only in Specimen 1; the green-colored area, the number of

proteins that were detected only in Specimen 2; the red-colored area, the number of proteins that were detected only in

Specimen 3, and the pink-colored area, the numbers of proteins that were detected common to Specimens 1 and 2,

Specimens 1 and 3, and Specimens 2 and 3, respectively. The size of each circle corresponds to the number of proteins

in each category. The list of proteins in each group is provided in S1 Dataset. (B) Graphs showing the densities of the

fractions of each specimen in Groups IA-1 to IA-7, IB and some proteins in Group II. The horizontal axis indicates

densities that were determined using the refractometer. The circles and squares indicate the fraction numbers having

PFD (see text) from the downward and upward direction, respectively. The number of proteins contained in each

group is indicated under the name of the group.

https://doi.org/10.1371/journal.pone.0249526.g003

Table 1. List for of proteins classified into IA-1.

Protein name Gene Biological function� Expected location� Signal

peptide�
reference

IA-1
Calcium and integrin-binding protein 1 CIB1 apoptotic process, cell adhesion Cytosol − [27]

CD63 CD63 cell adhesion, cell migration Integral to plasma membrane + [28]

CD81 CD81 cell proliferation Integral to plasma membrane − [28]

CD9 CD9 cell adhesion Integral to plasma membrane − [29]

Choline transporter-like protein 4 SLC44A4 acetylcholine biosynthetic process Integral to plasma membrane − [29]

G-protein coupled receptor family C group 5

member C

GPRC5C G-protein coupled receptor

signaling pathway

Integral to plasma membrane + [29]

Glutamate carboxypeptidase 2 FOLH1

(PSMA)

unknown Integral to plasma membrane − [30]

HLA class II histocompatibility antigen, DR alpha

chain

HLA-DRA immune response Integral to plasma membrane + [30]

Leucine-rich repeat-containing protein 26 LRRC26 potassium channel activity Integral to plasma membrane + [30]

Lipopolysaccharide-induced tumor necrosis

factor-alpha factor

LITAF endosomal protein trafficking cytoplasmic side of plasma

membrane

− [31]

Monocyte differentiation antigen CD14 CD14 immune response Integral to plasma membrane + [32]

Phospholipid scramblase 1 PLSCR1 apoptotic process Integral to plasma membrane − [29]

Polyubiquitin-C UBC apoptotic process Cytosol − [33]

Prominin-2 PROM2 pinocytotic process, endocytosis Integral to plasma membrane + [34]

Protein lifeguard 3 TMBIM1 apoptotic process Integral to plasma membrane − [29]

Tetraspanin-1 TSPAN1 cell migration, cell proliferation Integral to plasma membrane − [29]

� Based on Uniprot (https://www.uniprot.org/).

https://doi.org/10.1371/journal.pone.0249526.t001
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Table 2. List for of proteins classified into IA-2.

Protein name Gene Biological function� Expected location� Signal

peptide�
reference

IA-2
Acyl-CoA-binding protein DBI acyl-CoA metabolic process Extracellular − [33]

ADP-ribosylation factor 3 ARF3 ER-Golgi transport Intracellular − [29]

Alpha-(1,3)-fucosyltransferase 6 FUT6 fucosyltransferase activity Intracellular − [30]

Alpha-enolase ENO1 Glycolytic process Cytosol − [33]

Annexin A1 ANXA1 actin cytoskeleton reorganization Intracellular, plasma membrane,

Extracellular

− [35]

Annexin A11 ANXA11 actin cytoskeleton reorganization Intracellular, plasma membrane,

Extracellular

− [33]

Annexin A2 ANXA2 angiogenesis Intracellular, plasma membrane,

Extracellular

− [33]

Annexin A3 ANXA3 actin cytoskeleton reorganization Intracellular, plasma membrane,

Extracellular

− [33]

Annexin A5 ANXA5 actin cytoskeleton reorganization Intracellular, plasma membrane,

Extracellular

− [36]

Apolipoprotein A-I APOA1 Lipid binding Secreted, Intracellular + [37]

BPI fold-containing family A member 1 BPIFA1 antibacterial humoral response Secreted, Extracellular + [38]

BPI fold-containing family A member 2 BPIFA2 antibacterial humoral response Secreted, Extracellular + [30]

BPI fold-containing family B member 2 BPIFB2 antibacterial humoral response Secreted, Extracellular + [31]

Calmodulin CALM1 calcium ion binding Intracellular − [33]

Carbonic anhydrase 2 CA2 carbonate dehydratase activity Cytosol, plasma membrane − [29]

Carcinoembryonic antigen-related cell adhesion

molecule 8

CD66b immune response Integral to plasma membrane + [39]

Cathelicidin antimicrobial peptide CAMP antibacterial humoral response Secreted + [40]

Chloride intracellular channel protein 1 CLIC1 cytoskeleton organization Extracellular, plasma membrane − [29]

Chloride intracellular channel protein 4 CLIC4 cytoskeleton organization Extracellular, plasma membrane − [29]

Cofilin-1 CFL1 actin cytoskeleton organization Cytosol, plasma membrane − [33]

Cystatin-S CST4 cysteine-type endopeptidase

inhibitor activity

Secreted + [30]

Cystatin-SA CST2 cysteine-type endopeptidase

inhibitor activity

Secreted + [41]

Cystatin-SN CST1 cysteine-type endopeptidase

inhibitor activity

Secreted + [42]

Desmoglein-3 DSG3 Cell adhesion Integral to plasma membrane + [43]

Erythrocyte band 7 integral membrane protein STOM protein homooligomerization Cytosol − [29]

Ezrin EZR actin cytoskeleton reorganization Cytoskeleton − [33]

Gelsolin GSN actin filament reorganization Intracellular + [44]

Glutathione S-transferase P GSTP1 glutathione transferase activity Cytosol − [33]

Glyceraldehyde-3-phosphate dehydrogenase GAPDH Glycolytic process Cytosol − [45]

Guanine nucleotide-binding protein G(I)/G(S)/G

(O) subunit gamma-7

GNG7 G-protein coupled receptor

signaling pathway

plasma membrane − [29]

Heat shock cognate 71 kDa protein HSPA8 Stress response Cytosol, Plasma membrane − [46]

Kunitz-type protease inhibitor 2 SPINT2 serine-type endopeptidase inhibitor

activity

Integral to plasma membrane + [31]

Lactoperoxidase LPO antibacterial response Secreted + [30]

Lysosome-associated membrane glycoprotein 2 LAMP2 chaperone-mediated autophagy Integral to Lysosome membrane + [28]

Lysozyme C LYZ antimicrobial humoral response Secreted + [37]

Moesin MSN actin cytoskeleton reorganization Cytoskeleton − [47]

Nucleobindin-2 NUCB2 calcium ion binding Cytosol, Extracellular + [48]

(Continued)
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largest quantity of a given protein was defined as "peak fraction density (PFD)" and was

mapped for 333 (111 x 3) proteins (S4 Fig). Patterns of PFD were primarily classified into two

types, Group IA and Group IB. Group IB contained immune-globin, HSPB1, S100A14, and

other similar proteins (S1 Dataset), and displayed identical density among the three specimens,

which was relatively high (1.16 g/ml) compared to the reported density of EVs. With the cur-

rent available data, we do not know whether the proteins in Group IB are associated with EVs

or not. Atomic force microscopy (AFM) observation detected numerous tiny particles in the

denser fractions of EVs, which are not protected from protease treatment as in the case of EV-

included proteins, suggesting many proteins in the high-density fraction are not included in

the cargo of EVs, but are instead the extraneous entities of vesicles [15]. Recent reports by

other groups have also concluded that most molecules recovered from high density fractions

in density gradient separation were nonvesicular components [4, 18].

Whereas Group IA proteins had identical PFD values, the ones from Group IA exhibited

specimen-dependent drifts; that is, each specimen had idiosyncratic PFD values, the patterns

of which were classified mainly into two types. One type (Group IA-1) exhibited the pattern of

1.12 g/ml, 1.10 g/ml and 1.09 g/ml, and was composed of 16 proteins, which included classical

exosome markers, CD63, CD9 and CD81. This group also contained proteins related to vesicle

formation as well as components of the immune system (Table 1). Group IA-2, whose PFD

values were 1.12 g/ml, 1.13 g/ml and 1.09 g/ml for Specimens 1, 2 and 3, respectively, was

Table 2. (Continued)

Protein name Gene Biological function� Expected location� Signal

peptide�
reference

Proactivator polypeptide PSAP lipid transport Secreted + [29]

Programmed cell death protein 10 PDCD10 apoptotic process Cytosol, Plasma membrane − [44]

Protein S100-A1 S100A1 calcium ion binding Cytosol − [49]

Protein S100-A11 S100A11 calcium ion binding Cytosol − [29]

Pyruvate kinase isozymes M1/M2 PKM2 Glycolytic process Cytosol − [33]

Rab GDP dissociation inhibitor beta GDI2 GTPase activation Cytosol − [50]

Radixin RDX actin cytoskeleton reorganization Cytoskeleton − [50]

Ras-related C3 botulinum toxin substrate 2 RAC2 actin filament organization Cytosol − [44]

Ras-related protein Rab-3D RAB3D Exocytosis pathway Cytoskeleton, Plasma membrane − [33]

Ras-related protein Rab-7a RAB7A late endosome transport Endosome, Lysosome − [29]

Ras-related protein Ral-B RALB cell migration, cell proliferation Plasma membrane − [33]

Rho-related GTP-binding protein RhoG RHOG actin cytoskeleton organization Plasma membrane − [27]

Secreted frizzled-related protein 1 SFRP1 Wnt signaling pathway Secreted + [30]

Serum amyloid A-1 protein SAA1 acute-phase response Cytoskeleton, Secreted + [33]

Syntaxin-3 STX3 vesicle fusion Plasma membrane − [45]

Thrombospondin-1 THBS1 blood coagulation Extracellular, Endoplasmic

reticulum

+ [29]

Toll-interacting protein TOLLIP inflammatory response Cytosol − [33]

Triosephosphate isomerase TPI1 Glycolytic process Cytosol − [33]

Tumor-associated calcium signal transducer 2 TACSTD2 cell proliferation Integral to plasma membrane + [51]

V-type proton ATPase subunit E 1 ATP6V1E1 proton transport Extracellular, Cytosol, Plasma

membrane

− [48]

Vesicle-associated membrane protein 8 VAMP8 vesicle fusion Plasma membrane − [37]

Zymogen granule protein 16 homolog B ZG16B unknown Secreted + [40]

� Based on Uniprot (https://www.uniprot.org/).

https://doi.org/10.1371/journal.pone.0249526.t002
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composed of 59 proteins, and many of them are involved in membrane dynamics and the

innate immune system (Table 2). IA-2 also contained many proteins responsible for this innate

pathogen protecting system, including lysozyme C [53], lactoperoxidase [54], cystatin S, cysta-

tin SA, and cystatin SN [55], BPI fold-containing families (BPIFA1, BPIFA2, BPIFB2) [56],

cathelicidin antimicrobial peptide (CAMP) [57], and toll-interacting protein (TOLLIP) [58]

(Table 2). Interestingly, it has been suggested that lysozyme, peroxidase, and lactoferrin are

secreted from the acinic cells of the salivary gland via exocytosis transport as free proteins [59].

Our observation suggested the following possibilities: 1) secretory vesicles that contain these

proteins are released from acinic cells; or 2) these proteins attached themselves to the exterior

side of EVs in saliva after they are released as free form proteins. It is also noteworthy that

Group IA-2 contained some of glycolytic enzymes; that is, GAPDH, TPI1, ENO1, PKM2,

PGAM1, PGK1, and ALDOA (Table 2). Further studies including morphological observation

are required to determine the role of these glycolytic enzymes in EVs; however, some of these

enzymes have been shown to regulate membrane dynamics [60, 61] and some of them have

been reported to be recovered from extracellular space [4].

Our study also identified 21 proteins that did not attain a state of equilibrium in any of the

three specimens under the conditions used (Group II). They included a -amylase, apolipopro-

tein (a) and others, which may have particular forms that retard their movement in media.

The results emphasize the importance of two direction (upward and downward) analyses in

density-gradient centrifugation. The list of proteins in Group II is found in S1 Dataset.

To elucidate the molecular mechanism that causes specimen-specific density drift, further

studies are required; however, it is possible that environments of oral cavity (such as pH or

osmotic pressure) could alter the physiochemical properties of particular subclasses of EV that

have certain channel proteins. In this regard, it is noteworthy that the osmotic pressure of

saliva is correlated with the rate of saliva secretion (or the amount of secretion) [62]. It should

be interesting to investigate the effects of forced environmental disturbances on the properties

of subsets of EVs in vitro.

The observations obtained here would offer new insight into EV-biology and contribute to

the development of salivary EV diagnostic systems. The 111 proteins contained diagnostic

markers, such as SLC44A4 [63], PMSA [64], CEACAM8/CD66b [65], and Serum amyloid A-1

protein (SAA1) [66]. Because these diagnostic markers have a probability of coboarding with

the other proteins within the same subgroup, the information obtained in this study would

help to select coboarded molecules that are used in sandwich ELISA [67] or affinity-based pre-

concentration [10–12].

Supporting information

S1 Fig. The effects of a sonicating pretreatment of whole saliva on the properties of crude

EV fraction. (A) Thirty mL of whole saliva from a healthy volunteer was divided into two por-

tions, one of which was sonicated as shown in the Material and methods section. The larger

materials were removed by centrifuging at 2,600 g for 30 min at 4˚C, and the resultant super-

natants were centrifuged at 100,000 g for 110 min at 4˚C (Avanti JXN-30 with JS-24.38 rotor,

Beckman Coulter (equivalent to 160,000 g for 70 min)) to obtain the crude 500 μL of crude EV

fraction. (B) Ten μL of the crude EV fraction were placed on formvar-coated (Nissin EM,

Tokyo, Japan) nickel grids (S-300 square mash, Gilder, Grantham, UK). After staining with

2% uranyl acetate (Wako, Tokyo, Japan) for 1 min, transmission electron microscopy (TEM)

images were obtained with a H-7650 instrument (Hitachi, Co., Tokyo, Japan). (C) Aliquots of

the samples were smeared on glass slides (Superfrost, Matsunami Glass Inc., Osaka, Japan)

and stained with Papanicolaou’s solution. Optical microscopic images were taken using a
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100X object lens (Plan Apochromat, 1.45 x 0.13 mm, Keyence, Osaka, Japan) equipped on a

BZ-X800 (Keyence), and the images were processed in Z-stack mode by using a BZ-800 Ana-

lyzer ver.1.1.2; the bars represent 100 μm. (D) The western blot experiment was performed as

described in the Material and methods section. The antibody used was mouse anti-CD81

(SHI-EXO-M03, Cosmobio, Tokyo, Japan; 1:1,000 dilution). Both sonicated and non-soni-

cated (sonic, + and–in the figure) samples were run in the same gel and blotted on the same

membrane, as shown below. (E) The number and size distributions of the particles in the

crude EV fractions were evaluated by the nanoparticle tracking analysis (NTA) method using

the NanoSight LM10 system and NTA software version 2.3 (Malvern Instruments Ltd.,

Worcestershire, UK). Silica beads (diameter:100 nm) were used in calibration (24041, Poly-

sciences, PA, USA), and the camera level (CL) and detection threshold (DT) were set at values

of CL 14 and DT 4. For each sample, measurements (30 s) were independently performed five

times.

(PDF)

S2 Fig. Silver staining analyses of each fraction. Ten fractions (F1 to F10) obtained in down-

ward (D) and upward (U) fractionation and for 17 h and 96 h of centrifugation were run

through SDS-PAGE, and their contents were visualized using silver staining. For the 96 h cen-

trifugation, 10% gel was used, and for the 17-h centrifugation, 15% gel was used. The sample

for 96 h was identical to Specimen 1, and the one for 17 h was independently prepared from

the identical individual but on a different day. Molecular weights of markers are indicated on

both sides and the measured densities are indicated. Green broken lines highlight non-equilib-

rium state of molecules in 17 h centrifugation.

(PDF)

S3 Fig. WB analyses of fractionated human saliva. The WB results for (in descending order):

CD63, CD81, CD9, α-amylase, HSP70, AQP5 and TSG101 are shown. For each protein, the

top row is for the downward separation, and the bottom is for the upward separation. The

three columns on the left side of the dotted line are for the 96-h centrifugation for (L–R) Speci-

men 1, Specimen 2, and Specimen 3. Molecular weight markers are indicated on the left of

each panel, and the fraction numbers and their measured densities (g/ml) are indicated at the

top of each panel. The Antibodies used and their dilution rates in WB were the following;

mouse anti-CD63 (ab8219, Abcam, Cambridge, UK; 1:1,000); mouse anti-CD81 (11-

558-C100, EXBIO, Praha, a.s., Vestec, Czech Republic; 1:1,000); mouse anti-CD9 (ab124476,

Abcam; 1:500, for specimen 1); anti-CD9 (SHI-EXO-M01, Cosmobio, Tokyo, Japan; 1:1,000,

for Specimen 2 and Specimen 3); mouse anti-alpha-amylase (ab54765, Abcam; 1:400), rabbit

anti-HSP70 (EXOAB-Hsp70A-1, System Biosciences LLC, Palo Alto, CA, USA; 1:1,000); rabbit

anti-aquaporin 5 (AQP5) (ab92320, Abcam; 1:500), and mouse anti-TSG101 (612969, BD

Transduction Laboratories, Franklin Lakes, NJ, USA; 1:500), Secondary antibodies coupled to

horseradish peroxidase included the following: goat anti-mouse IgG (H + L)-HRP conjugate

(170–6516, Bio-Rad, Hercules, CA, USA; 1:2,000) and goat anti-rabbit IgG (H + L)-HRP con-

jugate (170–6515, Bio-Rad; 1:2,000). For reference, the results from the fractions of the 17 h

centrifugation, which were independently prepared from the identical individual for Specimen

1 but on a different day, are shown on the right side. For the 17 h samples, only CD63, CD81,

α-amylase, HSP70 and AQP5 were tested.

(PDF)

S4 Fig. Heat map representations of protein quantities in ten fractions of proteins belong-

ing to the IA-1 and IA-2 subgroups. Relative amounts of the protein found in each fraction

were estimated from the total area obtained by MS and are plotted against densities in the heat
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map for Specimen 1 (S.1), Specimen 2 (S.2), and Specimen 3 (S.3).; the logarithm values in a

unit were normalized by the maximum. The fraction with the maximum was colored with red.

According to the amount of each protein detected in every unit, heat maps were drawn from

red to green using 256 steps in SVG format. If the protein was not detected, the corresponding

fraction was colored with gray. Whereas experimentally 10 fractions were available, their den-

sities varied depending on the units of samples. As illustrated in Fig 2, F1 to F10 were spread

out actual density fractions, which resulted in many gray lanes appearing in the heat maps.

The Perl script used in these analyses is available from GitHub repository (https://github.com/

yamamoto-tdc/EV-saliva). CD63 is shown in the top of the figure as the representative. D and

U denote downward and upward separation, respectively.

(PDF)

S1 Dataset. A list of proteins found from human whole saliva in Excel data format. Data 1

column shows specimen numbers in which the protein was identified in no less than one from

20 fractions (10 fractions x two directions). Data 2 column represents the subclasses of the pro-

tein (see text). Density values of PFD (see text) for each specimen are shown for three speci-

mens in the right three columns, in which "X" indicates that the protein was not detected from

either or both directions, and "N. E." denotes that the protein has not achieved equilibrium in

the specimen.

(XLSX)

S2 Dataset. These Excel data are raw MS area files about specimen 1, 2 and 3 (each upward

and downward).

(ZIP)

S1 Video. Reduced viscosity of the crude EV fraction by sonication. The pellets of the crude

extraction fractions were resuspended in PBS by pipetting. Without the sonication pre-treat-

ment (left), the pellet was very viscous, whereas with sonication (right), it was less viscous.

(MP4)

S1 File.

(PDF)
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