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Abstract

Background: Hepatocellular carcinoma (HCC) is the most common tumors in the worldwide, it develops resistance
to radiotherapy during treatment, understanding the regulatory mechanisms of radioresistance generation is the
urgent need for HCC therapy.

Methods: qRT-PCR, western blot and immunohistochemistry were used to examine MCM3 expression. MTT assay,
colony formation assay, terminal deoxynucleotidyl transferase nick end labeling assay and In vivo xenograft assay
were used to determine the effect of MCM3 on radioresistance. Gene set enrichment analysis, luciferase reporter
assay, western blot and qRT-PCR were used to examine the effect of MCM3 on NF-κB pathway.

Results: We found DNA replication initiation protein Minichromosome Maintenance 3 (MCM3) was upregulated in
HCC tissues and cells, patients with high MCM3 expression had poor outcome, it was an independent prognostic
factor for HCC. Cells with high MCM3 expression or MCM3 overexpression increased the radioresistance determined
by MTT assay, colony formation assay, TUNEL assay and orthotopic transplantation mouse model, while cells with
low MCM3 expression or MCM3 knockdown reduced the radioresistance. Mechanism analysis showed MCM3 activated
NF-κB pathway, characterized by increasing the nuclear translocation of p65, the expression of the downstream genes
NF-κB pathway and the phosphorylation of IKK-β and IκBα. Inhibition of NF-κB in MCM3 overexpressing cells using
small molecular inhibitor reduced the radioresistance, suggesting MCM3 increased radioresistance through activating
NF-κB pathway. Moreover, we found MCM3 expression positively correlated with NF-κB pathway in clinic.

Conclusions: Our findings revealed that MCM3 promoted radioresistance through activating NF-κB pathway,
strengthening the role of MCM subunits in the tumor progression and providing a new target for HCC therapy.
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Background
HCC is the fifth most common tumors worldwide [1]. Al-
though the greatly improved in the last decades, its 5-year
survival rate is only 15%, owing to the limitation of surgical
intervention, radiotherapy and chemotherapy. It’s urgent
need to identify potential biomarkers for prognosis and
find new targets for designing more powerful therapeutic
approach [2–4].
Eukaryotic DNA replication initiation includes heli-

case loading, helicase activation, replisome assembly
and DNA synthesis, MCM2–7 complex assembled by
six MCM subunits participates in all the events of DNA
replication initiation [5–8]. Some subunits have been
studied in HCC, for example, MCM7 is a poor prog-
nostic factor for HCC and promotes HCC growth
through activating MAPK signaling [9], MCM6 is a
novel serum biomarker for early HCC and promotes
HCC metastasis through activating MEK/ERK pathway
[10]. MCM3 belongs to MCM2–7 complex, it is a poor
prognosis marker for oral squamous cell carcinoma,
melanoma, papillary thyroid carcinoma, cutaneous T-
cell lymphomas, osteosarcoma, glioma, keratocystic
odontogenic tumor, anaplastic astrocytoma and salivary
gland epithelial tumors [11–20]. MCM3 is upregulated
in prostate cancer tissues samples with bone metastasis,
mouse model showed that MCM3 is increased in
mesenchymal-derived tumors [21]. MCM3 also is
upregulated in medulloblastoma and promotes cell mi-
gration and invasion [22]. But these studies only inves-
tigate whether MCM3 could be a prognostic factor for
various tumors, its role in tumor progression couldn’t
be well investigated. Especially, it’s role in radioresis-
tance of HCC. In this study, we main studied the effect
of MCM3 on radioresistance of HCC and its regulatory
mechanism, we found MCM3 was an independent
prognostic factor for HCC and promoted radiotherapy
resistance through activating NF-κB pathway.

Materials and methods
Cell cultures
Immortalized normal liver cell LO2 and human HCC
cell lines including SK-Hep1, SNU-475, HepG2,
Huh7, Huh1, SNU-182 and Hep3B were purchased
from the ATCC and cultured in DMEM high glucose
(Hyclone) supplemented with 10% fetal bovine serum
(FBS), the cells were maintained at 37 °C in 5% CO2

incubator.

Tissues samples and immunohistochemistry (IHC)
Eighteen fresh tissue specimens of HCC and three
fresh tissue of non-tumor adjacent tissue, as well as
162 paraffin-embedded HCC specimens were utilized,
the detailed information was shown in Additional file
1: Table S1 The criteria for determining patient

recurrence is that tumors is found in the liver, lung,
skeleton, lymph and other positions after complete
healing. These samples were collected during surgical
procedures from patients with HCC according to a
protocol approved by the institutional review board of the
First Affiliated Hospital of Sun Yat-sen University. All pa-
tients provided written, informed consent for participation
in the study and provision of tumor samples. IHC was
performed according to our previous methods [23, 24].
Anti-MCM3 antibody (ab4460, Abcam) was used. The im-
ages were captured using the AxioVision Rel.4.6 comput-
erized image analysis system (Carl Zeiss Co Ltd., Jena,
Germany).

Vectors, lentiviral infection and transfection
Human MCM3 cDNA was subcloned into the pSin-
EF1α-puro lentiviral vector to generate pSin-EF1α-
MCM3 vector (indicated as MCM3), the empty vector
was used as the negative control (indicated as Vector)
. Two short hairpin RNAs (shRNAs) oligonucleotides
sequences against MCM3 was cloned into the PLKO.1
lentiviral vector to generate PLKO.1-MCM3 shRNAs
(indicated as shRNA#1 and shRNA#2, respectively),
The sequences of shRNAs were: shRNA#1, 5′ GCCA
CAGATGATCCCAACTTT3’ and shRNA#2, 5′ GCAG
GATGACAATCAGGTCAT3’. the scramble shRNA
sequence was cloned PLKO.1 vector and used as the
negative control (indicated as Scramble). These vec-
tors were cotransfected with pM2.G and psPAX2 into
293 T using Exfect Transfection Reagent (Vazyme,
Nanjing, China). The lentiviral supernatants were
collected 48 h after transfection and filtered through a
0.45 μm filter. Supernatants plus polybrene (Sigma)
were infected with growing HCC cells, after 12 h the
supernatants were replaced by fresh medium. Puro-
mycin (Sigma) was used to screen stably cell lines.

Radiation treatment
HCC cells were irradiated by different radioactive rays
Gy (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0) from 6Mv-X-ray pro-
duced by a linear accelerator (Varian 600, Varian Med-
ical Systems). The following day after irradiation, cells
were used as MTT assy. Cells treated with 2 Gy radio-
active rays were used as colony formation assay and
TUNEL assay.

Cell proliferation assay
MTT assay, colony formation assay and terminal deoxy-
nucleotidyl transferase nick end labeling (TUNEL)
assay were performed according to our previous
methods [25–27].
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qRT-PCR
Total RNA was extracted using RNA isolater Total
RNA Extraction Reagent (Vazyme), and reversely tran-
scribed into cDNA using HiScript II 1st Strand cDNA
Synthesis Kit with gDNA wiper (Vazyme). Relative gene
expression levels were examined using AceQ qPCR
SYBR Green Master Mix (Vazyme) on a CFX96 Touch
Real-time PCR Detection system (Bio-Rad). GAPDH
was used as the internal control.

Western blot
Total proteins were extracted using RIPA buffer (50mM
Tris (pH 7.4), 1mM EDTA, 150mM NaCl, 1% NP-40, 0.5%
sodium deoxycholate) supplemental with protease inhibi-
tors (Roche). KeyGEN Nuclear and Cytoplasmic Protein
Extraction Kit (KGP150, KeyGEN BioTECH) was used to
isolate nuclear proteins. Antibodies against MCM3 (ab4
460, Abcam), p65 (ab16502, Abcam), p84 (ab487, Abcam),
IKKβ (ab124957, Abcam), p-IKKβ (ab38515, Abcam), IκBα
(ab32518, Abcam), p-IκBα (ab133462, Abcam), DNA PKcs
(ab32566), DNA PKcs (phosphor S2056) (ab18192), CLE
AVED PARP1 (ab32064) and GAPDH (G8795, Sigma).

In vivo xenograft assay
All animal experiments were performed under the
protocols approved by the Institutional Animal Care
and Use Committee of the First Affiliated Hospital of
Sun Yat-sen University. Six weeks old BALB/c-nu
mice were purchased from the Experimental Animal
Center of the Guangzhou University of Chinese Medi-
cine. 5◊106 HepG2 with MCM3 overexpression or
knockdown were orthotopically injected into the liver
parenchyma of mice (n = 6) to observe the tumor
growth, tumor size was up to 7.0–8.0 mm, the mice
were treated with 10Gy radioactive rays. The mice
were continued to feed for 40 days, then were eutha-
nized, tumors were excised.

Statistical analysis
SPSS 19.0 was used to perform all statistical analyses.
All data from at least three independent experiments
are presented as the mean ± s.d. Comparisons between
different groups were analyzed using Student’s t-test,
Survival curves were derived from Kaplan-Meier esti-
mates, multivariate Cox-regression analysis was used
to determine the prognostic value of MCM3 levels
and other clinicopathologic characteristics. RNA-seq
data from the TCGA HCC data set portal were used
for the analyzing MCM3 expression, Salmon and
DESeq2 were used to analyze MCM3 expression in
HCC samples and normal liver samples. Gene set
enrichment analysis (GSEA) were performed using
GSEA 2.0.9 software http://software.broadinstitute.org/

gsea/index.jsp. p < 0.05 was considered to be statisti-
cally significant.

Results
High MCM3 expression is associated with poor outcome
for HCC patients
To determine the role of MCM3 in HCC progression,
we determined MCM3 level in HCC tissues with re-
lapse or without relapse using IHC and found MCM3
was upregulated in tissues with relapse compared to
tissues without relapse (Fig. 1a). We performed a
Kaplan-Meier analysis to determine the relationship
between MCM3 expression and the survival of pa-
tients, patients with high MCM3 expression had
shorter survival time compared to patients with high
MCM3 expression for relapse-free survival and overall
survival (Fig. 1b). We also investigated whether
MCM3 could serve as an independent prognostic fac-
tor, univariate analysis showed that clinical stage, re-
lapse and MCM3 expression were associated with
patients’ survival time. Multivariate analysis showed
clinical stage, relapse and MCM3 expression also
were independent prognostic factors for patients’ sur-
vival time (Fig. 1c). These results showed that MCM3
was a poor prognostic factor for HCC patients.

MCM3 is upregulated in HCC cells and tissues
Next, we determined MCM3 expression in HCC cells
and tissues. Q-PCR and western blot analysis showed
MCM3 was upregulated HCC tissues compared to nor-
mal liver tissues (Fig. 2a). We also downloaded gene ex-
pression profiles for HCC from TCGA dataset, MCM3
was significantly upregulated in HCC tissues compared
to normal liver tissues (Fig. 2b). Q-PCR and western
blot showed MCM3 was also upregulated in HCC cells
compared to normal liver cell LO2 (Fig. 2c). These
results showed that MCM3 was upregulated in HCC
cells and tissues, suggesting MCM3 might promote
HCC progression.

MCM3 is associated with poor radiotherapy effect in vivo
and in vitro
Radiotherapy is one of the most common methods for
tumor therapy, but the radioresistance is often gener-
ated after several course of treatments [28]. Some poor
prognosis factors always associates with radioresistance
generation, such as SRSF1 [29, 30], RPA3 [31], FOXM1
[32] and RNF6 [33], so we determined whether MCM3
regulates radioresistance. MTT analysis showed HCC
cells with low MCM3 expression had low proliferation
rate after radiotherapy (Fig. 3a), suggesting MCM3
might promote radioresistance. Colony formation assay
showed that radiotherapy inhibit HCC cell prolifera-
tion, but the inhibition effect was better in SK-Hep1,
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SNU-185 and SNU-475 cells with low MCM3 expres-
sion than in Hep3B, Huh1 and Huh7 cells with high
MCM expression. TUNEL assay showed that radiother-
apy induced apoptosis, the induced effect was reduced
in cells with high MCM3 expression, suggesting MCM3
inhibited the radiotherapy effect (Fig. 3b and c).
To confirm above results, we overexpressed and

knocked down MCM3 in Huh-1 and HepG2 cells,
MTT assay showed that after radioresistance, the pro-
liferation rate of cells with MCM3 overexpression was
higher than control group, suggesting MCM3 overex-
pression increased the radioresistance, while the
proliferation rate of MCM3 knockdown inhibited
radioresistance (Fig. 4a). Colony formation assay
showed MCM3 overexpressed inhibited radiotherapy
effect, while MCM3 knockdown inhibited radioresis-
tance. TUNEL assay showed the induced apoptosis ef-
fect was increased in cells with MCM3 knockdown
compared to cells with MCM3 overexpression (Fig. 4b
and c). These results suggested that MCM3 promoted
radioresistance.
To further confirm above findings, an in vivo model

was used. MCM3 knockdown and Scramble control in-
fected HepG2 cells with luciferase expression were
injected into orthotopically injected into the liver par-
enchyma of nude mice, respectively. When the tumor

size was up to 7.0–8.0 mm, the mice were treated with
10Gy radioactive rays. Bioluminescent images analysis
showed MCM3 knockdown inhibited radioresistance,
tumors were larger in Scramble groups than in MCM3
knockdown groups (Fig. 5a). Survival analysis showed
mice with MCM3 knockdown had longer survival time
compared to Scramble control group (Fig. 5b), suggest-
ing MCM3 knockdown reduced radioresistance. DNA-
PKcs activation is critical for development of tumor
therapy resistance [34, 35], cleaved PARP1 is a marker
for apoptosis [36], we isolated tumors from mice, west-
ern blot assay showed that MCM3 knockdown inhib-
ited the phosphorylation of DNA-PKcs, and increased
PARP1 cleavage (Fig. 5c), suggesting MCM3 knock-
down reduced radioresistance. Together, these findings
suggested that MCM3 reduced radiotherapy effect,
promoted proliferation and growth, and increased
anti-apoptosis ability of HCC.

MCM3 promoted HCC radioresistance through activating
NF-κB pathway
To investigate the regulatory mechanism of MCM3
in HCC progression, we used GSEA to explore the
relationship between MCM3 expression and NF-κB
regulated gene signatures from the TCGA dataset,

Fig. 1 MCM3 is an independent prognostic factor for HCC. a IHC images indicated MCM3 expression in relapse-free HCC tissues and relapse HCC
tissues. b Kaplan-Meier analysis of relapse-free and overall survival curves of patients with high MCM3 expression versus low MCM3 expression.
c Multivariate Cox regression analysis to investigate the importance of MCM3 in clinical prognosis
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and found MCM3 was positively associated with NF-
κB pathway (Fig. 6a), Luciferase assay showed the ac-
tivity of the NF-κB luciferase reporter gene was sig-
nificantly increased in cells overexpressing MCM3,
the luciferase activity was significantly reduced in
cells knocking down MCM3, suggesting MCM3 acti-
vated NF-κB pathway (Fig. 6b). The translocation of
p65 into nuclear, the phosphorylation of IKK-β and
IκBα is the markers of NF-κB pathway activation,
western blot analysis showed that MCM3 overexpres-
sion increased the translocation of p65 to nuclear,
and the phosphorylation of IKK-β and IκBα, while
MCM3 knockdown inhibited the translocation of p65
to nuclear, and the phosphorylation of IKK-β and
IκBα (Fig. 6c). We also analyzed the effect of MCM3

on the expression of NF-κB downstream genes [37],
and found MCM3 overexpression promoted their
expression, while MCM3 knockdown inhibited their
expression (Fig. 6d), confirming MCM3 activated
NF-κB pathway. Further confirming MCM3 activated
NF-κB pathway.
To confirm whether MCM3 promoted radioresis-

tance through activating NF-κB pathway, we inhibited
NF-κB pathway in MCM3 overexpressing cells through
adding NF-κB pathway inhibitor JSH-23 (10um) or
overexpressing mutated IκBα, colony formation assay
and TUNEL assay showed that inhibition of NF-κB
pathway in MCM3 overexpressing cells significantly re-
duced radioresistance, characterized by inhibiting of
cell proliferation and inducing apoptosis (Fig. 6e and f ).

Fig. 2 MCM3 is elevated in HCC tissues and cells. a qRT-PCR and western blot investigated MCM3 expression in HCC tissues and normal liver
tissues. GAPDH served as an internal control. b Analysis of MCM3 expression in TCGA tissues. c qRT-PCR and western blot investigated MCM3
expression in HCC cells and immortalized normal liver cell LO2. GAPDH served as an internal control
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Fig. 3 (See legend on next page.)
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(See figure on previous page.)
Fig. 3 High MCM3 expression is associated with increased radiotherapy resistance. a MTT assay of the proliferation of HCC cell treated with
different dose of radiotherapy, cells with low MCM3 expression and high MCM3 expression, respectively. b Colony formation of the radiotherapy
effect of HCC cells with high and low MCM3 expression. c TUNEL assay of the radiotherapy effect of HCC cells with high and low MCM3
expression.100 μM, every experiment was independently replicated in three times. Error bars

Fig. 4 MCM3 overexpression is associated with increased radiotherapy resistance. a MTT assay of the proliferation of MCM3 overexpressed or
knocked down HCC cell treated with different dose of radiotherapy. b Colony formation of the radiotherapy effect of MCM3 overexpressed or
knocked down HCC cells. c TUNEL assay of the radiotherapy effect of MCM3 overexpressed or knocked down HCC cells. 100 μM, every
experiment was independently replicated in three times. Error bars
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These findings suggested MCM3 promoted HCC radio-
resistance through activating NF-κB pathway. We fur-
ther investigated the correlation of MCM3 expression
and NF-κB pathway activation in the clinic, MCM3 ex-
pression correlated with the mRNA levels of NF-κB
pathway downstream genes including Bcl-xL, CCND1
and VEGF-C, and the translocation of p65 into nuclear
(Fig. 7), confirming MCM3 expression related to NF-κB
pathway activation in human HCC samples.

Discussion
In present study, we found MCM3 was upregulated
in HCC tissues and cells, it’s an independent prognos-
tic factor for HCC. MCM3 overexpression increased
the radioresistance, while MCM3 knockdown inhib-
ited the radioresistance. Mechanism analysis suggested

that MCM3 promoted HCC progression through acti-
vating NF-κB pathway.
We found MCM3 overexpression increased the

radioresistance, previous studies show cancer stem
cells are the main reason for tumor relapse, metasta-
sis, radiotherapy and chemotherapy resistance gener-
ation [38], Many cancer types have been reported to
exist cancer stem cells, including HCC, EpCAM,
CD13, CD133, CD90, CD24 and CD44 have used for
the markers for HCC stem cells [39, 40]. We found
MCM3 increased the radioresistance of HCC, suggest-
ing MCM3 might promote the expansion of HCC
stem cells, but this inference needed to be verified by
further experiments.
NF-κB pathway regulates hepatic fibrosis and HCC

[41, 42], In unstimulated cells, IκB interacts with NF-

Fig. 5 MCM3 increased radiotherapy resistance of HCC in vivo. a Xenograft model in nude mice treated with radiotherapy, Representative
bioluminescent images of xenograft tumors formed by HepG2 cells with Scramble control and MCM3 shRNA#1, respectively (Left). and
representative images of tumors in the indicated group in nude mice (Right). b Kaplan-Meier analysis of overall survival curves of mice with high
MCM3 knockdown versus Scramble control. c Western blot analyzed DNA-PKcs, Pdna-PKcsT2609 and Cleaved PARP1. GAPDH was used as the
loading control. Error bars, SD. *P < 0.05
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Fig. 6 (See legend on next page.)
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κB, leading the NF-κB/IκB complex sequesters in the
cytoplasm, and prevents NF-κB from binding to
DNA. Extracellular stimuli activate NF-κB signaling,
these stimuli are recognized by receptors and trans-
mitted into the cell, where adaptor signaling proteins
initiate a signaling cascade. These signaling cascades
activate IKK, IKK phosphorylates IκB in the cyto-
plasm, leading the degradation of IκB by the prote-
asome and releases NF-κB from the inhibitory
complex. Then NF-κB proteins trans-locates into nu-
cleus where they bind to their target sequences and
activate gene transcription [43]. We found MCM3 in-
creased the nuclear translocation of p65 and the
phosphorylation of IKK-β and IκBα, suggesting
MCM3 activated NF-κB pathway. We also inhibited
NF-κB pathway in MCM3 overexpressing cells, and
found the radiotherapy resistance was reduced, sug-
gesting MCM3 increased radioresistance through acti-
vating NF-κB pathway.

Although other subunits of MCM2–7 complex have
been studied in tumors, such as MCM6 and MCM7, pre-
vious reporters only show MCM3 is a prognostic factor
for various tumors, its function in tumor progression is
reported rarely, especially in radioresistance generation,
we first systematically studied the role of MCM3 in HCC
radioresistance and the regulatory mechanisms. In sum-
mary, we found MCM3 increased the radiotherapy resist-
ance of HCC through activating NF-κB pathway.

Conclusions
In conclusion, the present study demonstrates the role
of MCM3 in HCC patients’ prognosis and radioresis-
tance, we found MCM3 was an independent prognosis
factor for HCC, it promoted radioresistance of HCC
through activating NF-κB pathway. Thus, MCM3 could
serve as a potential biomarker for HCC prognosis and a
new target for HCC therapy.

(See figure on previous page.)
Fig. 6 MCM3 increased radiotherapy resistance through activating NF-κB pathway. a GSEA revealed MCM3 expression significantly and
positively correlated with TNFα induced NF-κB pathway and the upregulated target genes of NF-κB pathway. b Luciferase reporter
assay of the effect of MCM3 overexpression or knockdown on NF-κB pathway activity. c Western blot analysis of p65 expression in the
nuclear and cytoplasm, IKKβ and IκBα, and the phosphorylation of IKKβ and IκBα, p84 served as an internal control for nuclear
proteins, GAPDH served as an internal control for total proteins. d qRT-PCR analysis of the expression of downstream genes of NF-κB
pathway. e Colony formation analysis of the effect of inhibition of NF-κB pathway in MCM3 overexpression cells on radiotherapy
resistance. g TUNEL analysis of the effect of inhibition of NF-κB pathway in MCM3 overexpression cells on radiotherapy resistance. Error
bars, SD. *P < 0.05

Fig. 7 qRT-PCR analysis of CCND1, Bcl-XL and VEGF-C expression in 10 freshly collected HCC samples, western blot analysis of nuclear p65 and
MCM3 expression in the same samples (Left). The correlation of nuclear p65 and MCM3 expression was showed in Right. Error bars, SD
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Additional file

Additional file 1: Table S1. Clinicopathological characteristics of HCC
patient samples. (DOCX 16 kb)
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