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1  | INTRODUC TION

The amount of data gathered in biological experiments grows at an 
alarming rate, especially in the field of genomics. However, the field 
of knowledge as a whole remains fractured, which is an acute prob-
lem. Consequently, one of the questions of comparative genomics 
is: When we have a few well-studied model organisms, how can 
we transfer this knowledge to phylogenetically related organisms? 
Indeed, cross-referencing the information from connected fields of 
science and art is a common practice. For a real-life example, con-
sider a person who plays the violin and desires to learn the piano. 

It would be easier for them to learn to play piano than for a person 
without any experience with a musical instrument. Similar transfers 
of knowledge are sometimes used to solve classification and regres-
sion problems. This process is formalized in machine learning tech-
niques called “transfer learning.”

Here, we consider the application of transfer learning to the 
problem of classification of mutations into categories “deleterious” 
versus “neutral.” This problem is interesting for both theoretical 
and practical considerations. Not only can we use this knowledge 
to explore functional genome variation in multiple species, but we 
can also study their evolution, ultimately with an aim to understand 
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Abstract
The genomes of mammals contain thousands of deleterious mutations. It is impor-
tant to be able to recognize them with high precision. In conservation biology, the 
small size of fragmented populations results in accumulation of damaging variants. 
Preserving animals with less damaged genomes could optimize conservation efforts. 
In breeding of farm animals, trade-offs between farm performance versus general 
fitness might be better avoided if deleterious mutations are well classified. In hu-
mans, the problem of such a precise classification has been successfully solved, in 
large part due to large databases of disease-causing mutations. However, this kind of 
information is very limited for other mammals. Here, we propose to better use infor-
mation available on human mutations to enable classification of damaging mutations 
in other mammalian species. Specifically, we apply transfer learning—machine learn-
ing methods—improving small dataset for solving a focal problem (recognizing dam-
aging mutations in our companion and farm animals) due to the use of much large 
datasets available for solving a related problem (recognizing damaging mutations in 
humans). We validate our tools using mouse and dog annotated datasets and obtain 
significantly better results in companion to the SIFT classifier. Then, we apply them 
to predict deleterious mutations in cattle genomewide dataset.
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why a mutant allele classified as deleterious in one species may 
be in fact a normal allele in another species (Charlesworth, 2012; 
Hartfield, Glémin, Yu, & Purugganan, 2014; Kaiser & Charlesworth, 
2009). Further, enhanced understanding of deleterious genomic 
content may enhance selection and breeding in crop species and 
may also improve veterinary medicine capabilities in species such 
as cattle, pigs, and dogs. For example, Raszek, Guan, and Plastow 
(2016) describe the application of comparative genomic analysis for 
treatment of infectious disease and understanding of developmental 
abnormality, which is a major economic burden in cattle production 
worldwide. Similarly, (Knol, Nielsen, and Knap (2016) consider the 
application of functional, knowledge-enabled genomic selection in 
commercial pig breeding.

Here, we utilize the transfer of knowledge from the classification 
of human mutations to similar categorizations in other mammalian 
species. This direction of knowledge transfer was chosen because of 
the abundance of both information about the properties of human 
mutations (Capriotti, Calabrese, & Casadio, 2006; Kondrashov, 
2012) and inferences from association studies (MacArthur et al., 
2017), and relatively small amount of information of mutations in 
other species. Firstly, we train a classifier on a labeled human data. 
Further, we use a relatively small amount of information from other 
species to reduce any biases due to human-centric training when ap-
plied to other mammals, particularly to mouse, dog, and cattle.

Formally, we consider deleterious mutations as a genetic alter-
ation that increases an individual’s susceptibility or predisposition to 
a certain disease or disorder. Nearly all deleterious mutations in non-
human mammals are found in the coding part of the genome and are 
typically missense mutations, that is, those which cause amino acid 
changes in the corresponding protein. However, many missense mu-
tations do not cause a disease (Huber, Kim, Marsden, & Lohmueller, 
2017; Kim, Huber, & Lohmueller, 2017). Here, we classify mutations 
into one of two classes: “deleterious” or “neutral.” To accomplish this 
task, there are a number of characteristics that need to be known 
about the mutation, such as whether it is a transition or a transver-
sion (Stoltzfus et al., 2016), and the frequency of a particular muta-
tion in the population (a detailed description of these characteristics 
is available in the Methods section). Thus, for each mutation, there 
are a number of features for classification.

There are two main ways to perform classification. Firstly, the 
values of the features can be compared with some threshold. For 
example, this concept was implemented in SIFT (Sim et al., 2012) 
and PolyPhen-1 (Ramensky, Bork, & Sunyaev, 2002). SIFT, in partic-
ular, uses the conservation score of the sequence as the threshold. 
Secondly, classification can be performed using machine learning 
techniques. In this case, the set of labeled mutations is used as a 
training set for a classifier, and then, the trained classifier is applied 
to make predictions on an unlabeled set. The advantage of machine 
learning methods is that parameters do not have to be manually 
set, but can instead be identified automatically based on the la-
beled set. This concept was realized in PolyPhen-2 (Adzhubei et al., 
2010), where the classification consists of two steps. The first step 
is feature preparation: The software collects necessary information 

about a mutation using sequence characteristics, multiple alignment 
scores, and information about the 3D structure of the resulting 
protein. The second step is classification by applying a naïve Bayes 
approach. In this work, we use PolyPhen-2′s preparation step; how-
ever, the second step, the classification of data in a species of inter-
est, was optimized.

A substantial amount of research has been devoted to classifi-
cation of human mutations (Pabinger et al., 2014). However, only 
two well-known programs are useful for classification of mutations 
in nonhuman mammals: SIFT (Sim et al., 2012) and MAPP (Stone & 
Sidow, 2005). They both are based on evolutionary conservation of 
polymorphism inferred through multiple alignment scores (MAPP 
also uses a phylogenetic tree) to make a prediction. While their 
predictions are reasonably accurate, both SIFT and MAPP might 
potentially be improved by taking advantage of additional classifi-
cation features, such as the 3D structure of the resulting protein, 
or properties of already classified mutations. Further, their perfor-
mance might be enhanced with incorporation of machine learning 
techniques, for instance, choosing the thresholds automatically, as 
PolyPhen-2 does for classification of human mutations.

There is, in principle, an option in PolyPhen-2 for classification 
of mutations in nonhuman species. However, it is an experimental 
feature and it makes predictions using a classifier trained on human 
data. In our work, we aim to modify this procedure and use transfer 
learning techniques in order to improve the accuracy of the classifi-
cation via retraining on species-specific, although limited, datasets.

An assumption of traditional machine learning is that the training 
data and testing data are taken from the same domain, such that 
the input feature space and data distribution characteristics are the 
same. However, in some real-world machine learning scenarios, this 
assumption is unfeasible because training data are expensive or dif-
ficult to collect (Weiss, Khoshgoftaar, & Wang, 2016). Therefore, 
there is a need to create high-performance learners trained with 
more easily obtained data from different domains. The methodology 
addressing this need is referred to as transfer learning.

The transfer learning problem can be formally defined as fol-
lows. Let domain D = {X, P(X)} be characterized by two parts: a fea-
ture space X and a marginal probability distribution P(X). For a given 
domain D, a task T = {Y, f(·)} is defined by two parts: a label space 
Y, and a predictive function f(·), which is learned from labeled fea-
tures. Now, Ds, Ts, fs(·) are referred to as the source dataset, source 
task, and source predictive function, respectively, and Dt, Tt, ft(·) are 
referred to as the target dataset, target task, and target predictive 
function, respectively. Transfer learning is the set of machine learn-
ing methods that aim to improve the target predictive function ft(·) 
using related information from the source dataset Ds and source task 
Ts, where Ds ≠ Dt or Ts ≠ Tt.

Transfer learning methods are actively used for a large variety 
of real-world tasks from atmospheric dust aerosol particle classifi-
cation to face motion recognition (Kan, Wu, Shan, & Chen, 2014; 
Ma, Gong, & Mao, 2015; Perlich, Dalessandro, Stitelman, Raeder, & 
Provost, 2013). There are several applications of transfer learning 
methods in bioinformatics, for example, for recognition of splicing 
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sites (Schweikert, Schweikert, & Widmer, 2008; Widmer, Leiva, 
Altun, & Rätsch, 2010), gene expression analysis (Chen & Huang, 
2010; Q. Xu, Xue, & Yang, 2011), and image recognition (Bi, Xiong, 
Yu, Dundar, & Rao, 2008). However, despite a growing amount of 
SNP data, only a few studies have applied transfer learning to SNP-
related analyses (Chen & Huang, 2010; Puniyani, Kim, & Xing, 2010; 
Xu et al., 2011).

Different techniques of transfer learning are best used depend-
ing on the research needs (Weiss et al., 2016). We want to use both 
the labeled source dataset of human mutations and the small labeled 
target datasets of mouse, dog, or cattle mutations to better predict 
unlabeled mutations in these nonhuman species. So, we assume that 
source data are labeled and target data are unlabeled or partly la-
beled. Under these circumstances, one should use transductive and 
inductive transfer learning techniques.

Transductive transfer learning is an example of instance transfer 
based on reweighting samples of source data according to their dis-
tances to target data. (Chattopadhyay et al., (2012) proposed to use 
this approach while working with multiple labeled source domains. 
The main idea is to use a combination of source domain classifiers, 
with weights assigned as a function of the closeness in conditional 
distribution between each source and target domain, to label the 
unlabeled target data. Other authors have used different sample 
weights metrics to account for instances from one source domain 
(Xu et al., 2017).

The inductive transfer learning solution belongs to feature-
based transfer learning approaches. It transforms the feature spaces 
of source and target data to make them more similar and, thus, to 
decrease classification error. The transformation of source data to 
a new feature space can be implemented with a denoising autoen-
coder (Glorot, Bordes, & Bengio, 2011), or convolutional neural net-
works (Oquab, Bottou, Laptev, & Sivic, 2014).

Here, we firstly demonstrate the applicability of transductive 
and inductive transfer learning techniques for the prediction of 
deleterious mutations in dog and mouse datasets and then apply 
transductive transfer learning to predict deleterious mutations in 
cattle.

2  | MATERIAL S AND METHODS

2.1 | Datasets

To apply machine learning technique to the problem of mutation 
classification, we needed to create labeled (deleterious versus neu-
tral) datasets of mutations in order to train classifiers and assess 
their performance. Sets of deleterious mutations are usually com-
piled from databases with a focus on disease-causing mutations. 
Sets of neutral mutations are composed of nonsynonymous single-
nucleotide mutations that satisfy one of two criteria: They have 
been fixed during divergence between the species of interest and its 
closely related species, or their MAF in population is at least 5% (Ng 
& Henikoff, 2001). More detailed information on the datasets used 
as well as on how they are created is presented below.

2.1.1 | Human datasets

We used the two standard human datasets, HumDiv and HumVar, 
that are applied by PolyPhen-2, to train our classifier. The HumDiv 
dataset (Adzhubei et al., 2010) contains 5564 mutations from the 
UniProtKB database that are known to cause Mendelian diseases 
and a set of 7,539 DNA variants between human proteins and 
their closely related mammalian homologs that are assumed to be 
nondamaging. The HumVar dataset (Capriotti et al., 2006) con-
sists of 22,196 human disease-causing mutations from UniProtKB 
and 21,151 neutral mutations that are common human nsSNPs 
(MAF>1%) without annotated involvement in disease. Note that the 
HumDiv dataset contains annotated mutations directly associated 
with human diseases, while the HumVar dataset is more noisy as its 
neutral mutation subset includes many mildly deleterious alleles.

2.1.2 | Mouse dataset

We used both the MGI database (Eppig et al., 2017) and the Disease 
Ontology Database (Kibbe et al., 2015) to retrieve a set of 189 amino 
acid substitutions associated with different mouse diseases.

A set of 188 neutral mutations was compiled from nonsynony-
mous SNPs present in 28 strains of mouse. We selected positions 
that were annotated in more than eight Mus strains and that were 
different in no less than two strains. Thus, in total the dataset con-
sists of 377 mouse mutations, of which 189 are deleterious and 188 
are neutral (see Table S1).

2.1.3 | Dog and cattle62 datasets

The dog and cattle (called cattle62) datasets were generated simi-
larly. To retrieve deleterious mutations, we used the OMIA database 
(Online Mendelian Inheritance in Animals) (Lenffer et al., 2006) con-
taining information on deleterious mutations in animals. We consid-
ered only Mendelian diseases with known key missense mutation.

The sets of neutral mutations were generated from nonsynony-
mous single-nucleotide mutations in homologous proteins using the 
UniProtKB database (Consortium, 2017). From this database, only 
the entries that were reviewed by database curators were selected. 
Then, for each entry, the following procedure was applied:

1.	 From a set of sequences similar to a query protein and re-
trieved with BLASTp (Altschul et al., 1997), only mammalian 
proteins with more than 95% identity to the input sequence 
were selected.

2.	 Clustal Omega (Sievers et al., 2014) was used to construct multi-
ple alignments for sequences selected in the previous step.

3.	 The only amino acid substitutions considered were those that 
were isolated (i.e., not present in a continuous block of substituted 
residues) and independent (i.e., there were no other substitutions 
in the same sequences of alignment). This helps us to avoid the 
phenomenon of correlated mutational behavior between columns 
of a multiple sequence alignment (Kowarsch, Fuchs, Frishman, & 
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Pagel, 2010). In addition, we chose only substitutions present in 
no less than two aligned sequences.

The generated dog dataset consists of 207 mutations, of which 
103 are deleterious and 104 are neutral. For cattle62, we retrieved 
a set of 62 mutations, of which 30 were deleterious and 32 neutral 
(see Table S1).

2.1.4 | CattleGW dataset

The cattle genomewide (CattleGW) dataset was created using the 
Ensembl database. We found approximately 100,000,000 different 
genetic variants in cattle, almost 2,000,000 of which were missense 
mutations in 21,599 transcripts corresponding to 21,370 proteins in 
the UniProtKB database. For each mutation, we collected informa-
tion about its position within the protein, type of amino acid substi-
tution, and SIFT prediction score. We used PolyPhen-2 to prepare 
features for further classification of 1,892,964 mutations in 18,716 
proteins (see Table S2).

2.2 | Feature description

To make predictions about the effects of nonsynonymous SNPs 
on protein function, we need to characterize these substitutions 
with informative predictive features. We used 14 predictive fea-
tures (Table 1), of which 11 are standard predictive features used 
by the PolyPhen-2 algorithm (Adzhubei et al., 2010). Three addi-
tional features were added to improve final classification: Grantham 
score, which predicts evolutionary distance between two amino 
acids (Grantham, 1974); BLOSUM62 substitution score (Henikoff & 
Henikoff, 1992); and PDB_id, which is an indicator of the availability 
of 3D structure information.

In all of the datasets, all predictive feature values were centered 
and normalized. Missing values were imputed with median values.

2.3 | Classifiers

We used the following set of different classifiers, which includes prob-
abilistic ones: Naïve Bayes (NB) with Gaussian kernel, Boosted Naïve 
Bayes classifier (Freund & Schapire, 1999), Logistic Regression, Support 
Vector Machines (SVM) (Cortes & Vapnik, 1995) with three different 
kernels (linear, Gaussian and polynomial), Random Forest (Breiman, 
2001), Neural Network (Jantzen, 1998), and a relatively new approach 
called Deep Forest (Zhou & Feng, 2017). We used two performance 
measures: AUC, which is the area under a ROC curve, and accuracy 
(acc), which is the proportion of correctly classified samples. The 
classes were balanced so that the accuracy metrics worked correctly.

We trained and tuned the classifiers on the HumDiv and HumVar 
datasets. To avoid overfitting, fivefold cross-validation was per-
formed. Specifically, a dataset was split into five approximately 
equal parts (or folds), of which four parts were used for training and 
the fifth part for validation. This procedure was repeated five times 
with different parts used for validation each time. The performance 

measure is an average of the values computed at each iteration. 
While the dataset is usually split into folds randomly, we created 
folds such that all mutations in the same protein fell into the same 
fold. This was done to avoid overfitting in the situation where we 
train and test a classifier on the same protein.

The grid search method guided by the accuracy metric was used 
to tune classifiers (see best parameters in Table S3).

To construct classifiers, we used the GaussianNB, 
LogisticRegression, LinearSVC, SVC, RandomForestClassifier, 
MLPClassifier, and AdaBoostClassifier functions of the sklearn 
package (Pedregosa et al., 2011) in Python 3.1. To calculate acc, AUC 
scores, and ROC curves, we used the roc_curve, auc, and accuracy_
score functions of the sklearn metrics module. We used the sklearn 
model_selection module to train and test classifier performance, 
search for the best parameters, and perform cross-validation.

2.4 | Transfer learning techniques

As source and target dataset distributions differ (see Figure S1), direct 
predictions of deleterious mutations in target datasets using classifiers 
trained on source data could be biased. Therefore, we applied transfer 
learning techniques to classify mutations in target datasets. To trans-
fer knowledge from classification of human mutations to similar tasks 

TABLE  1 Description of features used in classification

Feature 
name Descriptiona

GScore Grantham score

BScore Amino acid score in BLOSUM62 matrix

Score1 PSIC score (Sunyaev et al., 1999) for wild-type 
amino acid residue (before substitution)

dScore Difference of PSIC (Sunyaev et al., 1999) scores for 
two amino acid residue variants (before and after 
substitution)

Nobs Number of residues observed at the substitution 
position in multiple alignment (without gaps)

NormASA Normalized accessible protein surface area

dVol Change in residue side chain volume

dProp Change in solvent accessible surface propensity 
resulting from the substitution

B.fact Normalized B-factor (temperature factor; Chasman 
& Adams, 2001) for the residue

IdPmax Maximum congruency of the mutant amino acid 
residue to all sequences in multiple alignment

IdQmin Query sequence identity with the closest homolog 
deviating from the wild-type amino acid residue

PDB_id Availability of PDB (Berman et al., 2000) protein 
structure identifier

Transv Substitution type (transversion or transition)

PfamHit Availability of Pfam (Finn et al., 2016) protein 
structure identifier

aA more detailed description is available at http://genetics.bwh.harvard.
edu/pph2/dokuwiki/appendix_a.

http://genetics.bwh.harvard.edu/pph2/dokuwiki/appendix_a
http://genetics.bwh.harvard.edu/pph2/dokuwiki/appendix_a
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for other mammals, we applied two different approaches: transduc-
tive transfer learning and inductive transfer learning.

2.4.1 | Transductive transfer learning

Transductive transfer learning assumes that the source data are la-
beled but target data are not. So, we did not use labels for the target 
data until final validation of the predictions. We tested and tuned 
classifiers on human datasets, and the parameters that provided the 
best classifier performance were further used in transfer learning 
tasks (see Table S3 for details). Each sample from the source data xs

i
 

was multiplied by weight wi that inversely depends on the distance 
from this sample to the mean of the cluster of the target data a: 

Therefore, samples from source data were taken into account 
only if they are close to the target data. This method prevents the 
negative transfer effect, that is, the situation when samples from 
source data not connected with the target task are used thereby de-
grading the classifier performance. The classifiers are learned based 
on reweighted source data and tested on target data. To assess the 
performance of transfer learning strategy, we compared its results 
with the results of direct classification without weights.

2.4.2 | Inductive transfer learning

Inductive transfer learning assumes that source data and target data 
are labeled. Accordingly, we used labels for target data to construct 
a classifier and to test its performance. To provide independent test 
samples, we used cross-validation (see the “Classifiers” subsection 
for a description of how the folds were made).

The feature representation transfer is an instance of the 
transductive transfer learning strategy that aims to transform the 
feature spaces of the source and target data to make them more 
similar and, thus, to decrease classification error. The new feature 
representation space for the target data was found by applying a 
neural network trained on the source data. The algorithm works as 
follows. First, we began with a neural network trained on source 
data, found parameters and weights, and fixed them. Next, the 
neural network was pruned at the last layer, which is just before 
the classification layer, and the target data were passed through 
the obtained network. Finally, the transformed target data in the 
new feature space were split into two parts, one for training and 
one for testing. Each classifier was trained on the training set and 
tested on the test set.

We used a three-layered network with 200, 200, and 15 nodes in 
the first, second, and third layers, respectively. The rectifier activa-
tion function and hyperbolic tangent function were used for the first 
two layers and the last layer, respectively. The training and testing 
procedures were repeated 30 times to obtain statistically significant 
results. The Wilcoxon–Mann–Whitney test was applied to compare 
classification results of the target data in the initial feature space to 
those of the new space.

We validated the inductive transfer learning approach on mouse 
data using the HumVar dataset as source data. The size of this dataset is 
sufficient to train a neural network. We used mouse data to validate this 
learning strategy as dog data are almost linearly separable and therefore 
can be predicted with a few samples. In such situations, information 
learned from a source domain may lead to a negative transfer effect.

2.4.3 | Implementation characteristics

We used Python 3.1 to write all the scripts and the sklearn package 
(Pedregosa et al., 2011) to implement machine learning tasks. Sample re-
weighting was performed with the standard argument “sample_weight” 
of the fit() attribute of the classifiers. A neural network was implemented 
using sknn (https://github.com/aigamedev/scikit-neuralnetwork). SIFT 
BLINK (Sim et al., 2012) was used as a standard in comparisons of the 
classifier accuracy developed on mouse and dog data. The implementa-
tion of transfer learning algorithm is available as supplementary code at 
https://github.com/PlekhanovaElena/Transfer_learning.

Note that to classify different target datasets, one should retrain 
the transductive classifier with weights computed from the distance 
between the source and the target data, which are different each 
time. However, training a classifier on human data with weights takes 
a few minutes: 5 min for HumDiv dataset and 15 min for HumVar 
dataset. In case of using inductive classifier to classify different target 
dataset, we can train the neural network only once (it takes 2 hr for 
HumDiv and 8 hr for HumVar) and then pass each target dataset of 
interest through the obtained network (one pass takes about 15 min).

3  | RESULTS AND DISCUSSION

To obtain reasonable predictions for the target data, we need to 
ascertain that a classifier attains significant accuracy on the source 
data. Therefore, we compared the performance of different classifi-
cation methods on human data and selected the best classifiers that 
were further used in transfer learning tasks.

3.1 | Classification of human data

The human data consist of two datasets, HumDiv and HumVar. The 
HumDiv dataset (Ramensky et al., 2002) consists of 13,103 muta-
tions that are either neutral with respect to closely related mam-
malian homologs or cause human Mendelian diseases. HumVar 
(Capriotti et al., 2006), consisting of 43,347 mutations, treats any 
disease-causing mutation as damaging, and it assumes that common 
human nonsynonymous SNPs (MAF>1%) are neutral, as long as they 
have not been annotated as disease-causing.

We first tested the performance of nine different classifiers: 
Deep Forest, Random Forest, Neural Network, Gaussian SVM, 
Polynomial SVM, Linear SVM, Logistic Regression, Gaussian Naïve 
Bayes, and Boosted Gaussian Naïve Bayes. The quality of each pre-
dictor was assessed using two metrics: AUC, which is the area under 
the ROC curve, and the accuracy rate, which is the fraction of correct 

wi=exp (− (xs
i
−a

T)2)

https://github.com/aigamedev/scikit-neuralnetwork
https://github.com/PlekhanovaElena/Transfer_learning
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predictions. On both datasets, the best results were achieved with 
Deep Forest, Random Forest, Neural Network, Polynomial SVM, 
Gaussian SVM, Linear SVM, and Logistic Regression (Figure 1, 
Figure S2). On the HumDiv dataset, the classification errors varied 
from 5% to 7% and the AUC values ranged from 98% to 99%. On the 
HumVar dataset, the classification errors were larger ranging from 
16% to 18% and the AUC values varied from 89% to 91%. As a result, 
we keep these classifiers for further analysis.

Next, we compared the classifiers with the Naïve Bayes classifier 
used by PolyPhen-2 (Adzhubei et al., 2010) and with the SIFT clas-
sifier (Sim et al., 2012). Most classifiers better predicted deleterious 
mutations than PolyPhen-2 given that they resulted in larger values 
of TPR (true-positive rate) for a given FPR (false-positive rate) than 
PolyPhen-2 (Table 2). Note that the Deep Forest classifier showed the 
best results, which were significantly better than PolyPhen-2 predic-
tions. As for the SIFT classifier, it shows results worse than PolyPhen-2: 
0.863 accuracy on HumDiv and 0.796 on HumVar dataset.

3.2 | Transfer learning for classification of 
mouse and dog data

Due to the relatively small amount of information on deleterious 
mutations, the application of traditional machine learning methods 
to mutation classification in nonhuman species does not seem pos-
sible. A good alternative may be to use transfer learning trained with 

more easily obtained human data. Here, we tested the applicability 
of two transfer learning methods, namely transductive and inductive 
transfer learning, to predict deleterious mutations in dog and mice.

The transfer learning methods improve the target data classifica-
tion using related information from other source datasets. We aim to 
transfer knowledge from classification of human mutations to similar 
tasks in dog and mouse and, consequently, we used HumVar and 
HumDiv as source datasets.

To construct the target dog and mouse datasets, we used 
UniProtKB (Consortium, 2017) and either the OMIA (Lenffer et al., 
2006) or MGI (Eppig et al., 2017) database (see Methods for a more 
detailed description). Mutations associated with Mendelian diseases 
are considered damaging. Putative neutral mutations were sampled 
either from positions that differ in alignments between human pro-
teins and their closely related mammalian homologs or from com-
mon variants segregating within species.

3.2.1 | Transductive transfer learning

The transductive transfer learning assumes that target data are unla-
beled. We applied instance transfer learning to reweight samples from 
the source dataset according to their distance to the target data. To 
assess the classification results, we trained each classifier indepen-
dently on the source data with and without weights and then tested 
its performance on the target data. For this analysis, we considered 

F IGURE  1 ROC curves for different 
classifiers, trained on HumDiv data. 
Values of quality metrics ordered by 
decreasing AUC values are shown 
adjacent to the classifier name. The 
dotted line corresponds to the ROC curve 
for random guessing. The inset zooms 
in on the left upper quadrant to better 
distinguish the ROC curves
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only five classifiers, for which reweighing is possible: Random Forest, 
Polynomial SVM, Gaussian SVM, Logistic Regression, and Linear SVM.

As evident from Table 3, the application of transductive transfer 
learning does not impair the performance of any classifier and, fur-
thermore, improves the performance of several of them. The best 
results were reached with Random Forest and Logistic Regression. 
Improvement was most noticeable in the following source–target 
data pairs: (i) HumDiv-dog data, where classification using Logistic 
Regression was improved by 23.6% in comparison with the best 
result without using transfer learning; and (ii) HumVar-mouse data, 
where improvement of classification with the same classifier is 19.3% 
in comparison with the best result without using transfer learning.

Even though it is the most often used tool to predict deleterious 
mutations in nonhuman species, we showed that SIFT is significantly 
less accurate in predicting deleterious mutations in dog and mouse 

datasets than transfer learning methods. On the dog dataset, SIFT 
achieves an accuracy of 85.2%, while Logistic Regression trained on 
the HumDiv dataset has an accuracy of 90.8%. On the mouse data-
set, SIFT has an accuracy of 84.9%, while the Logistic Regression 
classifier trained on the HumVar dataset has an accuracy of 87.5%.

3.2.2 | Inductive transfer learning

Inductive transfer learning assumes that the target data are labeled 
and aims to improve classification of the target data by transform-
ing the feature spaces of both source and target data to make them 
more similar. Here, we transform the target feature space using a 
neural network trained on source data. To estimate classification 
accuracy, each classifier was independently trained either on one-
third of the transformed or initial target data and then tested on the 

Classifier

HumDiv HumVar

FPR

acc

FPR

0.05 0.10 0.20 0.05 0.10 0.20

TPR TPR acc

Deep Forest 0.950 0.986 0.996 0.951 0.584 0.749 0.876 0.842

Random Forest 0.947 0.986 0.997 0.940 0.563 0.733 0.868 0.830

Neural Network 0.916 0.972 0.993 0.939 0.548 0.716 0.857 0.827

Gaussian SVM 0.916 0.975 0.995 0.940 0.551 0.719 0.857 0.829

Polynomial SVM 0.917 0.973 0.995 0.940 0.549 0.716 0.854 0.828

Logistic 
Regression

0.895 0.961 0.992 0.931 0.484 0.666 0.831 0.814

Linear SVM 0.897 0.961 0.992 0.933 0.483 0.667 0.831 0.815

Boosted 
Gaussian NB

0.850 0.936 0.977 0.805 0.445 0.650 0.822 0.812

Gaussian NB 0.794 0.928 0.978 0.805 0.341 0.568 0.813 0.812

PolyPhen-2 0.78 0.89 0.96 0.89 0.53 0.68 0.83 0.81

TPRs (true-positive rates) corresponding to a given FPR (false-positive rate) are provided. The values 
of the accuracy metric (acc) are given for all classifiers ordered by decreasing of AUC metric (see 
Figure 1 and Figure S2). Cells with AUC or acc values no less than corresponding PolyPhen-2 values 
are filled in yellow, while cells with AUC or acc values smaller than corresponding PolyPhen-2 values 
are colored light blue. In each column, the maximal value is in bold.

TABLE  2 Comparison of classifier 
performance on human datasets

TABLE  3 Comparison of the quality of classification of deleterious mutations in dog and mouse datasets for classifiers, trained with 
weights (+TL) and without weights (—) on source data

Classifier

Dog Mouse

Trained on HumDiv Trained on HumVar Trained on HumDiv Trained on HumVar

+TL — +TL — +TL — +TL —

Random Forest 0.855 0.638 0.889 0.884 0.846 0.682 0.841 0.682

Polynomial SVM 0.874 0.657 0.715 0.454 0.764 0.764 0.812 0.528

Gaussian SVM 0.686 0.662 0.753 0.618 0.655 0.539 0.833 0.560

Logistic Regression 0.908 0.667 0.855 0.701 0.777 0.576 0.875 0.565

Linear SVM 0.672 0.672 0.715 0.715 0.597 0.597 0.852 0.568

In each cell, we present the accuracy rate reached by a classifier. The maximal accuracy values achieved are shown in bold.
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remaining part of the target data. To test this approach, we used the 
HumVar and mouse datasets as source and target data, respectively 
(see Methods for the details).

As it is evident from Table 4, the classifiers can reach, on average, 
87.9% accuracy in the initial feature space and 88.4% accuracy in 
the transformed one. For Random Forest, Neural Network, Gaussian 
SVM, and Logistic Regression, the classification in transformed 
feature space leads to more accurate predictions according to the 
Wilcoxon–Mann–Whitney test (p < .0025) (Wilcoxon, 1945).

We then compared the prediction accuracy of the inductive 
transfer learning method with that of SIFT. On the mouse dataset, 
SIFT has an accuracy of 84.9%, while the Random Forest classifier 
trained on the HumDiv dataset and used on the target feature space 
transformed using a neutral network has an accuracy of 88.4%.

We conclude that the application of transfer learning techniques 
can substantially improve the classification accuracy of deleterious 
mutations in nonhuman species.

3.3 | Transfer learning for prediction of cattle data

Having learned how to best analyze mouse and dog data, we now 
move to the very important task of predicting deleterious mutations 
in farm animals. Indeed, as current cattle breeds have a very small ef-
fective population size (Pausch et al., 2015; Stachowicz, Sargolzaei, 
Miglior, & Schenkel, 2011) exacerbated by intense artificial selec-
tion (Bovine HapMap Consortium et al., 2009), cattle populations 
are susceptible to the increasing frequency of recessive deleterious 
alleles and, as a result, to the propagation of recessive disorders and 
homozygotes with a fatal phenotype (Pausch et al., 2015).

We found 1,892,964 mutations in 18,716 cattle proteins in the 
Ensembl database and classified them using transductive transfer 
learning based on reweighing samples according to their distance 
to human data. More precisely, we trained a Random Forest clas-
sifier on the HumVar data and reweighted the data according to 
the distances to cattle data. As a result, this method predicted 72% 
missense mutations to be deleterious and 28% to be neutral. The 
rate of deleterious mutations is higher compared to that obtained 
by SIFT: 54% deleterious and 46% neutral. According to Table 5, 

90% of deleterious mutations predicted by SIFT are also predicted 
as deleterious by transfer learning, but only half of the neutral mu-
tations predicted by SIFT are predicted as deleterious by transfer 
learning. This could be due to the high false-negative rate (FNR) of 
SIFT (Chun & Fay, 2009; Di, Chan, Wei, Liu, & Zhou, 2009). It is pos-
sible that transfer learning predictions lead to high FPR, but this is 
unlikely given that that FNR and FPR were almost the same when the 
method was applied to classify dog and mouse data. The predictions 
for the cattle genomewide dataset are available in Table S4.

To verify the transfer learning predictions, we used the cattle62 
dataset containing 31 neutral and 31 deleterious mutations (see 
Methods for the details). We correctly predicted 29 of 30 mutations 
found in the OMIA database as associated with different Mendelian 
diseases in cattle. For example, our method classified the W317R 
substitution in the Q2KIK0 protein as deleterious, which is known 
to compromise reproductive and rearing success in cattle (Pausch 
et al., 2015). Additionally, our method predicted that the L2153H 
substitution in B9X245 protein is disease-causing and, in fact, it has 
been shown to cause hemophilia A in cattle (Khalaj et al., 2009). The 
list of all damaging mutations with annotations is available in Table 
S5. Given these results, our classifier may enable accurate predic-
tions of deleterious mutations in whole-genome analyses.

4  | CONCLUSIONS

In this study, we have sought to demonstrate the potential of transfer 
learning as a set of methods for the mutation classification problem. 

Classifier

Without transformation With transformation

p-value*acca Conf. interval acc Conf. interval

Deep Forest 0.879 (0.873, 0.884) 0.881 (0.877, 0.887) .160

Random Forest 0.875 (0.869, 0.882) 0.884 (0.879, 0.889) .0014

Neural Network 0.840 (0.830, 0.850) 0.866 (0.854, 0.873) .0005

Gaussian SVM 0.866 (0.858, 0.875) 0.878 (0.872, 0.884) .0012

Polynomial SVM 0.866 (0.858, 0.874) 0.866 (0.859, 0.871) .3026

Logistic Regression 0.867 (0.859, 0.874) 0.876 (0.869, 0.883) .0019

Linear SVM 0.871 (0.863, 0.878) 0.873 (0.865, 0.880) .3383

aacc—mean accuracy index for 30 runs.
*p-value of one-sided Wilcoxon–Mann–Whitney test. The maximal accuracy values are shown in 
bold.

TABLE  4 Comparative analysis of 
classification quality (accuracy) for 
classifiers trained without transformation 
(in initial feature space) and with 
transformation (in transformed space 
from the use of a neutral network) on 
mouse data

TABLE  5 Comparison of proportions of deleterious mutation 
predicted by transfer learning and SIFT in cattle genomewide dataset

TL predictions

SIFT predictions

Deleterious Neutral Total

Deleterious 49% 23% 72%

Neutral 5% 23% 28%

Total 54% 46% 100%
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One important advantage of transfer learning is that it provides a way 
to use known information about a problem of interest from one do-
main and apply it a new domain. Here, we have presented two meth-
ods of transferring knowledge from human mutation classification to 
classification of deleterious mutations in other species. In the first 
method, we used source data to train and tune classifier parameters 
where samples from the source data were weighted according to their 
distances to the target data. In the second method, we transformed 
the target data using a neural network trained on the source data. 
We developed classifiers that attain substantially better accuracy 
than programs currently used for classifying mutations. In the future, 
we will extend our approaches to classify the effects of deletions and 
insertions. Current large datasets also provide a chance to decipher 
epistasis effect. This will require learning from more distantly related 
species, such as yeast, which will be an interesting challenge.
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Data are available as supplementary information (Tables S1, S2, S3, 
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S2 and S4 are available at https://github.com/PlekhanovaElena/
Transfer_learning.
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