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Abstract
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Early diagnosis of lung cancers and distinction between the tumor types (Small Cell Lung Cancer (SCLC) and
Non-Small Cell Lung Cancer (NSCLC) are very important to increase the survival rate of patients. Herein, we
propose a diagnostic system based on sequence-derived structural and physicochemical attributes of proteins that
involved in both types of tumors via feature extraction, feature selection and prediction models. 1497 proteins
attributes computed and important features selected by 12 attribute weighting models and finally machine
learning models consist of seven SVM models, three ANN models and two NB models applied on original database
and newly created ones from attribute weighting models; models accuracies calculated through 70-fold cross and
wrapper validation (just for SVM algorithms). In line with our previous findings, dipeptide composition,
autocorrelation and distribution descriptor were the most important protein features selected by bioinformatics
tools. The algorithms performances in lung cancer tumor type prediction increased when they applied on datasets
created by attribute weighting models rather than original dataset. Wrapper-Validation performed better than X-
Validation; the best cancer type prediction resulted from SVM and SVM Linear models (82%). The best accuracy of
ANN gained when Neural Net model applied on SVM dataset (88%). This is the first report suggesting that the
combination of protein features and attribute weighting models with machine learning algorithms can be
effectively used to predict the type of lung cancer tumors (SCLC and NSCLC).
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Introduction

Lung cancer, as a leading cause of death worldwide,
starts from the lungs and may spreads to other organs of
the body and has a low survival rate of just 15%
(Ganesan et al. 2010a, 2010b, Nomori 2011). It is esti-
mated that at least 1.2 million people were infected with
the disease, equivalent to the 12.3% of total number of
cancer diagnosed annually, with a mortality rate of 1.1
million people per year (Parkin 2001, Webb-Robertson
et al. 2010). As the treatments for each type of lung can-
cers are different (Motohiro et al. 2002), so if a patient is
correctly diagnosed in early stage, the chance for one to
be cured will increase (Zhou et al. 2002). The cancer’s
types have already been divided into two groups based
on pathological and morphological observations: non-
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small cell lung cancer (NSCLC) (80.4%) and small cell
lung cancer (16.8%) (Travis et al. 1995). The diagnosis of
tumor type is performed by histology, immunohisto-
chemistry or pathology based on either cells morphology
or protein expression. In addition, the underlying genetic
aberrations or biological processes may contribute to the
cancer malignancy process which cannot be revealed by
histological appearance of a tumor (Khan et al. 2001). In
order to improve the survival rate, need for an early type
detection method of lung tumors have been raised
(Delarue and Starr 1967), and this research carried to
address this need based on data mining tools.

So far many different techniques such as Chest Radio-
graph (x-ray), Computed Tomography (CT), Magnetic
Resonance Imaging (MRI) and Sputum Cytology have
been used for lung cancer classification (Grondin and
Liptay 2002, Schaefer-Prokop and Prokop 2002). How-
ever, most of these techniques are either expensive and
time consuming or applicable only in the advanced
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stages, when the survival rate of patients is very limited
(Fatma et al. 2012). During the last decades, computer-
aided cancer classification systems along with the rapid
developments of image processing and pattern recogni-
tion techniques have been proposed as suitable tools.
On the other hand, many researches have looked into
the bioinformatics models and data mining algorithms
as alternative choices. To improve the accuracy and the
speed of lung cancer diagnosis based on radiology, an
artificial neural network via hybrid lung cancer detection
system named HLND designed (Chiou YSP and
Ligomenides 1993). In the other study, a system based
on a parameterized two-level convolution artificial
neural network have been developed to do this import-
ant task (Lin et al. 1996), an automatic method based on
the subtraction between two serial mass chest radio-
graphs, which was used in the detection of new lung
nodules designed by Hayashibe et al. (Hayashibe et al.
1996). Abe et al. evaluated another computer-aided
diagnosis (CAD) system with automatic detection of
pulmonary nodules for lung cancer screening with com-
puted tomography (CT) (Abe et al. 2005). Penedo and et
al. employed two artificial neural network, one for
detecting suspicious regions in a low-resolution image
and the other for dealing with the curvature peaks of the
suspicious regions, which was used in the detection of
lung nodules (Penedo et al. 1998). In the diagnostic
systems of lung cancer with computer-aided, the rate of
false negative identification should be kept as low as
possible to improve the rate of overall identification on
the highest possible rate (Zhou et al. 2002).

Machine learning is an automatic and intelligent learn-
ing technique that employs variety of statistical tools to
“learn” from past data and then use the prior training to
classify new data, identify new patterns or predict novel
trends (Mitchell 1997). These techniques have been
widely used to solve many real world and complex prob-
lems (Kerhet et al. 2010). Since their introduction to the
bioinformatics community, machine learning approaches
helped to accelerate several major researches such as
bimolecular structure prediction, gene finding, genomics
and proteomics (Zycinski et al. 2011). As these
techniques are efficient and inexpensive in solving
bioinformatics problems, the applications of them in
bioinformatics are becoming popular and continuing to
develop (Liu 2004). In recent years machine learning
methods have been widely used in prediction especially
in medical diagnosis and interestingly. Almost all of
these algorithms used in cancer prediction and progno-
sis employed supervised learning. Furthermore, most of
these supervised learning algorithms belonged to a
specific category of classifiers that classify on the basis
of conditional probabilities or conditional decisions
(Cruz and Wishart 2006, Ganesan et al. 2010a, 2010b).
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One of the most instrumental type of machine learn-
ing techniques are Support Vector Machines (SVM )
which were introduced by Vladimir Vapnik and his col-
leagues (Bazzani et al. 2001, Baumes et al. 2006). SVMs
are used for binary classification to find a hyper plane
which separates the d-dimensional data perfectly into its
two classes (Parsaei and Stashuk 2012, Boswell 2002). In
contrast to other classifiers, SVM searches for the hyper
plane that maximizes the distance from the hyper plane
to the nearest examples in each class. An attractive fea-
ture of SVM is that it can map linearly inseparable data
into higher dimensional space where they can be linearly
separated. This work is executable with introduction of
“kernel induced feature space” notion. Recently, SVM
has gained much attention as a useful tool for image rec-
ognition (Guan et al. 2009, Avci 2012). The use of SVM,
like any other machine learning technique, involves two
basic steps namely training and testing. The first step in-
volves feeding known data to the SVM along with previ-
ously known decision. It is from the training set that
an SVM gets its intelligence to classify unknown data
(Van Belle et al. 2011). Several studies have already used
the performance of Bayesian classifier; artificial neural
net and SVM for differentiating obstructive lung dis-
eases, and SVM gained the best performance for classifi-
cation (Lee et al. 2009). It has been shown that SVM
provide better overall quantification for interstitial lung
disease differentiation in high-resolution computerized
tomography images (Lim et al. 2011).

The Naive Bayes (NB) classifier technique is based on
the so-called Bayesian theorem and is particularly suited
when the dimensionality of the inputs is high. A Naive
Bayes classifier considers that all attributes (features)
independently contribute to the probability of a certain
class. This classifier can be trained so efficiently in a
supervised learning method and works much better in
many complex real-world situations, especially in the
computer-aided diagnosis (Gorunescu 2006, Belciug
2008, Dumitru 2009). Despite its simplicity, Naive Bayes
can often outperform more sophisticated classification
methods. The Bayesian approach allows scientists to
combine new data with their existing knowledge or ex-
pertise. Using a training dataset, the Bayesian classifiers
determine the probability of associating certain classes at
certain instances given the values of the predictor vari-
ables. Naive Bayes classifier provides performances
equivalent to other machine learning techniques with
low computational effort and high speed (Dumitru 2009).

Herein, regarding the importance of early classification
and prediction of lung tumor types in successful treat-
ment of this disease, several machine learning algorithms
employed to predict the type of lung cancers based on
structural and physicochemical attributes of proteins.
Some studies have used sequence-derived structural and
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physicochemical descriptors in machine learning predic-
tion of structural and functional classes (Dubchak et al.
1999, Karchin et al. 2002, Cai et al. 2003, Cai et al. 2004,
Han et al. 2004a, 2004b), protein-protein interactions
(Bock and Gough 2001, Bock and Gough 2003, Lo et al.
2005, Chou and Cai 2006), subcellular locations (Chou
2000, Chou and Cai 2004, Chou and Shen 2006, Guo
and Lin 2006), peptides containing specific properties
(Schneider and Wrede 1994, Cui et al. 2007), microarray
data (Brown et al. 2000) and protein secondary structure
prediction (Ward et al. 2003). Ong and et al. showed
that currently used descriptors are generally useful for
classifying proteins and the prediction performance may
be enhanced by combinations of descriptors (Ong et al.
2007); in this experiment, the same datasets as previ-
ously reported was used (Hosseinzadeh et al. 2012). Pre-
viously feature selection, tree induction and clustering
models had been used to classify lung tumors based on
important protein features. Follow up of previse work, the
application of three machine learning models practiced
here to introduce accurate prediction tools for lung cancer
types based on important attributes of related proteins.

Results

Data preparation and feature selection

Proteins that involved in two types of lung tumors
obtained from conversion of gene symbols defined by
microarray analysis in the GSEA db, using DAVID ser-
ver. The list of genes associated with two types of lung
tumors and those that were common between them
showed in Table 1.

Data cleaning

In original dataset, 59 records classified as SCLC, 30 re-
cords belonged to NSCLC class and 25 other records to
COMMON tumor classes. For each record 1497 features
computed and after removing duplicate, useless and cor-
related attributes, the number of protein features for
each record decreased to 1089 features (less than 28%
removed) and this cleaned dataset named as Final
Cleaned database (FCdb).

Page 3 of 14

Feature selection

Twelve attributes weighting models applied on FCdb
which gave each feature a weight between 0 to 1. Fea-
tures that gained weight values higher than 0.50 with at
least 50% of weighting algorithms regarded as important
protein features. Figure 1 showed the most important
protein attributes selected by more than 50 percent of
attribute weighting algorithms (Information gain, Infor-
mation gain ratio, Rule, Deviation, Chi Squared, Gini
index, Uncertainty, Relief, SVM and PCA). Dispersions
of features’ weight values by two other weighting models
(SAM and Maximum Relevance) have illustrated in the
Figure 2 and Figure 3.

Classification and prediction

Support vector machine approach

Gained accuracies and Kappa values for each SVM
model (while Gamma and C set as 0.0065 and 10,
respectively and ran with X-validation approach) on 13
datasets (FCdb and 12 datasets that obtained from attri-
bute weighting application: Information gain, Informa-
tion gain ratio, Rule, Deviation, Chi Squared, Gini index,
Uncertainty, Relief, SVM, PCA, SAM and MR) illustrated
in the Table 2. Furthermore, Table 3 shows the results of
running seven SVM and wrapper validation methods on
datasets that derived from attribute weighting (this
model cannot be applied on main dataset, FCdb, as re-
quired attribute weighted datasets). When X-validation
(ten-fold cross validation) applied, the average accuracy
ranged from 32.27% (SVM Hyper) to 67.36% (for SVM
and SVM Linear), while the lowest and highest accur-
acies accounted for the same algorithms (30.0% and
81.67%, respectively). The Kappa index was followed the
same pattern, the lowest came from SVM Hyper
(-6.10%) and the highest from SVM and SVM Liner
(69.09%). With Wrapper validation application, the aver-
age accuracies ranged from 33.21% (for SVM Hyper) to
69.53% (SVM) and the minimum and maximum accur-
acies (23.86% and 71.97%) were again for the same
models, respectively (Figure 5).

Table 1 The list of overexpressed genes in three classes of lung tumors (SCLC, NSCLC and COMMON) defined by

microarray analysis; extracted from GSEA db

Tumor type Gene Symbol

SCLC

APAF1, BCL2, BCL2L1, BIRC2, BIRC3, CCNET, CCNE2, CDK2, CDKN1B, CDKN2B, CHUK,

CKS1B, COL4A1, COL4A2, COL4A4, COL4A6, CYCS, FN1, IKBKB, IKBKG, ITGA2, ITGA2B,

[TGA3, ITGA6, ITGAV, ITGB1, LAMAT, LAMA2, LAMA3, LAMA4, LAMAS, LAMB1, LAMB2,

LAMB3, LAMB4, LAMCT, LAMC2, LAMC3, MAX, MYC, NFKB1, NFKBIA, NOS2, PIAST, PIAS2,
PIAS3, PIAS4, PTEN, PTGS2, PTK2, RELA, SKP2, TRAF1, TRAF2, TRAF3, TRAF4, TRAF5, TRAF6, XIAP

NSCLC

ARAF, BAD, BRAF, CDKN2A, EGF, EGFR, ERBB2, FOXO3, GRB2, HRAS, KRAS, MAP2K1,

MAP2K2, MAPK1, MAPK3, NRAS, PDPK1, PLCGT, PLCG2, PRKCA, PRKCB, PRKCG, RAF1,
RASSF1, RASSF5, SOS1, SOS2, STK4, TGFA

COMMON

AKT1, AKT2, AKT3, CASP9, CCND1, CDK4, CDK6, E2F1, E2F2, E2F3, FHIT, PIK3CA, PIK3CB,

PIK3CD, PIK3CG, PIK3R1, PIK3R2, PIK3R3, PIK3R5, RARB, RB1, RXRA, RXRB, RXRG, TP53
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Figure 1 The most important protein attributes selected by more than fifty percent of attribute weighting algorithms. As is evident, the
features of distribution descriptor (F5.3), dipeptide composition (F1.2) and autocorrelation (F3.1) were defined important by 80% of attribute

Artificial neural network

The results of running three models of ANN (Auto MLp,
Neural Net and Perceptron) on 13 datasets given in the
Table 4. The most accurate model was Newural Net when
applied on SVM dataset with accuracy of 87.73%. The
ranges of accuracies in three models of artificial neural
network were respectively 52-86, 53-83 and 31 — 59
percents. The percentage of Kappa in the Auto MLP
model except for PCA and Deviation datasets started

from 46% to went up to 77%. The maximum and mini-
mum percent of Kappa in the Neural Net model (except
for PCA and Deviation datasets) were respectively 80%
and 43%. Kappa index in Perceptron model was lower
than two other models and its maximum got to to 26%.

Naive bayes
As shown in the Table 5, the performance of NB models
was lower when compared to SVM and ANN algorithms.
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Figure 2 Dispersion of protein attributes that gained weight value between 0 to 1 by attribute weighting model of SAM (the index of
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Figure 3 Dispersion of protein attributes that gained weight value between 0 to 1 by attribute weighting model of Maximum
Relevance (the index of protein attributes exactly defined in Additional file 1: Table S1).
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The best accuracy gained with NB models was 77% and
belonged to Naive Bayes model ran on SVM and Max-
imum Relevance datasets. The Bayes Kernel model per-
formance on 13 datasets differ from 54% to 70% and the
same ranged from 44% to 77% when Naive Bayes model
applied (except for FCdb). The Kappa index again was
lower than accuracy and its maximum and minimum
values were 63% and 11%.

Discussion

Lung cancer is considered as the main cause of cancer
death worldwide, and detection of this disease in its
early stages is difficult because symptoms appear only at
advanced stages causing the mortality rate to be high
(Fatma et al. 2012). The 5-year survival rate of localized
stage, when the cancer does not spread to additional
sites like lymph nodes or other parts of body, is about
50%. Various factors influencing 5-year survival rate
such as the stage of cancer, the type of cancer, general
health, etc. Early detection of lung cancer is the leading
factor decreasing mortality rate and increasing in sur-
vival rate (Fontana et al. 1986). Histologically, about 80%
of lung cancer are from NSCLC class and just 20% are
identified as SCLC cancers (Hu et al. 2002). The patho-
logical distinction between NSCLC and SCLC tumors is
so important because patients with NSCLC tumor are
treated differently from those with SCLC tumors
(Garber et al. 2001). Detection of lung cancer in its early
stage is the key in curing patient and automated diagno-
sis would play crucial roles in this matter (Ganesan et al.
2010a, 2010b).

So far many scientists tried to propose new methods
to classify the types of lung cancer in early stages
(Edwards et al. 2000, Petersen and Petersen 2001,
Beadsmoore and Screaton 2003, Boffa 2011, Anagnostou

et al. 2012, Gilad et al. 2012, West et al. 2012). In some
studies, bioinformatics or data mining models have been
used. For example, a training—testing approach has been
used to test the reliability of ¢cDNA microarray-based
classifications of resected human NSCLCs analyzed
(Yamagata et al. 2003). Artificial neural networks have
already been widely exploited in computer-aided lung
cancer diagnosis, classifing of individual lung cancer cell
lines (SCLC and NSCLC) based on DNA methylation
markers by using linear discriminant analysis and artifi-
cial neural networks (Marchevsky et al. 2004). Neural
network have also been used for lung cancer diagnosis
to help oncologists to plan for a better medication and
early diagnosis (Ganesan et al. 2010a, 2010b). The color
and texture features from images have also been used as
tools for the classification of lung cancer using artificial
neural network (Almas and Bariu, 2012). Furthermore,
lung cancer gene expression database analysis incorpo-
rated prior knowledge with support vector machine-
based classification method into cancer classification
(Guan et al. 2009). The use of machine learning in can-
cer detection and prediction is investigated in another
study (Lipson et al. 1961). Machine learning techniques
like artificial neural network and decision tress are used
for cancer detection for nearly 20 years (Galeotti et al.
1986, Campanella 1992, Liu et al. 2006). The potential of
using machine learning methods for detecting lung can-
cer cells or tumors via X-rays, Computed Tomography
(CT) has been elaborated in other studies (van Ruth et
al. 2003, Kancherla and Mukkamala 2011, 2012). They
have also been used for tumor classification or cancer
detection using microarray data or gene expression are
Fisher Linear Discriminant analysis (Brown and Botstein
1999), K Nearest Neighbor (KNN) (Dudoit et al. 2002),
(SVM ) (Peterson and Ringner 2002), boosting, and self-
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Table 2 The total accuracy and Kappa obtained from applying seven SVM algorithms with X-validation on 13 datasets
(FCdb and 12 datasets that obtained from attribute weighting models)

SVM models Ssvm Ssvm N7 SsVm N7 SVM Fast SYm

Datasets Linear Evolutionary Lib SYM PSO Large Margin Hyper

FCdb Accuracy 67.42% 67.42% 47.12% 51.67% 4530% 64.77% 33.26%
Kappa 40.85% 40.85% 25.76% 0.00% 0.00% 44.54% 2.48%

Chi Squared Accuracy 70.30% 70.30% 5591% 61.36% 47.50% 68.48% 3242%
Kappa 44.09% 44.09% 29.36% 31.01% 1846% 46.71% 221%

Deviation Accuracy 50.68% 50.68% 58.71% 51.97% 49.24% 34.02% 31.44%

Kappa 2.08% 2.08% 32.56% 13.00% 22.16% 0.06% —0.24%

Gini Index Accuracy 67.42% 67.42% 64.77% 63.94% 43.86% 63.18% 31.44%

Kappa 42.19% 42.19% 45.05% 31.19% 0.00% 42.74% —0.24%

Info Gain Accuracy 74.39% 74.39% 60.30% 65.61% 45.30% 63.18% 31.44%

Kappa 54.43% 54.43% 38.77% 34.02% 0.00% 43.16% —-0.24%

Info Gain Ratio Accuracy 65.76% 65.76% 64.62% 54.17% 45.30% 67.42% 34.17%

Kappa 34.46% 34.46% 45.06% 6.46% 0.00% 47.55% —1.65%

PCA Accuracy 50.68% 50.68% 58.71% 51.97% 49.24% 34.02% 31.44%

Kappa 2.08% 2.08% 32.56% 13.00% 22.16% 0.06% —0.24%

Relief Accuracy 71.29% 71.29% 58.03% 56.89% 56.36% 73.79% 30.00%

Kappa 47.88% 47.83% 26.55% 1361% 26.89% 56.22% -1.21%

SYM Accuracy 81.67% 81.67% 59.55% 66.74% 43.79% 78.18% 36.14%
Kappa 69.09% 69.09% 34.98% 40.22% 0.00% 64.73% 3.19%

Uncertainty Accuracy 69.32% 69.32% 61.14% 58.64% 45.30% 64.55% 32.35%
Kappa 44.57% 44.57% 39.90% 16.82% 0.00% 43.04% 1.22%

Rule Accuracy 64.92% 64.92% 59.39% 51.67% 45.30% 61.14% 31.36%

Kappa 36.01% 36.01% 37.90% 0.00% 0.00% 38.09% —6.10%

SAM Accuracy 62.20% 62.20% 56.67% 52.50% 46.21% 54.77% 33.26%
Kappa 31.04% 31.04% 36.30% 2.00% 0.00% 26.61% 2.48%

MR Accuracy 78.03% 78.03% 58.86% 63.03% 53.64% 76.36% 32.65%

Kappa 63.43% 63.43% 28.59% 31.73% 24.33% 61.02% —4.27%

organizing maps (SOM) (Eisen et al. 1998), hierarchical
clustering (Tamayo et al. 1999), and graph theoretic
approaches (Sakas et al. 2007).

A significant number of researchers have worked on
the ensemble of the multiple classifiers to improve the
performance of classification of cancer (Abbass 2002,
Zhou et al. 2002, Futschik et al. 2003, Santos-Garcia et
al. 2004, Hong-HeeWon 2007). The ensemble classifier
increases not only the performance of the classification,
but also the confidence of the results. Zhou and et al
propose an automatic pathological diagnosis procedure
named NED, which utilizes artificial neural network en-
semble to identify lung cancer cells in the images of the
specimens of needle biopsies (Zhou et al. 2002).

Regarding the importance of distinction between lung
cancer tumors and need for finding new simple and
effective methods for lung cancer types’ detection, the
classification and prediction of lung cancers based on

structural and physicochemical descriptors of proteins
have been proposed by using machine learning models,
as sequence-derived structural and physicochemical
descriptors may be highly useful for representing and
distinguishing proteins or peptides of different structural
irrespective of sequence similarity (Cai et al. 2003, Han
et al. 20044, 2004b, Lo et al. 2005, Li et al. 2006) too
long sentence.

The first step for fulfilling to this idea is identification
and selection of most important and appropriate fea-
tures. PROFEAT is a very trusty server for computing
sequence-derived structural and physicochemical de-
scriptors (Rao et al. 2011), so 1497 attributes of SCLC
and NSCLC proteins computed. Twelve different attri-
bute weighting models applied to final cleaned dataset;
as each algorithm uses a specific pattern to define the
most important features, thus, the results may be differ-
ent (Baumgartner et al. 2010, Ebrahimi et al. 2011,
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Table 3 The total accuracy obtained from running seven SVM methods and X-wrapper validation on the 12 datasets

derived from attribute weighting models

SVM models svm svm svm Ssvm N7 N7 SVM Fast
Dataset Linear Lib SVM Evolutionary POS Hyper Large Margin

SAM 70.98% 68.86% 51.67% 41.97% 45.68% 41.82% 66.52%
MR 70.38% 70.00% 51.67% 47.35% 40.15% 35.15% 69.32%
Chi Squared 69.02% 70.83% 51.67% 43.79% 44.39% 32.58% 71.89%
Deviation 67.80% 71.14% 51.67% 47.42% 39.24% 40.38% 67.12%
Gini Index 63.94% 68.18% 51.67% 45.76% 47.12% 32.73% 68.56%
Info Gain 70.00% 70.98% 51.67% 45.83% 49.17% 42.95% 70.30%
Info Gain Ratio 71.97% 68.48% 51.67% 46.59% 43.79% 23.86% 67.50%
PCA 70.15% 68.26% 51.67% 45.68% 41.29% 29.77% 72.73%
Relief 70.83% 66.74% 51.67% 45.83% 37.95% 28.26% 70.23%
Rule 71.89% 68.33% 51.67% 47.58% 43.71% 28.03% 72.88%
SYM 70.00% 68.26% 51.67% 47.35% 44.02% 33.03% 67.42%
Uncertainty 67.42% 69.17% 51.67% 47.35% 43.48% 29.92% 66.44%

Ebrahimie et al. 2011, Hosseinzadeh et al. 2012). As is
shown in Figure 1, inline with our previous published
study (Hosseinzadeh et al. 2012), the most important
feature groups that selected by 80% of models were from
F5.3 (distribution descriptors), F1.2 (dipeptide compos-
ition) and F3.1 (autocorrelation) groups. Furthermore,
Figure 2 and Figure 3 show that by running two add-
itional weighting models, F1.2 (dipeptide composition),
F2.1 (autocorrelation) and F3.1 (autocorrelation) were
also selected as important features. These features can
be effectively used to distinguish between different types
of lung tumors. As is proven in the other study, feature
selection reduces the number of features and improves
the accuracy (Kancherla et al. 2009), here also the

potential use of feature selection to improve the accur-
acy and efficiency of lung cancer detection is confirmed.

In next step, classification and prediction of lung
tumors based on structural and physicochemical proper-
ties of associated proteins performed and several predic-
tion models such as SVM, ANN and NB used. Seven
prediction models of support vector machines (SVM,
LibSVM, SVM Linear, SVM Evolutionary, SVM PSO,
SVM Fast Large Margin and SVM Hyper Hyper) applied
on 13 datasets (main dataset, FCdb, and 12 other
datasets that generated from attribute weighting algo-
rithms: Information gain, Information gain ratio, Rule,
Deviation, Chi Squared, Gini index, Uncertainty, Relief,
SVM, PCA, SAM and Maximum Relevance). Two

Table 4 The total accuracy and Kappa index obtained from three Neural Network models on 13 datasets (FCdb and 12

datasets that obtained from attribute weighting models)

Data Base Auto MLp Neural Net Perceptron Auto MLp Neural Net Perceptron
Accuracy Accuracy Accuracy Kappa Kappa Kappa
Chi Squared 73.79% 70.23% 54.09% 56.39% 51.54% 24.84%
Info Gain Ratio 80.76% 83.41% 52.58% 68.53% 71.55% 13.60%
FCdb 69.24% 81.59% 50.76% 50.05% 69.36% 343%
SYM 85.15% 87.73% 57.80% 75.66% 79.66% 20.61%
Uncertainty 82.58% 81.59% 52.42% 71.33% 69.92% 18.58%
PCA 51.67% 51.67% 30.98% 0.77% 0.00% —5.04%
Relief 77.27% 7561% 51.67% 62.52% 60.30% 16.09%
Rule 76.06% 80.53% 48.03% 60.96% 67.58% 5.45%
Deviation 51.67% 52.50% 30.98% 1.73% 333% —5.04%
Gini Index 76.29% 76.21% 48.86% 61.62% 61.97% 11.38%
Info Gain 85.91% 85.98% 51.44% 76.98% 77.09% 16.98%
SAM 66.32% 64.62% 52.65% 45.56% 42.92% 15.51%
MR 76.29% 7545% 58.56% 61.88% 60.12% 25.92%
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Table 5 The total accuracy and Kappa index obtained from two Naive Bayes models on 13 datasets (FCdb and 12

datasets that obtained from attribute weighting models)

Data Base Bayes Kernel Naive Bayes Bayes Kernel Naive Bayes
Accuracy Accuracy Kappa Kappa
Rule 57.93% 48.03% 13.54% 25.30%
SYM 66.97% 77.35% 42.20% 63.30%
Uncertainty 5821% 5545% 14.33% 32.65%
Relief 66.74% 72.65% 42.94% 55.55%
PCA 54.39% 44.02% 19.52% 11.38%
Info Gain Ratio 61.24% 61.14% 25.22% 41.00%
Info Gain 69.32% 70.23% 44.63% 54.66%
Gini Index 65.68% 66.74% 38.20% 48.97%
Deviation 54.39% 44.02% 19.52% 11.38%
Chi Squared 63.18% 64.09% 37.20% 42.02%
FCdb 5821% 14.30% 42.20% 32.60%
MR 70.00% 77.20% 50.84% 63.60%
SAM 61.20% 62.95% 26.95% 39.75%

validation algorithms, X-validation and X-wrapper, ap-
plied on datasets to calculate the models performance
and accuracies (Tables 2 and 3). The findings showed
SVM Hyper performance was the worst and this model
even was less accurate than chance models (average
33.21%). Two other models (SVM and SVM Linear)
showed the best performance and their accuracies
reached up to 82%. When the results of two validation
methods (X-Validation and Wrapper Validation) com-
pared, generally the performance of X-Validation was
better than X-Wrapper Validation, although the Wrap-
per performed better when applied on SVM , SVM Lin-
ear and SVM Fast models. The best accuracies gained
when X-Validation applied on dataset created from SVM
attribute weighting but for Wrapper-Validation the
datasets were Deviation, Relief and Rule. The results
suggested that either SVM or SVM Linear would be the
best candidate algorithms to predict lung cancer if they
apply on SVM datasets.

The results of three ANN application (Auto MLp,
Neural Net and Perceptron) showed Neural Net was the
best and the most accuracte model when it agained
applied on SVM dataset, while the worst performance
belonged to Perceptron model; the accuracies of Auto
MLp and Perceptron models were high and nearly at the
same levels (86% and 58%) when they applied on Infor-
mation Gain and SVM datasets. Generally the Kappa
indexes were less accurate, the best index obtained from
three models Auto MLp, Neural Net and Perceptron
were respectively 77%, 80% and 26%; therefore the best
index gained from Neural Net model, too.

As shown in Table 5, the best accuracy and Kappa
index of Naive base and Naive base kernel models
gained when they ran on Maximum Relevance dataset

(77%), and again the indices were lower. The results
confirmed that Naive base model was is better than
Naive base kernel.

Conclusions
Comparing the performances of three types of machine
learning models (SVM , ANN and NB) to predict and
detect the type of lung tumors based on structural and
physicochemical attributes of proteins showed that the
Neural Net model ran on SVM dataset gained the best
accuracy (88%). Our results showed the potential use of
feature selection and prediction models can be effect-
ively used as a simple application. The results also
showed that attribute weighting can be beneficiary both
to processing time and getting more accurate results.
Dipeptide composition, Moran autocorrelation and
distribution descriptor were the most important protein
features selected by weighting tools. To our best know-
ledge, the findings of this study for the first time showed
that protein features in combination with machine learn-
ing algorithms can be effectively used to determine any
types of lung cancer tumors.

Materials and methods

Data preparation and feature selection

As shown in our previous study (Hosseinzadeh et al.
2012), the over represented genes in any type of lung
tumors obtained from microarray GSEA db (Gene Set
Enrichment Analysis database); a well-known database
used for storing the results of experimental microarray
analysis and determines whether contains a section of
Molecular Signatures Database (MSigDB) that is a col-
lection of annotated gene sets for use with GSEA soft-
ware. It made possible to search for gene sets, examine
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gene sets and their annotations and download them
(Subramanian et al. 2005). A list of appropriate gene
lists defined and downloaded (for more details in
(Hosseinzadeh et al. 2012). The gene sets converted to
protein accession numbers by using DAVID server
(http://david.abcc.ncifcrf.gov) and protein  sequences
extracted from UniProt Knowledgebase (Swiss-Prot and
TrEmble) afterwards.

Structural and physicochemical attributes

Seven types of of proteins features that were involved in
three classes of lung tumors (SCLC, NSCLC and COM-
MON) were calculated by using PROFEAT web server
facilities. These features included of (1) amino acid
composition, dipeptide composition. (2) Normalized
Moreau—Broto autocorrelation; (3) Moran autocorrel-
ation; (4) Geary autocorrelation; Autocorrelation de-
scriptors are defined from the distribution of amino acid
properties along the sequence. The amino acid indices
used in these autocorrelation descriptors included
hydrophobicity scales, average flexibility indices, polariz-
ability parameter, and free energy of solution accessible
surface area in trepeptide, residue volume, steric param-
eter, and relative mutability. (5) the composition (C),
transition (T) and distribution (D) of various structural
and physicochemical properties; These descriptors are
derived for each of the following physicochemical prop-
erties: hydrophibicity, polarity, polarizibility, charge, sec-
ondary structures, and normalized Van der Waals
volume. (6) sequence- order-coupling number, quasi se-
quence-order attributes; The quasi-sequence-order
descriptors are derived from both the Schneider-Wrede
physicochemical distance matrix and the Grantham
chemical distance matrix between the 20 amino acids.
(7) pseudo amino acid composition; Instead of using the
conventional amino acid composition to represent the
sample of a protein, Chou proposed the pseudo amino
acid (PseAA) composition in order to include the se-
quence-order information. Therefore one thousands and
ninety seven protein features or attributes computed by
PROFEAT web server (http://jing.cz3.nus.edu.sg/cgi-501
bin/prof/prof.cgi). An index of Fij.kl is used to represent
the 1™ descriptor value of the k™ descriptor of the j™
feature in the i™ feature group, which serves as an easy
reference to the PROFEAT manual provided in the server
homepage (Li et al. 2006). A complete list of these feature
indices and their complete definition is shown in the
Addtional file 1: Table S1 (Hosseinzadeh et al. 2012).

Running data mining models

A dataset of 1497 features of three groups of protein
was imported into Rapid Miner software (Rapid Miner
5.0.001, Rapid-I GmbH, Stochumer Str. 475, 44227
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Dortmund, Germany), and the type of tumor was set as
target or label attribute.

Data cleaning
Duplicate and useless features removed and the new data-
base was labeled as the Final Cleaned database (FCdb).

Attribute weighting

To identify the most important features, 12 attribute
weightings algorithms applied to the FCdb (they were:
weight by Information gain, weight by Information Gain
ratio, weight by Rule, weight by Deviation, weight by Chi
squared statistic, weight by Gini index, weight by Uncer-
tainty, weight by Relief, weight by SVM (Support Vector
Machine) and weight by PCA (Principle Component
Analysis) (for more details see (Hosseinzadeh et al
2012)). Two more attribute weighting models of SAM
and MR are also applied in this study with the following
definition:

Weight by Significance analysis of microarrays:
SAM is a statistical technique; introduced in 2001;
which used to determine whether changes in gene
expression are statistically significant or not. With the
advent of DNA microarrays it is now possible to
measure the expression of thousands of genes in a
single hybridization experiment. Generated data is
huge and introducing such a model is essential.

Weight by Maximum Relevance: The Max-
Dependency feature selection can be efficiently
implemented as the Minimum Redundancy and
Maximum Relevance (nRMR) algorithm. Significantly
outperforms the widely used max-relevance selection
method: mRMR features cover a broader feature
space with fewer features. mRMR is very efficient and
useful for gene selection and many other applications.
Both relevance and redundancy estimation are low
dimensional problems (i.e. involving only 2 variables).
This is much easier than directly estimating
multivariate density or mutual information in the high
dimensional space, this algorithm is faster speed and
more reliable estimation.

Attribute selection

After running attribute weighting models on FCdb, each
protein attribute gained a weight (between 0 and 1)
showing its importance with regards to the target attri-
bute (type of tumors). All variables that obtained weight
values higher than 0.50 were selected and 12 new
datasets created. These newly formed datasets were
named according to their attribute weighting models.


http://david.abcc.ncifcrf.gov
http://jing.cz3.nus.edu.sg/cgi-501 bin/prof/prof.cgi
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Classification and prediction

In our previous study, after running feature selection,
several decision tree induction models and unsupervised
clustering algorithms employed to identify the most im-
portant protein attributes and obtaining the best classifi-
cation of lung tumors based of them, but here in this
study we used machine learning methods to predict the
type of lung tumor based on machine learning and train-
ing capabilities.

Support vector machine approach

SVM s are popular and powerful supervised data classifi-
cation and prediction techniques with associated
learning algorithms which analyze data and recognize
patterns. Basic SVM takes a set of input data and pre-
dicts, for each given input, which of two possible classes
forms the output, making it a non-probabilistic binary
linear classifier. Given a set of training examples, each
marked as belonging to one of two categories, a SVM
training algorithm builds a model that assigns new
examples into one category or the other. Herein we used
seven models of SVM algorithms (SVM, LibSVM, SVM
Linear, SVM Evolutionary, SVM PSO, SVM Fast Large
Margin and SVM Hyper Hyper) on 13 datasets to predict
the type of lung tumors based on sequence-derived
structural and physicochemical descriptors of proteins
that involved in different types of lung tumors. LIBSVM
is an integrated software for support vector classifica-
tion, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-
SVR) and distribution estimation (one-class SVM). It
supports multi-class classification. Linear SVM is the
newest extremely fast machine learning (data mining) al-
gorithm for solving multiclass classification problems
from ultra large data sets that implements an original
proprietary version of a cutting plane algorithm for
designing a linear support vector machine. Linear SVM
is a linearly scalable routine meaning that it creates an
SVM model in a CPU time which scales linearly with the
size of the training data set. Evolutionary support vector
machines (ESVMs) are novel techniques, these methods
incorporate the learning engine of the up to date SVMs
but develop the coefficients of the decision function by
means of evolutionary algorithms (EAs) (Stoean, Stoean
et al. 2011). PSO (Particle Swarm Optimization) algo-
rithms make particles with fitness values which are eval-
uated by the fitness function to be optimized. PSO is
initialized with a group of random particles (solutions)
and then searches for most efficient particles by updat-
ing each generation (Ardjani and Sadouni 2010). Applies
a fast margin learner based on the linear support vector
learning scheme proposed by R.-E. Fan, K.-W. Chang,
C.-]. Hsieh, X.-R. Wang, and C.-J. Lin. Although the re-
sult is similar to those delivered by classical SVM or lo-
gistic regression implementations, this linear classifier is
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able to work on data set with millions of examples and
attributes. It is well-known that SVM can be properly
used for two-way classification. Hyper SVM model solve
this problem that how can we decide which parameter
order can be changed to reproduce a new classification.
This model is included a Huffman-Tree like mechanism,
called hyper SVM (Shyu and Liao 2011). Briefly, main
database (FCdb) transformed to SVM format and scaled
by grid search (to avoid attributes in greater numeric
ranges dominating those in smaller numeric ranges) and
to find the optimal values for operator parameters.
Dataset divided into 10 parts and 9 parts used as train-
ing set and the last part as testing set.

Validation methods

To prevent over-fitting problems, X-validation and
X-wrapper validation methods applied and the proced-
ure repeated for 12 different testing sets (Information
gain, Information gain ratio, Rule, Deviation, Chi
Squared, Gini index, Uncertainty, Relief, SVM, PCA,
SAM and Maximum Relevance) and then the average of
accuraies and Kappa indices computed. The perform-
ance evaluator operator used for classification tasks
(in cases where the label attribute has a binominal value
type) and for polynominal classification tasks. Other
polynominal classification tasks such as Polynominal
Classification Performance Evaluator (PCPE) operator
employed and accuracy and Kappa statistics calculated.

Kernel trick models

In addition to performing linear classification, SVMs can
efficiently perform non-linear classification using what is
called the kernel trick, implicitly mapping their inputs
into high-dimensional feature spaces. The original opti-
mal hyperplane algorithm proposed was a linear classi-
fier. However, later on it was suggested a way to create
nonlinear classifiers by applying the kernel trick to max-
imum-margin hyperplanes. The resulting algorithm is
formally similar, except that every dot product is
replaced by a nonlinear kernel function. This allows the
algorithm to fit the maximum-margin hyperplane in a
transformed feature space. For machine learning algo-
rithms, the kernel trick is a way of mapping observa-
tions from a general set S into an inner product space V
(equipped with its natural norm), without ever having to
compute the mapping explicitly, in the hope that the
observations will gain meaningful linear structure in
V. Linear classifications in V are equivalent to generic
classifications in S. The trick to avoid the explicit map-
ping is to use learning algorithms that only require dot
products between the vectors in V; and choose the map-
ping such that these high-dimensional dot products can
be computed within the original space, by means of a
kernel function (Figure 4). Therefore, we applied the
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dimension linearly separable function.

Figure 4 The mechanism of Kernel trick models. These machines are used to compute a non-linearly separable function into a higher

kernel types of C-SCV, radial and dot on the datasets to
find the best accuracy.

Artificial neural network (ANN)

Three models of artificial neural networks algorithms
ran on 13 datasets (FCdb and 12 datasets that obtained
from attribute weighting models). The models were Auto
MLp (multilayer perceptron), Neural Net and Perceptron
(Single-layer Neural Networks). The term of "Percep-
trons" was coined by Frank Rosen Blatt in 1962 and is
used to describe the connection of simple neurons into
networks. In computational geometry, the Single-layer
Neural Networks (Perceptrons) is an algorithm for

supervised classification of an input into one of two pos-
sible outputs. It is a type of linear classifier, i.e. a classifi-
cation algorithm that makes its predictions based on a
linear predictor function combining a set of weights with
the feature vector describing a given input. For the mo-
ment we will concentrate on Single Layer Perceptrons.
A multilayer perceptron (MLP) is a feed forward artificial
neural network model that maps sets of input data onto
a set of appropriate output. An MLP consists of multiple
layers of nodes in a directed graph, with each layer fully
connected to the next one. Except for the input nodes,
each node is a neuron (or processing element) with a
nonlinear activation function. MLP utilizes a supervised
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learning technique called back propagation for training
the network (Rosenblatt 1961). MLP is a modification of
the standard linear perceptron and can distinguish data
that is not linearly separable (Cybenko 1989). The accur-
acy and Kappa values from running these three ANN
models on 13 datasets illustrated in Table 4.

Naive Bayes

A Naive Bayes classifier is a simple probabilistic classi-
fier based on applying Bayes' theorem with strong
(naive) independence assumptions. A more descriptive
term for the underlying probability model would be
"independent feature model". In simple terms, a Naive
Bayes classifier assumes that the presence (or absence)
of a particular feature of a class is unrelated to the pres-
ence (or absence) of any other feature, given the class
variable. This classifier has been widely used before (for
more details see (West 2003, Baseri et al. 2011). Two
models of Naive Bayse (returns classification model
using estimated normal distributions) and Naive bayse
kernel (returns classification model using estimated
kernel densities) (Beiki et al. 2012) used and the model
accuracy in predicting the type of lung tumor calculted.

Additional file

Additional file 1: Table S1. The list of protein attributes that calculated
by PROFEAT server.
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