] AMERICAN
=gl SOCIETY FOR

MICROBIOLOGY

_‘ Microbiology

Resource Announcements

OMICS DATA SETS

L)

Check for
updates

High-Depth RNA-Seq Data Sets for Studying Gene Expression
Changes Mediated by Phase-Variable DNA Methyltransferases

in Nontypeable Haemophilus influenzae

John M. Atack,? Lauren O. Bakaletz,® Michael P. Jennings?

anstitute for Glycomics, Griffith University, Gold Coast, Queensland, Australia

bCenter for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, Ohio, USA

ABSTRACT Nontypeable Haemophilus influenzae (NTHi) is a major bacterial patho-
gen that causes multiple infections. We report high-depth-coverage RNA-Seq data
from three NTHi strains, each of which encodes a different phase-variable methyl-
transferase. Major gene expression differences occur, commensurate with modA
phase variation, and data will serve as an important resource for future studies.

ontypeable Haemophilus influenzae (NTHi) is responsible for human respiratory

tract infections and invasive disease (1-3). Previous work characterizing NTHi
showed that phase-variable N®-adenine DNA methyltransferases (ModA) are involved in
epigenetic regulation and virulence (4-7). Phase-variable methyltransferase expression
leads to genome-wide methylation differences, epigenetically regulating multiple
genes, namely, a phasevarion (phase-variable regulon) (8, 9). modA alleles show high
variability (<25% nucleotide identity) in their central, target recognition domain (TRD)
that dictates specificity (10). Different TRDs methylate different sequences and define a
phasevarion (8). We have shown that ~65% of otitis media clinical isolates possessed
one of five modA alleles, modA2, 4, 5, 9, and 10 (5). We used NTHi strains C486 (modA4),
477 (modA5), and 1209 (modA9) (5) and generated variants where we locked each modA
allele on (expressed) or off (not expressed) by reducing the number of AGCC,,, repeats
so that genes could not phase-vary using standard genetic techniques. Using these
strains, we prepared triplicate biological replicates of total RNA with TRIzol reagent
(Thermo Fisher) according to the manufacturer’s instructions from mid-log cultures
grown in brain-heart infusion (BHI; Oxoid, UK) broth at 37°C with 150 rpm shaking in an
aerobic atmosphere.

Libraries were prepared using the lllumina Ribo-Zero Gold protocol and assessed
using an Agilent Bioanalyzer DNA 1000 chip. gPCR quantification was used to assess
individual libraries before normalizing (2 nM) and pooling using the lllumina cBot
system with TruSeq PE Cluster kit v3 reagents. Sequencing (150 bp paired-end runs)
was performed on the lllumina NovaSeq system with TruSeq SBS kit v3 reagents.
The average number of sequence reads for each triplicate sample is as follows:
modA4 on, 56,173,140; modA4 off, 53,157,713; modA5 on, 50,496,014; modA5 off,
53,084,278; modA9 on, 59,341,255; modA9 off, 57,150,972). Sequence quality was
assessed according to the standard protocols of the Australian Genome Research
Facility (AGRF). Sequence reads were aligned against the respective reference ge-
nomes (GenBank accession numbers CP007471 [C486; modA4], CP007470 [477; modA5],
and JMQP00000000 [1209; modA9]) with Bowtie 2 aligner (v2.3.3.1) using standard
settings. Default software settings were used unless otherwise stated. Transcripts were
assembled with StringTie v1.3.3 (http://ccb.jhu.edu/software/stringtie/) with the reads
alignment and reference-annotation-based assembly option. This methodology gener-
ated assemblies for known and potentially novel transcripts. The GENCODE annotation
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that contained both the coding and noncoding annotation for each genome was used
as a guide (http://www.gencodegenes.org/). Raw gene count values were analyzed
with edgeR (https://bioconductor.org/packages/release/bioc/html/edgeR.html) to com-
pute differential gene expression values. Counts were summarized at the gene level
with the featureCounts v1.5.3 utility of the subread package (http://subread
.sourceforge.net/). Gene expression differences between respective modA locked on
and off were expressed as logFC (log,-fold change of expression). Our analysis gener-
ated logCPM values (average log count per million for the gene across all samples), F
values (quasi-likelihood F statistic for the gene across all samples), P values for the test
of a statistically different expression, and the FDR (false discovery rate/adjusted P value
for multiple hypothesis testing).

By setting a cutoff for a greater than 2-fold differential expression, and excluding
rRNA and tRNA genes, we show that 55 genes were downregulated and 82 genes were
upregulated in strain C486 when modA4 was on, 74 genes were downregulated and 14
genes were upregulated in strain 477 when modA5 was on, and 116 genes were
downregulated and 76 were upregulated in strain 1209 when modA9 was on. Differ-
entially regulated genes include those involved in central metabolism, nutrient acqui-
sition, and stress response. We have previously identified the sites recognized by the
ModA4, ModA5, and ModA9 methyltransferases (5). By combining this information with
these new RNA-Seq data, we demonstrate that gene expression changes mediated by
modA phase variation are complex and likely involve both the primary and secondary
regulation of genes. These data will serve as a major resource for dissecting the exact
molecular mechanisms of modA-mediated gene expression differences and for study-
ing the cascade events that result in multiple gene expression differences commensu-
rate with genome-wide methylation differences.

Data availability. The data announced here were deposited in GEO DataSets under
series GSE121835 (full data set), GSE121832 (modA4 on versus off), GSE121833 (modA5
on versus off), and GSE121834 (modA9 on versus off).
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