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Cancers are complex adaptive diseases regulated by the nonlinear feedback systems
between genetic instabilities, environmental signals, cellular protein flows, and gene
regulatory networks. Understanding the cybernetics of cancer requires the integration
of information dynamics across multidimensional spatiotemporal scales, including
genetic, transcriptional, metabolic, proteomic, epigenetic, and multi-cellular networks.
However, the time-series analysis of these complex networks remains vastly absent in
cancer research. With longitudinal screening and time-series analysis of cellular dynamics,
universally observed causal patterns pertaining to dynamical systems, may self-organize
in the signaling or gene expression state-space of cancer triggering processes. A class of
these patterns, strange attractors, may be mathematical biomarkers of cancer
progression. The emergence of intracellular chaos and chaotic cell population dynamics
remains a new paradigm in systems medicine. As such, chaotic and complex dynamics
are discussed as mathematical hallmarks of cancer cell fate dynamics herein. Given the
assumption that time-resolved single-cell datasets are made available, a survey of
interdisciplinary tools and algorithms from complexity theory, are hereby reviewed to
investigate critical phenomena and chaotic dynamics in cancer ecosystems. To conclude,
the perspective cultivates an intuition for computational systems oncology in terms of
nonlinear dynamics, information theory, inverse problems, and complexity. We highlight
the limitations we see in the area of statistical machine learning but the opportunity at
combining it with the symbolic computational power offered by the mathematical
tools explored.

Keywords: cancer, dynamical systems, complexity science, complex networks, information theory, inverse problems,
algorithms, systems oncology
INTRODUCTION

Cancer is the second leading cause of disease-related death globally, and a tremendous burden to
progressive medicine. Deciphering the minimal set of interactions in the complex multiscale networks
driving cancer gene expression and signaling remains an intractable problem due to its collective
emergent behaviors, including phenotypic (epigenetic) plasticity, intra-tumoral heterogeneity, therapy
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resistance, and cancer stemness (1). Cancer is essentially a genetic
disease and given the vast amounts of scientific works on the
genetic and chromosomal instabilities/mutations driving
tumorigenesis and cancer evolutionary dynamics, we shall not
directly explore these conventional realms herein. Rather the
review will focus on the cell fate dynamics emerging from these
genetic/chromosomal instabilities, and hallmarks of cancer
progression/adaptivity. Further, molecular heterogeneity is
observed across many scales of cancer cybernetics, necessitating
multiomics and multimodal profiling methods to dissect cancer
ecosystems (2). In this regards, systems biology and computational
medicine have paved many powerful tools in single-cell analyses
including network theory, data science, statistical machine
learning, and multivariate information theoretics. However,
current approaches in network medicine rely on static (single
time-point) visualizations of spatial cancer cell-signaling and gene
expression profiles. These predominant snapshot approaches are
fundamental limiting factors in the advancement of precision
oncology since they are causal agnostic, i.e., they remove the
notion of time (dynamics) from cancer datasets. Instead,
pseudotemporal ordering techniques are used to infer gene
expression patterns and cell fate trajectories in cancer processes
on dimensionality-reduced pattern spaces. Although these static
patterns may provide us insights into statistical correlations in
complex cancer processes, statistical correlation does not imply
causation. The lack of time-series measurements in single-cell
multi-omics (e.g., gene expression dynamics, protein oscillations,
histone marks spreading, etc.) and cell population fluctuations
(i.e., ecological dynamics), in patient-derived tumor and liquid
biopsies, remains a central roadblock in reconstructing cancer
networks as complex dynamical systems.

Let us suppose we do have time-sequential measurements to
infer signaling and gene expression dynamics in cancer networks
by the methods suggested herein. What kinds of patterns emerge
in time-series which cannot be inferred from the currently
predominant snapshot approaches? How do we detect these
causal patterns in cancer dynamics? The review was written
precisely to address these questions and provide a general
intuition for nonlinear dynamics, chaos, and complexity in
cancer research. The central dogma in systems biology remains
that gene expression dynamics are stochastic processes. However,
unlike stochastic systems, deterministic chaos, although difficult
to distinguish from randomness, has a defined causal pattern in
state-space (3). Chaotic systems exhibit an underlying (multi)
fractal topology, defined as strange attractor(s). Unlike
randomness, these causal patterns allow the short-term
predictions of the chaotic system’s time-evolution (up to some
Lyapunov time) and their global state-space trajectory (orbit).
Chaotic systems also exhibit patterns of emergent behaviors, i.e.,
collective patterns and structures which are unpredictable from
the individual components (3).

The primary theme of the paper is, if chaotic behavior or
complex dynamics plays an important role within cancer
dynamics, how do we characterize chaos/complexity and
distinguish it from randomness? The review comprises of a
detailed discussion of tools from complex systems science and
nonlinear dynamics (dynamical systems theory) to decode
Frontiers in Oncology | www.frontiersin.org 2
multiscale processes and behavioral patterns in cancer cellular
dynamics. Various detecting tools, measures and algorithms exist
which remain under-explored in (computational) systems
medicine. Complex multiscale/multiomic networks driving
cancer emergence/progression are discussed across different
scales of cancer processes, from gene regulatory networks to
epigenetic stemness/plasticity networks. An intuition for cellular
oscillations (both intracellular flows and population dynamics)
and causality inference in cancer cell fate dynamics are presented
under the lens of complex systems. The remaining bulk of the
paper is devoted to a step-by-step blueprint of algorithms and
tools to capture multiscale chaotic dynamics (if they exist) within
cancer cell signaling and cellular processes. Dynamical systems
theory is a relatively new framework to most cancer researchers
further stressing the lack of time-series cancer datasets. As such,
some codes for a selected set detection tools/algorithms are
provided in the Appendix. A summary table of some inference
methods discussed are also provided as Table 1 in the Appendix.
Furthermore, traditionally, signaling refers to protein-protein
interactions or signal transduction pathways in cell
communication networks. Examples of such signaling includes
physiological cybernetics such as psychoneuroendocrine control,
immune-inflammatory pathways, neurotransmitter dynamics,
extracellular vesicles-mediated communication networks, and
other receptor-ligand regulatory feedback loops/signaling
cascades. However, we may simply refer to various scales of
cancer cybernetics, including cancer-immune population
dynamics, protein density fluctuations, epigenetic patterns/
chromatin modifications, metabolomics, and gene expression
(transcriptional) dynamics, to name a few, simply as signaling
herein in reference to signal (information) processing in control
systems (cybernetics). Due to the limited space allocated to the
comprehensive review, additional information such as biological
insights into epigenetic complexity, some fine-details of the
mathematical treatments/methods, and prospective techniques
for the acquisition of time-resolved multicell data are provided In
the the Appendix.
COMPLEX DYNAMICS

Complexity theory is an interdisciplinary paradigm in systems
science merging nonlinear dynamics, statistical mechanics,
information theory, and computational physics. It deals with the
study of whole systems which exhibit emergent behavioral
patterns, often due to their multi-scale nonlinear interactions,
and multi-nested feedback loops. Therefore, complex systems are
(in general) nonlinear feedback systems (including computational
systems) with many interacting parts which give rise to collective
behaviors (i.e., emergence) (80). Complex systems or their
signature, emergence, may be best defined by the non-
reductionistic Aristotelian dictum the whole is more than the
sum of its parts (7). Complexity theory is thus the quantitative
study of collective processes, patterns, and behaviors in complex
systems. Chaotic systems are at the heart of biological/physiological
complex systems and warrant our deepest attention.
July 2022 | Volume 12 | Article 850731

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Uthamacumaran and Zenil Mathematical Methods Review for Oncology
The universality of chaotic dynamics in physiological control
systems has been well-established. Based on the findings of the
Jacob-Monod model of lac operon regulation, Goodwin, a
student of Waddington, first derived an oscillatory model of
gene regulatory networks to describe negative feedback loop
oscillators as seen in a wide range of biological processes
including circadian rhythms, enzymatic processes ,
developmental biology, and cell cycle dynamics (81). Later, the
Mackey-Glass equations, a set of first-order nonlinear delay-
differential equations, demonstrated that complex dynamics
ranging from limit-cycle oscillations to chaotic attractors can
emerge in respiratory and hematopoietic diseases (82). The most
prominent examples of chaotic dynamics are found within
cardiac oscillations (83–85). The works of Winfree and
Kuramoto further extended the study of biological oscillators
in physiological control processes/rhythms (46, 86). Chaotic
oscillations have also been well-studied in glycolytic
oscillations and cellular calcium fluxes. For instance, tumor
glycolytic oscillations have been experimentally suggested to
confer adaptive cellular behaviors such as therapy resistance in
tumor ecosystems. In this model system, Pomuceno-Ordunez
et al. (87) investigated the effects of pulses and periodic glucose
deprivation in a kinetic model of HeLa cells glycolysis. A system
of ordinary differential equations were obtained from the model
to quantify the glycolytic oscillations. Various measures were
used to assess the complex dynamics including ability analysis of
the steady state, stroboscopic analysis, and Lempel-Ziv index.
The study concluded that periodic glucose pulses can lead to an
increase in the energy charge, while periodic glucose deprivation
of the tumor ecosystem prevented the increase in the complexity
of glycolytic oscillations and caused a decrease in the cellular
energy charge of tumor cells (87). However, it should be
emphasized that complex tumor ecosystems such as GBM
exhibit adaptive heterogeneity and phenotypic plasticity amidst
a diverse range of transcriptional and metabolic cellular states.
While some cellular states may be glycolytic phenotypes, others
may favor oxidative phosphorylation, and others are inclined
towards other metabolic programs.

Further, the detection of chaotic oscillations in other cellular
rhythms such as the circadian clock remain experimentally dormant.
Only mathematical models and numerical simulations have by far
shown the emergence of chaotic behavior at the level of clock protein
oscillations in simpler model systems like Drosophila (88). The
detection of intracellular chaotic oscillations in proteins and genetic
networks, is recently emerging as a paradigm shift in complexity
science (18, 19). Most biological systems at varying length and time
scales, includingnetworks of genes, proteins, andpopulationsof cells,
behave like coupled nonlinear oscillators (16, 17). In principle,
chaotic oscillations can arise in these biological oscillators (16). In
the context of cancer networks, there are many timescales and
interconnected regulatory feedback loops manifesting time-delays
in their oscillatory dynamics. The time-delays may give birth to
signaling cascades and a symphony of complex dynamics, including
chaotic oscillations (15, 17). For instance, calcium oscillations within
cells are in the timescalesof seconds,whereasproteinoscillations such
as transcription factor oscillations, the cell cycle, and circadian
Frontiers in Oncology | www.frontiersin.org 3
rhythms span from hours to days. This is the key insight cancer
researchers should be aware of, that oscillatory dynamics occur in all
length and time scales, including networks of gene expression
(transcriptional dynamics), protein signals, multicellular networks,
and ecological/population dynamics (e.g., tumor-immune predator-
prey systems). When these oscillations become aperiodic and
irregular, they may either be stochastic (random) or chaotic.
However, unlike randomness, chaotic flows have an underlying
causal pattern, a structure, in state-space to which their irregular
trajectories are confined to (15). The methods for detecting different
behavioral regimes in the experimental time-traces of cancer signals
depend on the timescales of the oscillations and themulti-nestedness
(interactions) of the complex network patterns or dynamics they
form. Thus, the resolution of the time-series datasets acquired must
also be considered in chaos/complex dynamics discovery.

The time-series signal, whether it be the oscillation of a single
protein, a protein concentration density during cellular patterning,
or gene expression dynamics, of cancer cells, can be represented as
a state-vector X(t). For instance, the gene expression matrix
acquired from a single-cell RNA-Seq experiment is a state vector
at a given time point t. The state-space, also known as phase-space,
determines the set of all possible values of the signal’s state-vector
(15). Any state of the dynamical system at a moment frozen in
time can be represented as a point in phase space. All the
information about its position and velocity is contained in the
coordinates of that fixed-point. As the system evolves, the point
would trace a trajectory in phase space (15). In the context of the
given example, the state-space would describe the entire range of
possibilities in the oscillator(s), or all the possible gene-gene
network configurations described by the count matrix. The
state-space reconstruction of the signals ’ time-traces
(trajectories) exhibit a set of universal patterns called attractors.
Attractors are self-organized causal structures governing the fate
of a dynamical system in state-space. They are finite regions bound
to state-space to which the trajectories of the dynamical system are
confined to or pulled towards (i.e., attracted to) (Note: the opposite
flow analog also exists, repellors, regions in state space from which
the system is pushed away from) (15). The detection of attractors
provides a route to reduce the combinatorically vast state-space of
all network configurations conferring cancer states towards a finite
set of values. However, only fixed-point attractors (equilibrium
points), the simplest of attractors, are analytically solvable.

In the chaotic and complex regimes of dynamical systems,
multiple attractors may self-organize for a wide range of initial
conditions. Some attractors may entangle with those nearby to
form complex webs of attractors. We need three dimensions (or
higher) to analyze chaotic attractors, and hence, observing a
single protein oscillation in time as a one- dimensional system is
insufficient to detect chaotic behavior (15). As such, the most
effective classical method for chaotic behavior detection is to
embed the time-trace signal onto state-space by Takens’ theorem
and quantify its Lyapunov exponents and fractal dimension.
Time-delay embedding allows us to reconstruct a higher
dimensional space of the protein flows or gene expression.
However, there may be still smearing by noise. Denoising
algorithms can be used as a filtering and pre-processing step
July 2022 | Volume 12 | Article 850731
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prior to the attractor embedding. Denoising algorithms can be of
many sorts from basic normalization techniques to wavelet
analysis and imputation techniques, used for noise reduction
in the dataset. From the time-embedded signaling data, one can
identify two points that are very close in the phase space and
subsequently measure the initial, exponential separation away
from each other (15). This procedure determines the spectrum of
Lyapunov exponents, where the presence of one or more positive
Lyapunov exponents imply chaotic behavior (15). The presence
of a chaotic attractor is further confirmed by assessing the
embedded attractor’s fractal dimension in state-space (15).
However, when large complex datasets in the order of
thousands of genes or proteins within thousands of cells are
considered, as is the case for patient-derived tumor/liquid
biopsies and their single-cell analyses, the application of these
embedding techniques and traditional chaotic behavior measures
may not be sufficient due to dimensionality constraints.
Therefore, as will be discussed, machine learning algorithms
and algorithmic information dynamics are suggested as robust
tools for mapping complex dynamics and inferring chaotic
behavior in larger multidimensional datasets pertinent to
systems oncology.

Chaotic behavior implies long-term unpredictability,
irregularity, and complexity, making the disease difficult to
treat. A healthy cell phenotype may correspond to a stable
attractor in state space such as a fixed-point or a limit cycle
(oscillations). However, a cell if found to be a chaotic attractor, is
an unstable state with irregular and aperiodic signaling
dynamics. Chaotic dynamics in certain biological oscillations
may be robust biomarkers or patterns for diseases. An emerging
paradigm in the study of complex diseases, such as cancers, is
that chaotic dynamics can emerge in biological oscillators such as
gene and protein networks. According to mathematical and
computational models, the emergence of chaotic attractors in
complex cancer processes have been suggested as indicators of
therapy resistance, cancer relapse, emergence of aggressive
phenotypes, increased phenotypic plasticity, and metastatic
invasion (19, 89, 90). However, most of these studies were
limited to cell population dynamics. Further, Huang et al. (91)
were amidst the first to suggest using transcriptomic analyses
that cancer cell fates are aberrant, embryonic-stem cell like
attractors of the Waddington developmental landscape (78).
Further, they suggested that cancer stem cells occupy higher
energy states of the landscape, thus representing more complex
attractors with higher differentiation potency (91).

Chaotic dynamics at the level of protein and gene oscillations
may also confer dynamical heterogeneity and adaptive survival
in individual cell states to withstand extreme environmental
conditions due to their large signaling fluctuations (19). As
such, it is further suggested here chaotic attractors may be
signature hallmarks of cancer stemness. Measuring chaotic
attractors then provides a solution to forecast the complex
adaptive behaviors and dynamics of the disease system. The
chaotic attractor provides a control system framework to
reprogram the disease state dynamics in signalling state-space.
If chaotic behavior emerges or is at the origin in cancer signaling
Frontiers in Oncology | www.frontiersin.org 4
dynamics, two fundamental questions arise: (1) How do we
detect chaotic behavior of or in cancer cells? More specifically,
how do we detect strange attractors in the (multiomic) signaling
state-space of cancer networks? and (2) How do we distinguish
chaotic oscillations from stochastic oscillations (randomness) or
noise in the signaling state-space? To address these questions, a
brief survey of tools and methods to detect strange attractors in
cancer signaling state-space are outlined in this paper. While
chaotic oscillations may occur in any cancer-related process, we
will primarily focus our attention to the complex networks
steering cancer cell fate dynamics and differentiation processes.
OSCILLATIONS AND CELL PATTERNING
SYSTEMS

Given the reconstruction of the complex network patterns/
dynamics steering cancer cell fate decision-making, we must
understand how their regulatory feedback loops behave in time
(i.e., oscillations). As mentioned, cells, genes, and proteins, can
be treated as physiological oscillators. Thus, a brief intuition for
oscillations is required to understand the use of chaotic-behavior
detection tools, in the context of forecasting cancer cell signaling/
dynamics. Cancers are essentially characterized by their
abnormal, uncontrolled cell division due to chromosomal/
genomic instabilities. The tumor suppressor transcription
factor p53 is highly conserved at the protein level and plays a
key role in DNA damage response. It is a master regulator of the
cell cycle and hence, cell proliferation. In cancer cells, the TP53
gene is mutated (loss of function) in about 50% of all cancers and
serves as the critical bifurcation point for tumorigenesis on the
cell developmental/differentiation landscape (92). The core p53-
MDM2 negative feedback loop shows that the synthesis-
degradation kinetics of p53 and MDM2 governs their
oscillations within cells. The oscillations of this regulatory
feedback mechanism are essential for the signaling dynamics of
all other intertwined proteins and genes regulating cell
homeostasis and cell cycle control. Within this circuit, p53
transcriptionally activates mdm2. Mdm2, in turn, negatively
regulates p53 by both inhibiting its activity as a transcription
factor and by enhancing its degradation rate. Models of negative
feedback loops, such as between p53 and Mdm2, suggest that
they can generate an oscillatory behavior due to a time delay
between the two proteins activity (conformation states).
However, with DNA damage (as in the case of tumors
harboring~ hundreds of mutations), excessive continuous p53
oscillations are observed (92).

Fluorescently tagged fusion proteins can be used for the
time-lapse imaging of these proteins and quantify their
oscillatory dynamics within cells. For different parameters of
the feedback loop, the dynamics can show either a monotonic
response, damped oscillations, or undamped oscillations. The
stronger the coupling interactions between the proteins, the
more oscillatory the dynamics tend to be. The kinetic
parameters act as damping or signal-amplifying coefficients.
For instance, high basal degradation rates of the proteins act as
July 2022 | Volume 12 | Article 850731
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damping coefficients of the oscillations. To illustrate an
experimental approach to measuring cellular protein
oscillations, Geva-Zatorsky et al. (93) experimentally
investigated fluorescently labelled p53 and Mdm2 dynamics
in living breast cancer (MCF7) cells with perturbation analysis
by gamma irradiation. In a large fraction of cells, they found
undamped oscillations of p53-CFP and Mdm2-YFP, which
lasted for at least ∼3 days post- gamma irradiation. Aside
from the noise fluctuations in cell-cell variability, two
characteristic properties were found in the protein
oscillations: (1) the oscillation amplitudes fluctuated widely,
yet the oscillation frequency was much less variable, and (2)
while some cells regularly oscillated, other cells showed a
dynamic fluctuation of protein levels (i.e., signaling
heterogeneity) indicating the presence of complex, irregular
oscillations. Essentially, the negative feedback loop amplified
slowly varying noise in the protein production rates at
frequencies near the resonance frequency of the feedback
loop. However, none of these studies performed chaotic
behavior detection such as time-delay embedding of the
signal followed by calculation of Lyapunov exponents nor
computing the fractal dimension of observed attractors. The
description of the fluctuations and increases in cellular
oscillations were qualitative in most part.

Similarly, many embryonic developmental factors (i.e.,
morphogens) involved in cellular patterning systems are
known to exhibit oscillatory dynamics. The oscillatory states of
these signals show typical time periods of a few hours (1-4 hrs)
and are referred to as ultradian oscillations (94). A key example
of ultradian oscillations is the coupling of Wnt and Notch
signaling (95). One of the theoretical frameworks for
understanding these protein/gene oscillations in developmental
pattern formation has been laid by the clock-and-gradient, or
clock-and-wavefront model, originally proposed by Cooke and
Zeeman (96). The dynamic signal encoding based on relative
timing of oscillatory protein signals are essential for the
development of the embryo. It has been shown that a phase-
shift in morphogen oscillations fine-tune segmentation in the
developing embryo (95). These morphogens are aberrantly
expressed in cancer stem cells and are key signaling factors of
the cancer stem cell niche (20; 97). However, the experimental
study of morphogen oscillations via time-lapse imaging within
pathological cell states (such as cancer stem cells) remain
nearly absent. Their oscillatory dynamics have not been
investigated experimentally in time-series cancer stem cell
differentiation or during cancer cell fate decisions such as
proliferation and differentiation dynamics. Moreover, the
detection of quantitative cellular behavioral techniques as
advocated herein are virtually unknown to most cancer
researchers investigating protein-mediated pattern formation.
Therefore, the lack of experimental time-series cancer datasets
(due to technological limitations) and a lack of dynamical
systems theory applications in cancer research go hand in
hand and limit our understanding of how complex dynamics
may be orchestrating tumor patterning systems.
Frontiers in Oncology | www.frontiersin.org 5
As explained, when the amplitude of an oscillation by
coupling to some external signal increases beyond a critical
threshold, chaotic dynamics can emerge as indicated by
aperiodicity/irregularity in the oscillations or period-doubling
bifurcations. To illustrate, the Mackey-Glass equations have
shown that variations of chemical concentrations, such as the
production rates of proteins within cells or the cell-density
variation, may exhibit a time-delay (82). An increase in
production rate k caused by a time-delay k(t — t) may result
in pathological diseases. Time-delays are control parameters
which above a certain value may result in chaotic cellular
oscillations (82). According to Jensen et al. (18) a negative
feedback loop is a sufficient requirement for chaotic behavior to
emerge within cell signaling. A negative-feedback loop ensures
the presence of a time-delay in cellular oscillations, and thereby
may act as precursor for the onset of chaotic dynamics (18).

There are also theoretical works by Kaneko and Furusawa
exploring the cancer stem cell hypothesis through the lens of cell
adhesion and oscillatory nonlinear dynamics which warrant
further investigation (98–100). In their chaos hypothesis, they
propose that the robustness and differentiation of stem cells
towards their multipotent complex cellular states can be
predicted by chaotic intra-cellular chemical dynamics (98).
Intracellular chaotic oscillations were suggested as markers of
pluripotency (stemness) (100). Dysregulated focal adhesion
dynamics to the extracellular matrices are hallmarks of cancer
metastasis and EMT state-transitions/plasticity dynamics.
Most cancer-related deaths are caused by metastatic invasion,
and hence elucidating the nonlinear dynamics underlying
such plasticity transitions/differentiation dynamics may help
identify causal markers in controlling and regulating their
behavioral patterns.

While mathematical models, such as differential equations with
time-delays, may in principle capture strange attractors within
cellular protein flows and gene signaling, experimental
confirmation of intracellular chaos remains a fundamental
roadblock in complex systems research. Therefore, the
quantification of protein oscillations, using the techniques
described above must be performed in cancer cells and (CSCs) in
time-series and subjected to the various behavioral detection
methods enlisted herein. For instance, we can identify the
negative feedback loops regulating the Suvà glioma stemness
network (POU3F2 , SOX2 , SALL2 , and OLIG2) and
experimentally quantify their oscillations using time-lapse
fluorescent-imaging within GBM-derived cancer stem cells to
understand their cell fate dynamics and reprogrammability (71).
Without such experimental datasets, the plausibility of chaotic
dynamics as a hallmark of cancer signaling/progression cannot be
verified and computational/systems oncology will remain bound to
computational and mathematical models. Having laid the basic
intuition for cancer stemness and the complex feedback loops
regulating their oscillatory dynamics, the following methods are
discussed as approaches to detecting chaotic behavior and complex
dynamics in cancer networks given their time-series signals are
made available.
July 2022 | Volume 12 | Article 850731
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TAKENS’ THEOREM

Let us suppose the flows of protein densities and gene expression
dynamics of cancer (stem) cells are available in time-series, and a
normalized gene expression (or protein oscillation) matrix, array
of genes (proteins) by cells with their count, is produced for each
time-point. Takens’ time-delay coordinate embedding is the state-
of-the-art approach for the attractor reconstruction underlying
these complex signals. In 1981, Takens demonstrated in his
embedding theorem that the topological dynamics of a complex
multidimensional system can be derived from the time-series of a
single observable variable (101). The embedding theorem was first
demonstrated in the study of fluid turbulence. The term strange
attractors was coined by Ruelle and Takens to describe the
multifractal patterns observed in the bifurcations of turbulent
fluid flows (3, 102). They defined a strange attractor as the local
product of a Cantor set and a piece of a two-dimensional manifold
(102). Takens’ theorem can be used to embed the three-
dimensional flows of not only turbulent flows but in principle,
any chaotic signal in state-space.

According to Takens’ theorem, you can roughly reconstruct
the state-space of a dynamical system by delay-embedding only
one of its time-series projections, given the assumption that the
variable X contains redundant information about Y and Z
variables (i.e., they are causally- related) (See rEDM link in the
Appendix). From the perspective of Shannon’s information
theory, the optimal time-delay t to reconstruct the state-space
attractor would correspond to the minimum Mutual
Information (MI) of the system (103). The complex structure
obtained by the embedding is the attractor. As discussed, in
chaotic systems, an attractor with a (multi) fractal dimension is
observed, known as the strange attractor to which the trajectories
of the chaotic system are bound to. Thus, once an attractor is
obtained from the time-series embedding, the fractal dimension
and Lyapunov exponents can be computed to assess the stability
of the dynamical system and verify if the identified attractor is a
strange attractor. This time-delay embedding procedure scales
with the time-series. The longer the time-series, the larger the
network and the more complex the attractor obtained.
Perturbation analysis can assess the stability and robustness of
the complex attractor and provides a powerful toolkit for
complex networks analyses in Algorithmic Information
Dynamics (AID), as will be discussed later.

An rEDM package for time-delay embedding on
experimental time-series is provided in the Appendix. rEDM is
an R-package for Empirical Dynamic Modelling and Convergent
Cross Mapping (CCM) as devised by Sugihara et al. (104). The
causal relationships in complex disease signaling networks can be
identified using CCM (105). The rEDM package uses a nearest
neighbor forecasting method with a Simplex Projection, to
produce forecasts of the time-series as the correlation between
observed and predicted values are computed (104). CCM is an
embedding technique which combines Takens’ theorem and
Whitney’s embedding theorem. CCM measures the extent to
which states of variable Y(t) and Z(t) can reliably estimate states
of variable X(t), as explained above. This happens only if X(t) is
causally influencing Y(t) and Z(t). There is a simpler R-package
Frontiers in Oncology | www.frontiersin.org 6
called ‘multispatialCCM’ (multi-spatial Convergent Cross
Mapping), an adaptation of CCM, for chaotic time-series
attractor reconstruction available, as well. CCM (Takens’
theorem) should be amidst the first set of causality-inference
algorithms used to embed the time-series cancer signals in state-
space and reconstruct their underlying attractors. However, there
may be dimensionality limits for such approaches when dealing
with multi-dimensional complex systems like the cancer
transcriptome. These embedding methods may be useful for
trajectory inference in cell population dynamics or for brute-
force approaches in cellular signaling. For instance, we can
embed the time-traces of proteins or signals with predicted
chaotic dynamics from literature analysis. Otherwise, the task
may be too complex for these methods, and non-traditional
detection tools must be employed (i.e., machine intelligence).
LYAPUNOV EXPONENTS

Once the chaotic signal has been time-embedded and its attractor
(s) has been reconstructed in state-space, quantitative-behavioural
detection algorithms can be used to determine if the identified
attractor is indeed chaotic (strange). As such, Lyapunov exponents
and fractal dimension estimates remain the most robust classical
measures of chaotic behavior detection. Positive Lyapunov
exponent(s) are robust signatures of chaos quantifying sensitive
dependence on initial conditions. Prior to measuring the Lyapunov
exponents or fractal dimension on the identified attractor, de-
noising and filtering algorithms can be used as a pre-processing
step to reduce the noise and data dispersion. The intuition behind
this is to consider nearby points in the phase space generated by
time-embedding and then perturbing each point proportional to a
weighted average of the nearby points. Using this, one can recover
the fine structure of the attractor in higher dimensions, especially
if this is combined with signal smoothening methods (e.g.,
imputation algorithms).

To illustrate Lyapunov exponents, consider two points of a
cancer signal’s trajectory (e.g., a single protein flow or gene
expression time-trace) separated by a very small distance in time,
x(t), in phase space, then the separation (bifurcation) of its
trajectory from its initial position is given by:

dx tð Þ ≈ x0e
lLt

for a small time, t, where the lL is the Lyapunov exponent. In
multi-dimensional dynamical systems, there may be a spectrum of
Lyapunov exponents to consider. The Lyapunov exponentmeasures
how far two initially close by points on a dynamical system’s
trajectory separate (bifurcate) in time. If the Maximal Lyapunov
exponent lL > 0 (positive), there may be a chaotic attractor (15).
That is, in a chaotic system, the trajectories exponentially diverge
apart from each other. In hyperchaotic systems, at least two positive
Lyapunov exponents are observed (106). The inverse of the positive
Lyapunov exponent 1

l+L
e tL denotes the Lyapunov time tL, the finite

predictability horizon of a chaotic system. However, unlike a
random (stochastic) system, the exponentially diverging
trajectories will map onto a finite fractal structure in phase space:
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the strange attractor. As mentioned, the fractal topology of chaotic
attractors provides the explanation for this counter-intuitive pattern.
The fractal topology allows the stretching and folding of phase-space
analogous tomaking taffy candies (3). The NP-hard question then is
how to find these taffies in the state-space of a given complex
system/network’s state-space?

Lyapunov exponents have been used in mathematical and
numerical simulation models of cancer population dynamics to
verify the presence of chaotic attractors. For example, Itik and
Banks (89) demonstrated using a set of ordinary differential
equations (ODE) to model the tumor-immune-host cell density
dynamics the emergence of chaotic attractors at certain critical
parameters such as the growth rate. The existence of chaotic
behavior was confirmed by calculating the Lyapunov exponents
and the fractal dimension of the observed attractor, which was
found to be near that of the Lorenz attractor’s fractal dimension.
Thus, the pairing of computational models and simulations with
empirical dynamics is fundamental to complex systems research.
Chaotic dynamics were confirmed in the model by a positive
maximum Lyapunov exponent. As the a parameter increased,
transition to chaotic behavior was observed in the bifurcation
plot by period-doubling cascades, signatures of chaotic
dynamics (89).

More recent mathematical modelling of tumor-immune cell
predator-prey dynamics have been performed with time-delay as
a bifurcation parameter (90). Chaotic attractors emerged in the
system’s phase-space and were suggested as indicators of
aggressive metastatic transition in cancer cells (89, 90).
However, as stated, the lack of time-series experimental
datasets remains a roadblock in experimentally confirming the
presence of these chaotic attractors in cancer-immune-host
dynamics. As such, a python and MATLAB code for Lyapunov
exponents calculation from time-series is provided in the
appendix to encourage its applications in medical systems. The
‘nolds’ package in python, a small numpy based library, also
provides various measures of nonlinear dynamics such as the
Lyapunov exponent and Hurst index (see Appendix).
FRACTAL DIMENSION AND
MULTIFRACTAL ANALYSIS

Fractals are ubiquitous in nature. They are universal patterns
exhibiting self-similarity which iterate themselves across many
scales (i.e., power law scaling). We tend to think of trees,
snowflakes, clouds, blood vessels, bronchi, neural networks, or
the coastlines of geographic landscapes when thinking of fractal
structures (107). They demonstrate that complex geometric
patterns can spontaneously emerge from simple recursive
rules. Chaotic attractors and many complex systems exhibit
(multi)fractal scaling. A such, fractals serve as a robust
measure of both, complexity, and chaotic dynamics. However,
there is a caveat. The complexity we refer to here is not
algorithmic complexity, but rather complex dynamics and
irregularity. From the viewpoint of algorithmic complexity,
only a very short program is required to generate fractal
Frontiers in Oncology | www.frontiersin.org 7
patterns. Hence, there is some ambiguity between complex
fractal dynamics and algorithmic complexity measures, in this
domain of research. Fractal geometry explains the paradox of
how strange attractors compactify infinite curves into a finite
space (area or volume), and as such we may define this recursive
irreducibility as complex dynamic structures.

The word fractal, coined by Mandelbrot, is derived from the
Latin word fractus meaning fragmented. Formally, a fractal is
defined as a mathematical object with a fractional (non-integer)
dimension (107). Gaston Julia first demonstrated that iterated
functions of complex numbers can generate fractal patterns.
However, Mandelbrot computationally generated fractals and
demonstrated their universality in Nature and chaotic systems
(107). The simplest example of a fractal is the Cantor Set (dust)
in which one starts with a straight line and as we keep removing
the middle one-third of the line with each iteration, the fractal is
generated. Another set of examples are the Serpinski’s gasket and
Koch’s snowflake, both generated by simple recursive rules
starting from an equilateral triangle. Fractals can also be
continuous. A good example would be Hilbert’s space-filling
curves which remind us of Escher’s tessellations or the honey-
comb lattices in beehives. However, the most popular example of
a fractal is the Mandelbrot Set, the set of all Julia sets, described
by the iterative complex function z defined at n-iterations by the
rule: zn+1 = zn + c, where the complex number c is its initial
condition z0. The Mandelbrot set demonstrates a central
property of many complex systems, that complex structures
and patterns can be generated from simple, recursive
feedback loops.

Fractals are some of Nature’s most stable structures
demonstrating the optimization of space (compactification)
and its spatial resources. A system exhibiting fractal
architecture is robust to environmental changes. For example,
bees use a fractal space-filling architecture, composed of
hexagonal symmetry to optimize the area: curve length
(perimeter) ratio in building their beehive structures. The same
principles of hierarchical spatial organization and resource
optimization may apply to Nature’s intelligent exploitation of
fractal geometry, as an adaptive strategy to minimize the
amounts of resources used and wastes produced by a complex
system (107). For instance, oil spills exhibit fractal patterns in
ocean floors and lakes (108). The fractal dimension can be
computed from their imaging power spectra (the ratio between
powers at different scales) to characterize their texture analysis
(108). Their fractal structure may imply that they are difficult to
treat as their patterns and information repeatedly span across
many scales. Similarly, studies have shown that tumor textures
can be characterized as multifractal structures (109–111). In the
study of tumor structures, fractals have been restricted to
describing the self-similarity of abnormal blood vessels
(angiogenesis) and tumor contours across many length scales,
as a measure of its spatial roughness (110). However, it can also
be applied to time-series analysis as well, as in the case of
detecting strange attractors from complex signals. The
multifractality of tumors may reveal their aggressiveness,
resilience (to environmental perturbations) and hence, be
July 2022 | Volume 12 | Article 850731

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Uthamacumaran and Zenil Mathematical Methods Review for Oncology
indicators of tumor relapse and therapy resistance (89).
Mesoscopic mathematical models of tumor pattern formation
dynamics have also suggested that a fractal dimension analysis
could provide a quantitative measure of its growth forecasting
and irregularities (112, 113).

The Fractal Dimension (FD) is a statistical measure of
complexity which occupies a fractional dimension, in between
two consecutive integers. That is, if a point has a dimension of
zero, a line is 1-D, a plane is 2-dimension and volume is 3-D,
fractals occupy dimensions in between these integers. FDs can be
used to characterize the structural complexity (roughness) of
tumors and their irregularity in their signaling dynamics (time-
traces). For example, the tumor vasculature was shown to have a
higher fractal dimension of 1.89 ± 0.04, whereas normal arteries
and veins yield dimensions of 1.70 ±0.03 (109, 110). The higher
FD indicates an increased roughness and complexity of the
vasculature. The fractal dimension of an image, such as
medical imaging of tumor structures, may be estimated by
various techniques: (a) box-counting/cube-counting (for
volumetric systems); (b) correlation; (c) sandbox; (d) Fourier
spectrum, etc. When applied to images of blood vessels, these
methods yield scaling relationships that are statistical best fits to
a power-law relationship within a finite range of scales.
Although, these fractal dimension estimation algorithms differ,
they obey to the same calculation basis summarized by the three
steps: (1) Measure the quantities of the object using various step
sizes, (2) Plot log (measured quantities) versus log (step sizes)
and fit a least-squares regression line through the data points,
and (3) Estimate FD as the slope of the regression line (15, 114).

The most widely used FD computing algorithm is the Box
count algorithm. In the Box counting method the signals are
represented on a finite scale grid and the grid effects interplayed
with the computing fractal dimension. The box-counting
method asks: How many boxes are needed to cover the fractal?
A fractal can be described by a power law scaling given by N∝r−D

where N is the number of boxes needed to cover the object/
pattern, r is the length of the box, and D is the fractal dimension.
Then, = logN

log1r
,where 1/r is the inverse of the box size r (114).

Therefore, the slope of the log-log plot of N and r is the Fractal
dimension. However, what if the system requires more than one
FD to characterize its statistical patterns? Complex dynamical
systems may exhibit multifractality when there are scaling
processes in time. The time-series power (frequency) spectra of
fluid turbulence exhibit intermittency and fluctuations, which
necessitate the use of multifractal analysis (57). There may be
hidden spikes (sudden transitions) in the intermittent
fluctuations of experimental fluid turbulence (57). Multifractal
analysis provides a powerful tool to characterize these
fluctuations in complex dynamical systems.

Multifractal analysis was first introduced by Mandelbrot in
the study of turbulence-mediated flow velocity patterns. The
Multifractal spectrum can be quantified by the following
descriptors: (a) the Hurst exponent, (b) the slope of the
distribution produced by the collection of the Hölder regularity
index a, and (c) the width spread (broadness) of the spectrum,
characterizing the variability of the Hölder exponents (115). The
Frontiers in Oncology | www.frontiersin.org 8
local Holder exponent a is a local measure of roughness, and an
exponent of a power law characterizing the multifractality of the
system. As the word spectrum implies a multifractal is a process
exhibiting scaling for a range of different power laws. Various
methods exist for computing the multifractal spectrum of Hölder
exponents (i.e., the slope of the log-log plot of the power law
system), which include fractional Brownian motion (fBm)
methods, and the most popular are the wavelet-transform
based methods. For instance, the Wavelet Transform Modulus
Maxima (WTMM) method, uses the continuous wavelet
transform to compute the Hölder exponents. It is more
efficient than the box-counting algorithm. The local Holder
exponent is defined as:

dloc x, yð Þ = lim
n!∞

log Prob i1 … inð Þð Þ
log 2−nð Þ

Where the Prob (…) term is the probability that the point (x,y)
of the signal lies in a square with indices (i1…in). N addresses the
number of squares containing (x,y). As we take the limit defined,
we get the multifractal spectra a collection of all points of the
fractal having the local Hölder exponents alpha (i.e., dloc becomes
alpha) (116). The Hurst index, H, describes the roughness of the
time-series. It takes a value in between 0 and 1 wherein H= 0.5
denotes a true random process (i.e., Brownian time-series). The
smaller the value of H, the higher the roughness, and vice versa.
CRITICALITY

A feature of many robust complex systems is criticality (i.e., edge
of chaos). The transition from criticality to chaotic dynamics
may be most useful for our discussion of cancer cell fate
dynamics. Critical systems are a class of nonequilibrium
systems exhibiting scale-invariant spatial-organization and
scale-free dynamics (117). In nonequilibrium systems, the
critical points indicate regions where the attractors governing
its phase-space dynamics are located (118). It has long been
suggested by Kauffman et al. that gene regulatory networks
operate in the critical phase between regularity and chaos.
Critical dynamics of the network were suggested to permit the
coexistence of robustness and adaptability/resilience in cellular
systems, thereby allowing both the stability of cell fates and their
epigenetic switching between multiple phenotypes (network
states) in response to environmental fluctuations/perturbations
and/or developmental cues (119). The emergence of phenotypic
plasticity may be deep-rooted in critical dynamics in complex
networks and chromatin states configuration. However, the lack
of time-series datasets limits the observations of critical network
dynamics and critical cell-state transitions to computational
models such as Boolean networks (120). Further, the lack of
time-series data points has fundamentally limited the
investigation of critical dynamics in cellular processes to
simulations. Therefore, simulations-driven artificial intelligence
(AI) is a powerful platform in complex systems research granting
us insights into otherwise intractable problems.
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In dynamics, a critical point or tipping point is a state that lies
at the boundary between two phases or regions that have
differing behaviors and rules. According to Renormalization
Group theory, phase transitions are characterized by a
divergence (i.e., tends to infinity) in the coherence length (the
characteristic length scale) of a system near some critical point
(55). The corresponding quantity of interest in a dynamical
system is the correlation time, the length of time for which
perturbations are propagated into the future. Critical systems
exhibit power law behaviors as signatures of their long-range
interactions in the system. Criticality may be an indicator a
complex system’s potential to transition to chaotic behavior (53,
55). As such, the detection of power law statistics can be
indicators of complex dynamics, and studying criticality
reduces the search space of potential chaotic oscillators within
a complex network.

Critical dynamics have been modelled in the cell fate
transitions (differentiation dynamics) from healthy to cancer
cell states (72). Rockne et al. (72) demonstrated the state-
transition dynamics from healthy peripheral mononuclear
blood cells (PBMC) to acute myeloid leukemia (AML) in
mice can be described by a double-well potential with two
critical points. They demonstrated the critical points in the
transcriptomic state-space can predict the cell fate trajectories
during disease progression. The 2D transcriptomic state-space
was obtained from dimensionality reduction analysis (PCA-
principal component analysis) on the time-series bulk RNA-
seq data (72). The transcriptome was modelled as a particle
undergoing Brownian motion using the Langevin equation in a
double-well quasi-potential U(x) with two stable states, the
critical points, representing the healthy and AML states,
respectively. To calculate the mean expected stochastic
behavior of the cells, they considered every point in the
transcriptome state-space as a particle characterizing a cell.
The evolution of the probability density function of all such
particles (cells) was obtained by the Fokker–Planck equation
(FPE) (72). Although, the model beautifully illustrates critical
dynamics in cancer cell fate transitions, the assumption that the
healthy state and AML state critical points are stable phenotypes
may be the issue with the model. The cell states were assumed to
be stable fixed-point attractors separated by an unstable
transition-state higher in potential energy. As discussed herein,
cell phenotypes may correspond to various types of attractor
patterns (i.e., fixed-points, limit cycles, tori, chaotic) on the
multidimensional signaling state-space. However, one-
dimensional dynamical systems, as modelled in this study and
most studies in systems oncology, are limited to fixed-point
attractors only.

Cell fate bifurcations may exhibit critical dynamics. A key
mechanism for cell fate transitions in cancer systems is the EMT
program (Epithelial-Mesenchymal Transition) and remains as one
of the primary examples of critical cell fate dynamics observed in
the computational models by Nieto-Villar et al. and Jolly et al.
EMT programs govern many cancer-related behaviors such as the
transition from one cancer phenotype to another, stem cell
plasticity, cancer metastasis and chemoresistance. EMT switches
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are essential in the critical dynamics of CSCs and non-CSC
phenotypic switching (20; 97).

EMT transitions have been modelled as first-order phase
-transitions, a signature of critical systems, in computational
tumor dynamics models by Guerra et al. (121). Cancer evolves
along three basic steps: avascular, vascular, and metastatic, all
emerging downstream of biological phase transitions. Guerra
et al. (121) demonstrated a network model of EMT dynamics
consisting of four interacting cell types, wherein N represented
the population of normal cells exposed to pro-carcinogenic
stimulus, H the healthy cell population (mainly epithelial
phenotype), and M is the population of mesenchymal cells
(121). The immune population I was used as the control
parameter (can fluctuate). The network consisted of various
cellular processes including mitosis and apoptosis of the
proliferating tumor cells. Mathematical models of chemical
kinetics were used to reduce the network to a system of ODEs
representing the EMT dynamics. Lempel-Ziv compression
algorithm, Lyapunov exponents, and the Lyapunov fractal
dimension were assessed on the computational model
dynamics. At some threshold of the control parameter I, EMT
was observed in the dynamics as characterized by a supercritical
Andronov-Hopf bifurcation and emergence of a limit cycle
(121). As the control parameter I further decreased below
critical thresholds, complex Shilnikov-bifurcations were
observed, and the population dynamics eventually gave birth to
chaotic dynamics. The computational model exhibited that
under decreased immune dynamics (i.e., lower I value), the
tumor cells exhibited apparently random behavior (i.e., chaotic
dynamics), thus promoting mesenchymal phenotypes as
indicated by the EMT phase-transition (121).

Further in evidence to critical dynamics in EMT systems,
one of the many complex signals mediating EMT transition is the
microRNA-200/ZEB mutual inhibitor feedback loop, driven by
the transcription factor SNAIL (122). A simulation-based
study found that mRNA levels of ZEB can indicate the critical
tipping point for EMT phase transitions in cancer cells (122).
An increased variance, autocorrelation, and conditional
heteroskedasticity were shown to dynamically vary during the
phenotypic transitions, with an increased attractor basin stability
observed for the hybrid EMT state, indicating it may be the fittest
phenotype for metastatic progression (122). The mathematical
models by Sarkar et al. showed a cusp-like catastrophe in the
EMT plasticity bifurcation diagram, suggestive of a critical
phase-transition.

Sarkar et al. (122) considered a mathematical model of
microRNA-based chimeric circuit capturing the binding/
unbinding catalytic kinetics of associated protein complexes
and transcriptional machineries. Given m is the abundance
(number) of mRNA, let n be the abundance of microRNA, and
B be the TF protein of interest, then, we have the first-order
kinetic equations:

dn
dt

= gn −mYn − knn
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dm
dt

= gm −mYm − kmm

dB
dt

= gBmL − kBB

Where g corresponds to the synthesis rates of the respective
molecules in subscript, and in particular, gB is the translation rate
of protein B for each m in the absence of n. The k parameters
denote the degradation rates of the molecules, Y and L are the n-
dependent functions denoting the various effects of miR-
mediated repression (122). These differential equations were
computationally simulated using Monte Carlo simulation in
which each reaction event is considered as a Markov process
(122). The time and species numbers were updated stochastically
by choosing a random reaction event. The miR-200 based
chimeric tristable miR-200/ZEB circuit was simulated by
casting 10 reaction events as a function of the number of
SNAIL molecules. The corresponding Master Equation was
simulated with the Gillespie algorithm to obtain the stochastic
trajectories from which the critical transitions was identified with
a cusp-like phase-transition in the bifurcation plot (122, 123)
have extended the understanding of these EMT switches by use
of network approaches to investigate cellular decision-making in
EMT phenotypic transitions and how they regulate emergent
behaviors such as phenotypic plasticity dynamics (i.e., the ability
to reversibly switch/transition in between heterogeneous
phenotypes) in tumor ecosystems. The study shows that
network topology influences phenotype commitments and
canalization signatures of the tumor differentiation/
developmental landscape. Many other mathematical studies
demonstrating phase-transitions and complex dynamics in
metabolic tumor growth models with glycolytic oscillations
have been established by the Nieto-Villar group, which shall
not be discussed herein (124–126).

The above-listed studies show that computational
simulations/modelling paired with complex networks analysis
pave fruitful insights into many other complex cancer processes.
There are various other tools borrowed from nonequilibrium
statistical physics one can use to investigate criticality and phase-
transitions in complex systems. The breadth of this topic
deserves a separate paper of its own and cannot be confined to
this brief survey. However, the gist of these approaches are
summarized below by two of three key techniques that may be
useful for cancer research: percolation clustering, the Ising spin
glass model, and Cellular Automata (CA).

Cancer networks can be visualized as Boolean networks, in
which the elements of the networks, such as gene expression, can
either be on or off, described by 1 and 0, Boolean states. This
allows them to be ideal models for the Ising model adaptation,
where the Boolean states correspond to gene-type spins (spin up
and spin down). Further, many complex cancer processes
including phosphoproteomics (on/off switches of protein
conformations) and epigenetic-chromatin states (e.g.,
acetylation/methylation dynamics of histones) can be defined
as binary states. As such, Ising models are simple yet powerful
tools to study cell fate transitions from such complex gene and
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protein network dynamics (54, 127). However, even the
optimization of a two-dimensional Ising model is NP-hard.
Therefore, mean-field theory approximation or iterative
random searching algorithms such as Monte-Carlo methods
(e.g., the Metropolis algorithm) are used to find approximate
solutions. For example, Lang et al. (128) using single-cell data
demonstrated the rugged energy landscapes of Ising models can
be used to visualize/reconstruct the distinct cell states from
transcriptomic data as attractors of the Waddington epigenetic
landscape (128). The flipping of spins caused the step by a step-
change in the phenotype of the cell, mapping cell fate transitions
from one attractor to another. Ising models can predict the co-
existence of structurally or functionally organized clusters in
complex networks, as well. Ising models also serve as the
theoretical framework of Artificial Neural Networks such as
the Hopfield neural networks (129). Hopfield networks are
emerging as machine learning approaches for causal inference
in complex multiscale cellular dynamics including classifying or
predicting gene expression patterns and forecasting their
epigenetic landscapes (130).

One of the issues in the understanding of critical dynamics,
such as EMT processes in cancer cells, is the lack of a
mathematical theory/mechanisms to explain their transition to
chaos. The works by Kauffman et al. in this regard have only been
qualitative for the most part (119). On a tangential note, in
literature, one usually distinguishes chaos from “order.” This
phrasing is extremely common in complex systems research, but
it is technically ambiguous. In the 1960s, Prigogine, a pioneer of
complexity, demonstrated that disordered, far-from equilibrium
chemical systems can spontaneously give birth to orderly stable
states (i.e., dissipative structures) (131). Prigogine defines the
self-organization of these dissipative structures as order out of
chaos. Therefore, order may be an emergent behavior of chaotic
systems. As such, it is technically more accurate to distinguish
chaos from “regularity” or periodicity, rather than “order.”

Cellular Automata (CA) are discrete dynamical systems,
consisting of a grid/lattice of adjacent cells updated by simple
local rules. As mentioned, the Bak sandpile model was a CA
which showed self-organized critical dynamics and emergent
patterns of behaviors. As such, CA are versatile tools for
modelling complex and critical systems (56, 132). Further,
powerful complex systems frameworks such as tools from
Algorithmic Information Dynamics can be coupled with CA to
study complex networks dynamics and biological pattern
formation (133).

CA are spatiotemporally discrete patterning systems
represented by lattices of local interactions. The transition
rules are local and only depend on the site neighborhood
interactions on the lattice. Traditionally, at every time step,
every lattice suite updates its state simultaneously. However,
there are variants of CA such as asynchronous CA and/or
inhomogeneous CA where such rules do not apply, as seen in
tumor growth models (134). There is a vast amount of literature
on the use of CA to model tumor growth dynamics. Some
examples include avascular tumor growth models with the CA
system modelling reaction-diffusion equations, partial
differential equations (PDE) modelling the tumor-immune-
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host cell dynamics in varying nutrient conditions (135). Similar
works were seen with inc lus ion of the e ffects of
chemotherapeutic drugs on the tumor growth in reaction-
diffusion PDE models by Ferreira et al. (136) and in the ODE
models of de Pillis and Radunskaya (137).

In a typical avascular tumor growth model, we have a regular
lattice wherein the discrete states correspond to biological
(Cancer) cells. If a cell dies, the lattice is unoccupied (134). A
cell can survive, divide, or die, and local rules can be updated
asynchronously. We can also simulate the ecological dynamics or
competitive interactions between multiple cell types, as seen in
heterogeneous tumor microenvironments (134). For instance,
the hybrid PDE-CA simulations by Mallet and Pillis (135) closely
match the population dynamics observed in experimental
tumor-immune dynamics. The models can also simulate
complex tumor processes such as immune-cell filtration and
tumor immune escape (135). The nutrient species’ reaction-
diffusion dynamics govern the tumor growth model in these CA
systems. Let us consider a simple model system with two
nutrients, then the reaction-diffusion system is given by:

∂N
∂ t

= DN ∇2 N − k1HN − k2TN − k3IN

∂M
∂ t

= DM ∇2 N − k4HM − k5TM − k6IM

Where, M and N represent the proliferation nutrient and
survival nutrient concentrations, respectively (135). The cell
species’ abundance are given by H for the host cells, T for the
tumor cells, and I for the immune cells. D refers to the diffusion
coefficient of the respective nutrient species indicated by their
subscript (135). The rate constants k indicate the respective
consumption rates for each of the nutrient for each of their
assigned cells (H, T, and I). The nutrients can also represent
activators, inhibitors, or other protein complexes (e.g., enzymes,
epigenetic modulators, drugs, chemical exposures/carcinogens,
therapies/perturbations, etc.) as chosen appropriate for the
model system of interest.

Further, CA such as Conway’s Game of Life can stochastically
simulate cancer cell kinetics and their multi-scale tumor
population dynamics (138). CA are thus tools for
computational systems oncology, to monitor tumor growth
dynamics under drug perturbations or targeted therapies, in
software space (in sil ico) (139. For example, (140)
demonstrated that CA models can simulate the behavioral
dynamics of cancer stem cells (CSCs), which as discussed, are
believed to be in large part, responsible for the emergent adaptive
behaviors in tumor ecosystems. To further illustrate, in another
set of studies, stochastic CA models well-captured the dynamics
of avascular tumors under chemotherapy and immunotherapy
perturbations and provided computational insights into how
drug delivery should be optimized to inhibit tumor
proliferation (141).

To further illustrate, in a model by Qi et al. (142), a two-
dimensional lattice was used with four discrete states, one
denoted cancer cells, one represented normal healthy cell, and
Frontiers in Oncology | www.frontiersin.org 11
the other two represented immune cells interacting with the
tumor and host cell environments. Probabilistic rules with non-
local and non-homogeneous transition rules updated
synchronously, resulted in the emergence of cancer cell
behaviors which closely matched experimentally observed
Gompertz growth models. Similarly, Kansal et al. (143)
simulated a brain tumor growth model via a three-dimensional
Voronoi network, with three discrete states representing three
types of malignant cells: proliferating cells, quiescent cells, and
necrotic cells. Similar local transition rules and conditions as the
model by Qi et al. were then used to model the tumor growth
dynamics. The pattern dynamics closely matched those observed
in experimental brain tumor data.

A rich repertoire of experimentally validated work on cellular
automata-based approaches in tumor modelling has been
performed using the Cellular Potts model (CPM). The CPM,
also known as the Glazier-Graner-Hogeweg model is a time-
discrete Markov chain spatial lattice model for studying complex
cellular dynamics in biological populations (144). Some
pertinent examples of such complex cellular processes include
cell-interactions mediated collective behaviors (e.g., collective
cell migration, cell fate decision-making/differentiation
dynamics, etc.), and multiscale pattern formation systems
including cancer morphogenesis and tumor invasion dynamics
(145–148). The individual cells are represented by simply-
connected domains on nodes for a given cell index. The CPM
dynamics evolves by updating the lattice configuration one cell at
a time based on probabilistic transition rules following a
modified Hamiltonian-dependent Monte Carlo simulation/
Metropolis algorithm (144). The experimental works of Sen’s
and Bhat’s groups have well-supported the applications of the
CPM model and similar CA-based computational modelling in
decoding the complex multicellular dynamics underlying cancer
metastasis and invasive- extracellular matrix (ECM) remodelling
(149–151). For instance, (151) validated that the reaction-
diffusion mediated multiscale focal adhesion dynamics and
ECM-remodelling of breast carcinoma can be accurately model
the cancer invasion processes.

Other models of multi-cellular tumor growth systems and
tumor angiogenesis (i.e., vascular tumors) have also been
successfully reproduced using CA systems (134). For instance, in
a two-dimensional lattice CA, a square topology with a nine-
membered Moore neighborhood was used in a tumor growth
model by Serra and Villani (152). The model accurately
reproduced in vitro tumor cultures’ growth dynamics with
varying growth conditions such as the difference after exposure
to carcinogens and the resultant development of transformation
foci. The model quantified the effects of the chemicals and the
change in the culture medium by its exposure to good precision
matching those obtained by mean-field theoretic approaches on
underlying ordinary differential equations. In principle, these
approaches can also be extended to in vivo tumors and patient-
derived xenografted tumor modelling for monitoring the
responses of targeted precision therapies. These are some of the
many examples to illustrate that CA are robust tools in
quantitative and computational oncology to model tumor
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growth dynamics under therapy control and help regulate/adjust
clinical decision making towards optimized precision medicine.

Criticality, the state of being poised between regularity and
chaos, was illustrated as a hallmark characteristic of cancer
processes including EMT switches, cell fate plasticity dynamics,
tumor pattern formation, metastatic invasion, and complex
dynamics in computational epigenetics (e.g., chromatin-
epigenetic modifications during cell state transitions). Cellular
automata (CA) was discussed as a powerful computational
modelling approach to investigate these critical dynamics in
multiscale cancer systems.
ENTROPY

Entropy is seen as a measure of uncertainty or disorder in
traditional branches of physics such as statistical mechanics
and thermodynamics, respectively. For instance, a gas of
molecules has a higher entropy than its liquid or solid phases
because a greater number of rearrangements of its microstates
(particles) would correspond to the same macrostate (gas).
However, in complex systems theory, (Kolmogorov-Sinai)
entropy is discussed as an information-theoretic measuring the
flow of information across state-space by the trajectories of a
dynamical system. Takens (101) described topological entropy as
one of the traditional measures for chaotic-behavior detection in
fluid turbulence. The phase-space flows of the system can then be
quantified as a transfer of information. The time evolution of the
set of orbits originating from all possible initial conditions of the
system generates a “flow” in state-space, governed by a set of n
first-order differential equations: dXi

dt = Fi(x1, x2,…, xn), where n
is the dimensionality of the space and X is the state-vector
characterizing the trajectory of the dynamical system. If we can
assign probabilities Pi to each of the possible outcomes in the
bifurcations of the system, we can define the information
associated with the outcome as given by the Shannon’s
entropy: H = SiPilog2Pi. When entropy increases sufficiently
high beyond some critical value of the governing parameters, a
phase-transition can occur as denoted by the bifurcations of the
attractor dynamics (e.g., transition from a fixed-point to a limit
cycle or, from an oscillation to chaotic attractor). The dynamical
systems analog of Shannon’s entropy is formally referred to as
the Kolmogorov-Sinai (KS) entropy or metric entropy. A system
with positive Lyapunov exponents will show a positive KS
entropy (153). There is also another useful entropy measure
for dynamical systems known as topological entropy, a variant of
the metric entropy, wherein instead of a probability measure
space we use a metric space with a continuous transformation.
Their uses may depend on whether we are dealing with ergodic,
flow preserving systems.

The onset of phase-transitions can be quantitatively measured
using an information production rate given by the entropy rate:
dH/dt. In chaotic systems, an increasing (positive) entropy rate is
observed. Intuitively, the increased entropy rate can be
interpreted as a measure of unpredictability and irreversibility
in the information flow of the system. Thus, maximal entropy
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and positive entropy rates can be used as predictors of the birth
of complex attractors (i.e., strange attractors) in the phase-space
of the dynamical system. However, some works have established
that entropy is not a robust measure of complexity. The Shannon
entropy fails to capture the algorithmic content of a dataset and
thereby fails as a measure of graph (network) complexity (154).
The KS entropy (rate) can quantify the amount of information
(flow) from or within system but whether the information flow is
causally related or not cannot be inferred. Regardless, they can be
used as cross-validation techniques for chaos detection and may
be useful for Waddington landscape reconstruction (i.e., quantify
cell state attractors using metric entropy measures).
SIMULATIONS AND COMPUTATIONAL
DYNAMICS

Due to the limited availability of three-dimensional time-series
datasets, the study of complex dynamics within cellular (cancer)
cybernetics heavily depends on computational simulations.
Computational simulations are emerging as powerful tools for
reconstructing chaotic attractors and inferring chaotic or critical
dynamics in biological networks. As discussed, Sarkar et al. (122)
used simulations of differential equations to infer critical
dynamics in simplified cancer-EMT networks. We also
discussed the appearance of chaotic oscillations in cancer-
immune competitive growth dynamics when time-delay was
introduced as a control parameter in simple modelling
differential equations (90). The emergence of chaotic attractors
was suggested as indicators of long-term cancer relapse and the
emergence of aggressive cancer phenotypes (90). Let us consider
an example from the works by Jensen et al. on the use of
simulations to detect intracellular chaos in protein oscillations.
Their works are an extension of the Goodwin oscillator model
(81) to cancer-relevant protein systems.

A Transcription Factor (TF) is a protein which binds to the
enhancer or promoter regions of a gene of interest with some
affinity and forms a complex with RNA polymerase to transcribe
the gene. The control of transcription regulates gene expression
and its resultant protein translations. Many cancer-related TFs
exhibits oscillatory dynamics within cells (18). For instance, the
oscillations of the tumor suppressor p53, Wnt, and NF-kB are
TFs central to regulating immune response, apoptosis
tumorigenesis, and cancer cell division. The works by Jensen
et al. (18) have shown that oscillatory external stimuli might
induce chaos and phase (mode)-locking inside cells when
coupled to their internal protein oscillations. Using
microfluidic cell cultures, Heltberg et al. (155) delivered
periodic TNF simulation to fibroblasts and recorded the NF-kB
nuclear localization by live cell fluorescence imaging. CellProfiler
and MATLAB peak analysis algorithms were used to track cells
and quantify the NF-kB translocation, where the activation was
quantified as mean nuclear fluorescence intensity normalized by
mean cytoplasm intensity (155). The phase locking transitions in
an oscillatory manner were observed even amidst noise
fluctuations at critical bifurcation points. When the oscillations
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entered a chaotic state, counter-intuitively, the NF-kB protein
was shown to be most effective at activating downstream genes
and optimizing their signaling cascades (19).

The emergence of intracellular chaotic behavior, at the level of
protein oscillations, remains highly controversial and subjected
to debate. However, the computational simulations paired with
experimental models, as performed by Jensen et al. (18) are the
first set of studies showing deterministic chaos can drive a
nonlinear internal oscillator within cells such as NF-kB with a
periodic external signal such as the cytokine TNF. With low level
amplitude oscillations of the external driving signal, it can
entrain or synchronize with the nonlinear oscillator as
indicated by the Arnold tongues observed in its bifurcation
diagram (19). Arnold tongues are regions of parameter space
where the NF-kB oscillations are entrained to the external TNF
oscillation. Entrainment implies frequency and phase-locking.
Outside the Arnold tongue, there is no synchronization. As the
TNF amplitude increases beyond a critical threshold, chaotic
dynamics can occur as indicated by period-doubling bifurcations
and the overlapping of Arnold tongues (19). The model shown
by Heltberg et al. consisted of a negative feedback loop system
(with inhibitor IkBa) in a single nonlinear oscillator (19). These
simulations show that the strong coupling of two nonlinear
oscillators with a negative feedback loop can give rise to
complex dynamics in cell states. These findings suggest that a
negative feedback loop in protein oscillatory networks may be a
sufficient condition for driving chaos in cells.

Lastly, we will discuss simulations and computational
modelling in epigenetics as an example of multiscale dynamics
in computational/systems medicine. Computational epigenetics is
a field at its infancy in comparison to simulations of cancer cell
population dynamics or patterns of regulatory network
dynamics. As discussed, forecasting the long-range interactions
in 3D-genome structure, histone interactions, and other
epigenetic processes is the key to deciphering cancer stemness
networks and phenotypic plasticity in cancer cell fate dynamics
and commitments. These emergent behavioral patterns are the
drivers of adaptive features in cancer ecosystems such as therapy
resistance and intratumoral heterogeneity. One of the best
examples of epigenetic control and regulation in tumor
transcriptional dynamics is the polycomb memory system in
pediatric high-grade glioma.

Current approaches to modelling histone mark spreading
dynamics and chromatin looping dynamics include ordinary
differential equations (ODEs) modelling the catalytic kinetics
with their (experimentally confirmed) rate constants, or
stochastic kinetic models., the latter of which remains the most
widely employed approach due to the analytical constraints of
ODEs. We can consider a simple epigenetic feedback circuit like
the antagonistic feedback between H3K27 and H3K36
methylation (156), or a much simpler single histone
modification’s methylation or acetylation dynamics for such
ODE models followed by some iterative differential equation
solver to approximate the solutions (e.g., Euler methods, Runge-
Kutta, etc.) (157). In the case of more complex, scalable models,
like the antagonistic H3K27me2/3 and H3K36me2 circuit, ODE
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simulation toolkits such as AMICI (combines SUNDIALS and
SuiteSparse) and PESTO are available for ODE solving and
gradient-based parameter estimation (156). To illustrate, the
methylation dynamics of the histone mark H3K79me0/1/2/3
by the enzyme DOT1L (known for impaired functions in
leukemias), can be given by the following system of ODEs:

d me0½ �
dt

= −kon me0½ � + koff me1½ �

d me1½ �
dt

= kon me0½ � − koff me1½ � − kon me1½ � + koff me2½ �

d me2½ �
dt

= kon me1½ � − koff me2½ � − kon me2½ � + koff me3½ �

d me3½ �
dt

= kon me2½ � − koff me3½ �

Where t denoted time, kon is the forward methylation reaction
rate and koff is the reverse reaction rate (also accounts for cell
division, nucleosome turnover, and demethylation) (157). The
brackets [] denote the concentration of the specific histone
methylation marks, where 0 is unmodified H3K79 and 3 refers
to the trimethylation.

In contrast, the more popular set of approaches in epigenetic
modelling of chromatin or histone state dynamics involve
stochastic models such as Monte Carlo simulations, Langevin
dynamics/Random walks, and coarse-grained molecular
dynamics. For instance, a recent study has shown that
stochastic computational simulations can well predict PRC2
dynamics in glioma systems, even under the presence of
antagonistic H3K36 modifications and H3K9me3 marks
propagation dynamics (31). The stochastic simulation
STOPHIM adopts a bi-modal random walk model of PRC2-
mediated histone methylation dynamics across a simulated
genomic region represented as a 1D-vector. The study found
that H3K27me 2/3 marks which are widely deposited by PRC2
across broad genomic regions, show globally inhibited
methylation distribution patterns in H3K27M glioma cells (31,
158). Although, the model includes cooperativity in PRC2
dynamics, and the simulated kinetics/catalysis of the
methylation rates agree with experimental data, chromatin
phase-separation and 3D-genomic structural organization
is lacking due to the adopted 1D- linear model. The
integration of ChIP-Seq and Hi-C data is required to model
the 3D conformation dynamics, which is an essential step
to forecast critical dynamics (phase-transitions) in histone
marks or chromatin states. The next mission for AlphaFold-
l ike a lgor i thms should be chromat in fo ld ing and
inferring transcriptional states/dynamics from chromatin/
epigenetic states.

There are other stochastic/probabilistic simulation
approaches available in modelling epigenetic states and histone
mark spreading dynamics in cancer systems. Some examples
include the use of coarse-grained molecular dynamics from
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chemical master equations over 1D- lattice models with mean-
field approaches (for analytic solutions) used for sirtuin-2
mediated acetylation dynamics in simple yeast systems (159)
and Markov Chain Monte-Carlo algorithms (160). The general
approach is that a master equation describes the time-evolution
of the probability distribution P for times between DNA
replication, at which point histone components are distributed
to the daughter DNA molecules in conjunction with semi-
conservative replication (i.e., half retention of epigenetic
marks). The models often assume a two-state or three-state
epigenetic marks, where the histone sites are A (Acetylated), U
(unmodified), or M (Methylated). At each time-step a random
lattice site representing a nucleosome is chosen and one of the
biochemical (kinetic) reactions underlying the chemical master
equation (CME) are randomly simulated with a probability
proportional to their respective rate constants for the
methylation or acetylation dynamics (159, 161). Mean-field
approximations must be employed to derive equilibria
points (i.e., stable epigenetic states/marks). With cooperativity
in the epigenetic marks, bistability (presence of two stable
equilibria) is observed in the system representing on/off
epigenetic states (162). As such, algorithmic information
dynamics can be employed in prospective studies to treat these
epigenetic switching systems as discrete dynamical systems
suited for Ising spin-glasses, cellular automata, or artificial
neural networks.

If we assume s, the density of marked nucleosomes, is always
large and exhibits faster dynamics than the unmodified states, one
can take to the limit of large number of nucleosomes the Fokker-
Planck Equation (FPE) for the probability P. Also, for the general
situation where recruitments of enzymes by active or inactive
marks are asymmetric, the steady-state distribution of FPE has at
most three fixed points on the bifurcation diagramwith a cusp-like
catastrophe indicative of critical dynamics (phase-transition) (67).
Further, the FPE approximations have been shown to closely
match simulations of the CME approach by Gillespie algorithm.
For example, the Gillespie algorithm has been used to model
polycomb memory systems in simpler model systems (163).
Further details of CME and FPE are provided in the respective
citations of the studies, and in Uthamacumaran (164).

However, what happens with 3D-conformation dynamics
and long-range interactions? Multi-protein complexes and
transcriptional marks are involved in the dynamics of
epigenetic states, where many types of histone co-
modifications are involved. Current models are thus simplified
to at most two or three histone modifications. Long-range
interactions need to be accounted for in the modelling by
integrating Hi-C data with ChIP-Seq tracks. For instance, few
groups have previously investigated how long-range looping
interactions may be involved in H3K9me3 domain
(constitutive heterochromatin) formation by use of Monte
Carlo simulations coupling nucleosome turnover with
methylation kinetics (157, 165). The stochastic models were
able to well-reproduce the chromatin marks seen in
experimental ChIP-Seq profiles. Similar studies were shown to
reproduce the SETD2-catalyzed H3K36me3 marks from ChIP-
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Seq tracks, as well (166). Recent studies have shown stochastic
chemical kinetics polymer models using Langevin dynamics to
better capture histone methylation dynamics than these above-
listed methods (167). Regardless of these computational
approaches, the lack of 3D-chromatin modelling and a lack of
time-points in conjunction with histone spreading dynamics
remains the central problem in current computational
epigenetics. Predicting critical dynamics in epigenetic
remodelling of chromatin states and their resultant cell fate
dynamics with limited time-points is a great burden to
complex dynamics discovery in (cancer) epigenetic systems.

Various computational models in stochastic dynamics/
simulations were discussed for investigating multiscale cancer
dynamics, including population dynamics and growth/invasion
processes. These coarse-grained stochastic models include
molecular kinetics, differential equations-based model systems,
Monte Carlo approaches, and Gillespie algorithm. A summary of
molecular dynamics in the emerging field of cancer
computational epigenetics was also introduced. These
simulations can be paired with experimental techniques and
other discussed computational toolkits within this paper to better
elucidate the behavioral patterns in cancer ecosystems.
MACHINE LEARNING-DRIVEN CAUSAL
INFERENCE

While the above-discussed traditional chaos detection methods
can verify if the state-space attractor reconstructed from the
time-delay embedding of cancer signals is chaotic, they are
bound to dimensionality limits. What happens if multiple
chaotic attractors coexist in the signaling/expression state-
space? Imagine the computational complexity of dissecting the
time-series of a network of thousands of genes or proteins within
thousands of cells at once. Identifying chaotic attractors in the
state-space of such complex networks is an NP-hard problem.
While traditional approaches may fail to dissect these complex
networks, model-driven and physics-driven artificial intelligence
may provide a solution for causal inference. Recurrent Neural
Networks (RNNs) are recently emerging as the state-of-the-art
machine learning algorithms for the spatiotemporal prediction of
chaotic dynamics and attractor reconstruction in complex time-
series datasets. They allow the model-free inference of chaotic
dynamics from complex datasets. For example, Reservoir
Computing (RC), a type of RNN has recently demonstrated
applicability in the Lyapunov exponents prediction of spatio-
temporally chaotic systems, such as the forecasting of the KS
(Kuramoto-Sivashinsky) equation up to a few multiples of the
Lyapunov-time (168, 169).

RC computing is a merging line between Liquid-State
Machines and Echo-state networks, two types of random
recurrent neural networks (RNNs). Liquid State Machines
(LSM) are a type of spiking neural networks composed of
artificial neurons with threshold activation functions (170).
Each neuron is also an accumulating memory cell of random
interconnections. On the other hand, ESNs are random, large,
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fixed recurrent neural networks. Each neuron within this
reservoir network produces a nonlinear response signal. ESNs
are equivalent to LSMs from a dynamical point of view. Both
parallel approaches were recombined to RC computing, the
current state-of-the-art machine learning to predict chaos in
time-series (171). The RC neural network consists of three
distinct layer types: the input layer, the Reservoir, and the
Output layer. The Reservoir is a network of nonlinear units
forming recurrent loops with random configuration. Only the
output layer is optimized by training (adjusting the weights). No
Backpropagation is needed for training thus, it is simple and
quick (169). Different output layers can be trained for different
tasks (i.e., parallel computing).

For a simple reservoir update, consider the input U(n), the
states of the reservoir at time X(n), and the output at a given time
is y(n). Let W be the connectivity of the nodes of the reservoir.
Using some nonlinear function, we can recursively update the
network from its data points in the current state. The reservoir
update is described by the generic rule: x(n) = f(Wx(n— 1) +Win

u(n)) and the network’s output computation is given by y(n) =
Wout x(n). Applications of RC include dynamic pattern
classification, chaotic time-series generation, and chaos
forecasting (prediction). The Lyapunov exponents and chaotic
attractors of spatiotemporally chaotic systems can be attained
using RC computing. For example, Pathak et al. (169) exploited
the RC reservoir dynamics to find the Lyapunov exponents of
high dimensional dynamical systems, from which chaotic
attractors could be reconstructed. Local and global metrics
such as the Kullback-Leibler divergence, cross-validation
measures, and mean-square error can assess how accurately
the chaotic attractor was mapped by the neural network or
how well the Lyapunov exponents were predicted for the
chaotic system.

In some ways, one can think of predicting cell fate
transcriptional dynamics or signalling dynamics as reminiscent
of weather forecasting in tumor ecosystems. Both are multi-
dimensional patterning fluid systems with multi-scale dynamics.
As such, it may be useful, in general, to adopt AI-driven
computational fluid dynamics (CFD) and fluid turbulence
modelling approaches in the study of cancer patterning/
cybernetics. For instance, Ling et al. (172) used custom Deep
Learning architectures with Galilean invariance to approximate
the Reynolds’ stress tensor in Navier-Stokes Equations flows in
turbulent regimes. More recent examples of this includes
machine-learned super-resolution analysis and reconstruction
of complex turbulent flow fields (173). Fukami et al. used
convolutional neural networks (CNN) and a hybrid down-
sampled skip-connection/multi-scale (DSC/MS) model to
forecast complex fluid patterns. Another example would be the
shallow decoder network by Erichson et al. (174). In such
approaches, we can take a few measurements or coarse-grained
resolution measurements of the flow dynamics for training the
neural networks, and in result forecast/predict its high-resolution
flow patterns. However, there are limitations since this is an
image-based training method and large, high quality image
datasets are required. Furthermore, there are Lyapunov times,
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windows of predictability, to consider given the 3D-flow
evolution of complex structures such as fractal hierarchical
patterns and vortices. The reconstruction becomes poorer as
we go farther away from the training interpolation region.

More recently, a class of RNNs referred to as liquid neural
networks, or liquid time-constant networks, are also emerging as
continuous-time neural networks for data-driven time-series
forecasting of complex dynamics (i.e., causal inference) (175).
These methods remain unexplored in cancer research and
modelling/forecasting cancer signaling dynamics. Thereby we
should extend these computational models and AI-driven
simulation techniques to study cellular patterning systems and
chemical turbulence (i.e., intermittent, or spatiotemporally
chaotic intracellular flows in morphogens and protein
oscillations). There are many other neural networks such as
Generative Recurrent Neural Networks with reinforcement
learning and other Deep Learning frameworks which can also
be trained to detect chaotic attractors in cancer signaling/
expression dynamics. The reinforcement learning model is
most applicable if the amount of time-resolved data available is
very little, wherein the neural network will generate new data
which mimics the experimental data for pattern recognition.
However, such methods will not be discussed herein.

Various causal inference algorithms and computational
systems in the field of machine learning/artificial intelligence
are capable of capturing causal patterns/relationships in cancer
dynamics. These machine intelligence tools include certain types
of neural networks such as reservoir computing, liquid neural
networks, and recurrent neural networks. These tools should be
exploited in pattern discovery in various cancer processes such as
decoding cellular dynamics in gene expression state-space
(differentiation dynamics), reconstructing protein signaling
networks, and deciphering histone/epigenetic modifications in
cancer chromatin-state transitions.
ALGORITHMIC COMPLEXITY

Algorithmic Information Dynamics (AID) is an artificial
intelligence platform for causality inference in dynamical
systems. AID demonstrates that the algorithmic information of
complex networks can be used to steer and reprogram their
complex dynamics in phase-space (78, 176). AID provides a set
of tools to approximate the Algorithmic (Kolmogorov)
complexity of these complex networks and control them via
merging algorithmic information theory with perturbation
analysis in software space. Perturbation analysis can be as
simple as the removal of an edge or node from a complex
network. A graph network can be represented by a set string
or array of binary code. The algorithmic information content of
this string/array can then be described by classical measures such
as Shannon entropy H(s) or Kolmogorov complexity K(s). The
K-complexity, K(s), also known as Kolmogorov or algorithmic
complexity quantifies the shortest bits of a string or computer
program required to describe a dataset. K-complexity is a robust
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measure of a network’s complexity vastly unutilized in current
approaches to network biology (177).

K(s) may be seen as analogous to Shannon entropy as a
measure of complexity (or the lack of complexity, i.e.,
randomness) (78). However, K(s) is a more robust tool than
Shannon entropy to measure the complex dynamics of networks.
Unlike our current statistical approaches in inferring complex
networks dynamics (such as Shannon’s entropy or correlation
metrics), K-complexity provides causal inference of network
topology and dynamics. By perturbation analysis using AID
tools, one can identify the sub-structures of complex networks
driving their information flow and regulating their topology (and
in consequence, the cellular states/phenotypes) (78). Although
Shannon entropy can quantify the amount of information in a
complex system (network), it does not tell us how causally
connected they are. Further, entropy provides no insights into
the algorithmic content of a graph network. However, the
algorithmic information content of a complex network
distinguishes a process as a cause or randomness (78).
Furthermore, K(s) does not depend on a choice of probability
distribution like Shannon entropy does. Therefore, it is more
robust than Shannon entropy in measuring the complexity of
graph networks, such as cancer plasticity networks. Further, we
have shown that Shannon’s information entropy rates is closely
matched to lossless compression algorithms in comparison to
algorithmic complexity. K(s) is also emerging as a machine
intelligence platform to reconstruct attractor landscapes such
as the Waddington epigenetic landscape of biological networks
and causal discovery in their network state-space dynamics
(78, 176).

Formally, the Kolmogorov complexity of a discrete dynamical
system s is K(s) = min{|p|: U(p, e) = s}, where p is the program
that produces s and halts running on an optimal reference
universal Turing machine U with input e. K(s) is the length of
the shortest description of the generating mechanism (of the
network or system). For example, a graph network or system is
defined as random (or not having a causal generating program) if
the K(s) is about the same length of s itself (in bits). However, K
(s) is semi-uncomputable and must be approximated using tools
from AID.

K(s) can be seen as analogous to a measure of the
compressibility or irreducibility of an object such as a string or
network, or a dynamical system. Then, K(s) of a network matrix s
is the length of the shortest compressed file producing s when
decompressing it. Compression algorithms like LZ77, LZ78,
Huffman coding, and LZW (Lempel-Ziv-Welch) are some
examples of lossless compression algorithms (78). They are
closer to Shannon entropy (rate) estimations than the graph
complexity since they can detect statistical regularities within the
information system. However, currently no compression
algorithm can estimate the K(s) of a complex network since
they are not sensitive enough for small perturbations. As such,
Block Decomposition Method (BDM) (178) can be justified as
the most appropriate method to study graph and network
complexity perturbation analysis (78) also providing a more
sensitive and robust alternative to limitations of entropy-based
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statistical compression algorithms such as the LZ and LZW
family of compression algorithms.

The Coding theorem method (CTM) is based upon, or
motivated by, algorithmic probability and is able to provide an
estimation to K(s). However, CTM is computationally expensive
(i.e., applicable only to short string or small object sizes).
Therefore, BDM is available as an extension of CTM. It
approximates the K(s) of a dataset, providing local estimates of
the algorithmic complexity (78). Let U be an optimal reference
universal Turing machine and p be a program that produces s
running on U, then, the Solomonoff-Levin algorithmic
probability is given by:

m sð Þ = o
p :U pð Þ=s

1=2jp <1j

Then, the shortest program p, K(s), is related to the
algorithmic probability by the CTM, which states: K(s) = —
log2(m(s)) + 0(1) (179, 180, 182; 181).

There is also Bennett’s logical depth, a measure based on
Kolmogorov complexity, defined as follows:

Depths xð Þ : = minp T pð Þ : l pð Þ − K sð Þ ≤ s,   U pð Þ = xð Þf g
While the K-complexity measures the length of the minimal

program required to generate the string or graph s, the logical
depth measures the fastest program(s)/computation time T, i.e.,
shortest running time length, needed to generate the system
(183). This is a very interesting measure because it would capture
objects in the chaotic regime and place them as having deep
structure even when, to some purposes, are random-looking.
They are neither the simplest by their emergent behavior nor
algorithmic randomness, but their dynamics require
computational time to emerge at a usually small critical
interval (9).

The set of graph eigenvalues of the adjacency matrix is called
the spectrum of the graph. The Laplacian matrix of a graph is
also sometimes referred to as the graph’s spectrum. Eigenvalues
of evolving networks can be computed, and one can observe the
graph complexity K(G), where G is the graph representing the
string s, versus the complexity of the eigenvalues, to obtain
information about the amount and kind of information stored in
each eigenvalue (178, 184). Further, by assessing the maximum
entropy per row of the Laplacian matrix, the eigenvalue which
best characterizes the evolving network can be identified. Graph
spectral analysis provides a quantitative tool for characterizing
attractor dynamics in complex networks. CTM studies
dynamical systems in software space, characterizing the effects
of perturbations and natural or artificial changes to a system in
terms of the changes in the set of the underlying explanatory
computational models able to explain the system before and after
the intervention (176).

The Block Decomposition Method (BDM) allows to combine
the power of statistical information theory and algorithmic
complexity hence extending the range of CTM to characterize
local but longer-range algorithmic patterns. BDM is defined as:
BDM =on

i−1K(blocki) + log2(jblockij) , where the block size
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must be specified for the n-number of blocks. When the block
sizes are higher, better approximations of the K-complexity are
generally obtained. Although all methods listed here are
applicable to causal discovery in dynamical systems, BDM is
the most useful (and robust) tool in AID so far to study K(G) on
all objects, including applications of perturbation analysis to
graphs and networks, and as such has the potential to provide a
computational framework to quantify the causal structure and
complex dynamics of cancer networks (78, 185).

To apply BDM on cancer networks/datasets that operates at a
discrete and binary alphabet, one can binarize the underlying
adjacency matrices with a moving threshold to obtain a vector of
networks and associated BDM values. Then apply the BDM on
the vectors and obtain a vector of BDM values to work with. By
sampling through all thresholds, the process is immune from the
arbitrary choice. The identification of the essential features of
complex networks- motifs, cliques, and subgraphs, is an NP-
complete problem (78). Therefore, identifying cancer stemness
networks is NP-complete, in principle, in traditional approaches
unless some a priori assumptions are made on the underlying
data distribution. However, algorithmic complexity and the AID
toolbox of measures to approximate K(G) avoid such
assumptions of predicted data distributions to fit the complex
system and find computable candidate mechanistic models. AID
provides a robust platform to identify causal structures such as
chaotic attractors in cancer networks (78).

Perhaps the most elegant aspect of AID is that it provides a
computational description of biological information processing.
Unlike our traditional perspective of evolution by natural
selection, AID provides a view of adaptive processes as
algorithms steered by causal information dynamics. In systems
science, one often uses the term cybernetics to denote the study of
information processing (dynamics), regulation, feedback,
communication, and control in complex systems. As such,
cyberneticians often refer to complex systems as control
systems, regulatory systems, or feedback systems. Cells, genes,
and proteins, the essential structures of information processing
in biological cybernetics, can then be treated as computers,
programs and codes forming complex multi-scaled feedback
loops and hierarchical structures. AID allows causal discovery
in such complex systems. Further, in a recent study, AID
measures such as BDM have been demonstrated as powerful
tools which could highlight evolutionary paths in biological
systems. The algorithmic probability reduces the space of all
possible mutations and AID was shown able to detect biological
pathways more likely to generate mutations versus those which
are more stable (185). These findings demonstrate that
evolutionary dynamics may be treated analogous to evolving
programs in software space. Therefore, AID measures may
provide a robust platform to study the cybernetics
(information flow) of driver mutation networks and stemness
networks in cancer evolutionary dynamics. These approaches
should be extended to the study of cancer systems and CSCs to
map their cell fate choices and help identify the minimal set of
mutations or driver signals required to confer cancer stemness.
Frontiers in Oncology | www.frontiersin.org 17
Algorithmic complexity provides a robust screening tool for
cancer dynamics under a computational systems framework,
whereas cellular processes can be viewed as programs and cells as
computers. Network perturbation analysis using algorithmic
complexity measures was discussed as a statistically strong
method to identify causal biomarkers governing cancer cell
fate dynamics.
CONCLUSION

In summary, various algorithms for the detection of chaotic
attractors in the signaling state-space of cancer networks have
been discussed. The basic insights into chaos, fractals, and
complex systems have been sowed in the context of cancer
dynamics. Although chaos exhibits apparent randomness, it
has distinct properties and patterns which distinguish it from
stochasticity. More precisely, chaotic systems exhibit emergent
structures in their state-space with a (multi)fractal dimension:
strange attractors. Although mathematical and computational
models of cancer dynamics have demonstrated the existence of
chaos and strange attractors within cancer cells, their
experimental confirmation remains limited. The lack of time-
series cancer datasets (largely in part due to technological
barriers) and a lack of complexity science in cancer research
are fundamental barriers in experimentally detecting complex
dynamics in cancer cells. However, there are various emerging
ways to acquire time-sequential cancer datasets in single-cell
transcriptomics and proteomics, as discussed in the introduction.

A blueprint (tree-diagram) of causal inference in time-series
cancer datasets is provided in Figure 1. The general road map to
detecting a chaotic attractor (if it exists) in cancer signaling
dynamics is such that first the time-traces of the signal of interest
such as gene expression from time-resolved single-cell
transcriptomics or protein oscillations from live-cell imaging is
acquired (Figure 1). Then, it must be embedded via time-delay
coordinate embedding to be visualized in a three-dimensional
space. Following, various discussed algorithms such as fractal
dimension, Lyapunov exponents, and entropy measures, can be
applied to verify if the embedded pattern is a chaotic attractor(s).
There are other chaos detection tools which were not discussed
here and could be useful in dissecting biological cybernetics. One
good example would be the 0-1 test proposed by Gottwald and
Melbourne (186). However, given the dimensionality limits of
such traditional techniques like time-delay embedding and
topological entropy, the review strongly suggests the
exploitation of machine learning algorithms like RC networks
and liquid neural networks, and artificial intelligence platforms
like algorithmic information dynamics (AID) for causal pattern
discovery in cancer systems (Figure 1). The techniques outlined
in the tree-diagram have widespread applications in systems
medicine, including other single-cell multiomics datasets (e.g.,
protein abundance matrix from CyTOF or histone mass
spectrometry, single-cell chromatin modifications matrix from
EpiTOF, etc.) (187). Table 2 in the Appendix provides a
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simplified summary of how the complex systems techniques/
tools may apply to different types of datasets and the format of
the dataset required for their application.

Chaotic behavior in population dynamics/cellular ecosystems
has been predicted as a signature for generating heterogeneity,
tumor aggressiveness, metastatic invasion, recurrence/relapse,
and therapy resistance (89, 90). Further, intracellular chaos has
been suggested as a hallmark of cancer progression and
aggressivity herein. Jensen et al. demonstrated the flows of
protein densities may form strange attractors within cells (18,
19, 155). In extension of their findings, chaos is suggested as a
Frontiers in Oncology | www.frontiersin.org 18
causal mechanism by which tumor phenotypes can acquire
adaptive properties and increase their fitness in harsh fluctuant
environments. The detection of chaos within cellular oscillations
and protein flows are predicted to be indicators of complex
dynamics driving cancer networks. Further, chaotic dynamics in
a single transcription factor were shown to orchestrate
phenotypic heterogeneity and the enhancement of downstream
gene signaling (18, 19). Then, the emergence of intracellular
chaotic dynamics at the level of protein flows and gene regulatory
networks may allow cancer cells to become highly robust to
perturbations, conferring adaptive advantages to dynamic
FIGURE 1 | Biological inverse problem. The workflow summarizes a blueprint of causal inference methods and measures discussed in the review for systems oncology.
Given time-resolved cancer data (e.g., live-cell imaging of protein flows, time-sequential transcriptomic profiling, etc.), we can employ complex systems tools such as
dynamical systems modelling or statistical machine learning algorithms for pattern discovery. Dynamical systems approaches include attractor embedding followed by
chaotic behavior detection tools as discussed, or complex networks inference. Chaotic behavior detection tools comprises of many approaches discussed in the paper
including attractor embedding, fractal analysis, frequency spectra, and Lyapunov exponents. However, these approaches may have dimensionality limits and hence, AI-
driven causal inference algorithms are proposed as promising tools for causal pattern discovery in single-cell time-sequential analyses, which include algorithmic
information dynamics (i.e., measuring the algorithmic complexity of complex graph networks via perturbation analysis in software space), recurrent neural networks (e.g.,
RC networks, liquid neural networks, etc.), and model-driven AI (e.g., turbulence modelling/multiscale computational fluid dynamics).
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environments (resilience), promote their phenotypic plasticity,
and generate aggressive phenotypes with therapy resistance.

Therefore, chaotic, or complex dynamics are not suggested as
signatures of cancer pathogenesis herein, for which, as well-
established, genetic instabilities and epigenetic abnormalities
provide a better causal mechanism. Rather, complex dynamics
are suggested as signatures of tumor progression and aggressivity
in cancer cell fate dynamics (Figure 2). The detection of a chaotic
attractor in cancer signaling implies the presence of cellular
(disease) state, which is complex, adaptive, and difficult to treat.
Hence, perturbation analysis by means of targeted therapies or
cellular reprogramming methods can be used to determine
which therapy/perturbation results in the loss in instability and
complexity of the strange attractor, and thus, help identify
effective precision therapies against aggressive cancers like
GBM. Network medicine and complex systems analysis
provides another tool to help identify these targeted therapies
or gene/protein drug targets for the perturbation analysis. If we
A

B

FIGURE 2 | Attractors and oscillations. (A) Time-delay Coordinate Embedding. A sc
is shown by time-delay embedding (i.e., Convergent Cross Mapping). t represent the
algorithms such as reservoir computing (RC) and deep learning architectures are sug
which can self-organize in the signaling/expression state-space of cancer processes
strange attractor (chaotic). The simplest of attractors, a fixed-point, is not shown here
oscillator’s angular frequency as the independent variable and the amplitude of the o
a defined amplitude (A) and peak in the frequency spectrum at a frequency (w). A bro
fractal-dimension in state-space. However, the frequency/power spectrum can be m
as those observed fluid turbulence, exhibit a broad frequency spectrum with an anom
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see the strange attractor (complex dynamics) reduce to more
stable attractors such as equilibrium points as indicated by the
loss of a fractal dimension of the attractor or non-positive
Lyapunov exponents, we may conclude the perturbation is a
robust anti-cancer therapy. In principle, such approaches
provide a causal framework to not only screen for precision
therapies but also control/predict cancer cell fate dynamics and
reprogram their phenotypes towards benignity. Further, causal
inference methods should be applied to single-cell multiomics
and multimodal profiling methods.

The future of mathematical and computational methods for
cancer research holds great promise with the emergence of
interdisciplinary fields such as computational oncology and
systems medicine. The various tools discussed herein illustrate
that they provide quantitative insights into complex cancer
processes hindering therapy response and contributing to
disease progress ion/aggress iv i ty , inc luding cancer
differentiation dynamics, phenotypic plasticity/stemness, and
hematic of attractor reconstruction from a time-series signal of some variable X(t)
time-delay. However, for complex large-scale datasets, machine learning
gested (Image was adapted from 37). (B) Three different types of attractors
are shown: a limit cycle (periodic oscillation), quasi-periodic attractor, and a
in. Their corresponding frequency spectra are shown below, with the
scillations as the dependent variable. The oscillation of a limit cycle attractor has
ad frequency spectrum is observed for the strange attractor, which exhibits a
ore complex depending on the system. For instance, complex attractors, such
alous power-law scaling (i.e., multifractality) due to intermittency.
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TABLE 1 | GLOSSARY.

METHOD DESCRIPTION

Takens’
theorem

A technique for embedding the time-series signal in state-space using a time-delay in one of its coordinates. Convergent Cross Mapping is an
embedding algorithm implementing Takens’ theorem, applicable on complex networks. The technique has dimensionality limits and hence, should only
be limited to a few signals with predicted chaotic dynamics.

Denoising
Algorithms

Any algorithm intended for noise reduction. Can range from filtering and preprocessing tools (interpolation, smoothening, etc.) to wavelet-analysis
methods. Imputation algorithms are emerging as popular candidates. Not discussed in detail since it consists of a wide range of algorithms, the
applicability of which depends on the type of dataset and system of interest.

Lyapunov
Exponents

Measures how fast two initially close points on a chaotic trajectory exponentially diverge apart in time. Positive Lyapunov exponent(s) are characteristic
signatures of chaos.

Fractal
Dimension

Fractals are the geometry of chaos. A fractal is a geometric pattern exhibiting statistical self-similarity (i.e., power law scaling) across many length and
time scales with a fractional (non-integer) dimension. It is used as a measure of irregularity, roughness, and complexity. Some algorithms to estimate
the Fractal Dimension include the Box-counting method, Fourier analysis-based approaches, and the sandbox method.

Multifractal
Analysis

If more than one fractal dimension is required to describe the complexity of the system, multifractal analysis is required. These approaches are most
applicable for time-series analysis. The local Holder exponents and the Hurst index are pertinent measures. Wavelet Transform-based methods remain
the most popular tools for identifying these multifractal statistics.

Fast-Fourier
Transform
(FFT)

The frequency and power spectra of time-series signals can be acquired using FFT. The FFT algorithm decomposes a time-series into its constituent
frequencies. Chaotic systems generally exhibit a broad frequency spectrum.

Criticality Power laws are indicators of critical dynamics, a state of hierarchical self-organization poised between regularity and chaos. When certain complex
systems surpass their critical point, they gravitate towards chaotic dynamics. The Ising model is discussed as a powerful tool to model criticality in
cancer gene expression and patterns of network dynamics.

Entropy Maximal entropy and a positive entropy rate are observed in dynamical systems exhibiting increased chaotic flows in phase-space. They could be
indicators of phase-transitions to chaotic dynamics and/or the birth of complex attractors. However, entropy is not a robust measure of network
(graph) complexity and may fail to distinguish randomness from chaoticity.

Computational
Modelling and
Simulations

The pairing of simulations/computational modelling with data science is the central principle of complexity science. Herein stochastic simulations such
as the Monte Carlo methods and Gillespie algorithm were discussed for simulating chemical kinetics and molecular dynamics.

Recurrent
Neural
Networks
(RNN)

Reservoir Computing (RC) networks and liquid neural networks are the state-of-the-art Deep Learning Networks for time-series forecasting and
spatiotemporal prediction of chaotic dynamics from complex, multidimensional datasets.

Algorithmic
Complexity

Also known as the Kolmogorov complexity [K(s)], is a measure of the length of the shortest description of a dataset (e.g., a string, an array, a network,
or dynamical system) or the shortest program needed to generate the dataset.
Various algorithms exist for estimating the K-complexity. CTM and BDM (Block Decomposition Method) are alternatives to statistical compression
algorithms and are native to n-dimensional complexity.
Frontiers in Onco
TABLE 2 | Dataset format for complex systems methodologies.

TECHNIQUE/METHOD TYPE OF
DATA

NUMBER OF
OBSERVATIONS

LONGITUDINAL OR
DISCRETE-TIME

NUMBER OF PARAMETERS

Takens’s theorem/Convergent Cross
Mapping

Individual Rich Both Minimum 1 dimension for discrete-time and 3 dimensions for
longitudinal; and time-delay parameter

Lyapunov Exponents Individual
or Mean

Rich Longitudinal 1-2 parameters (dynamical variable and time)

Fractal Analysis Individual Scarce or Rich Both (mainly Discrete) 2 for Box counting technique
Fast-Fourier Transform Individual

or Mean
Scarce or Rich Both Minimum 2 dimensions (time and variable of interest)

Entropy Individual
or Mean

Scarce or Rich Both 1 or more; a priori assumption of statistical distribution for
Shannon entropy

Ising Model/Spin Glass Mean Scarce or Rich Discrete 1 or more; mean-field approach/a priori assumption of
statistical distribution

Cellular Automata (CA) Individual Scarce or Rich Discrete 1 or more
Recurrent Neural Networks Individual Rich Both Minimum 2 (time and dynamical variable)
Stochastic Simulations Individual

or Mean
Scarce Discrete Statistical Distributions (a priori assumed)

Differential Equations Individual
or Mean

Scarce Longitudinal 2 or more (time and variables); discretization or assumptions
are required for analytical solutions

Block Decomposition Method Individual Scarce or Rich Discrete 1 or more
Algorithmic Perturbation Analysis
(Graph Network Complexity)

Individual
or Mean

Scarce or Rich Discrete 1 or more
logy | www.frontiersin.org
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FIGURE 3 | Differentiation dynamics in pediatric glioma systems. On the left, a schematic of the discussed epigenetic variants of pediatric high-grade gliomas
(pHGGs) are shown with their corresponding brain regions recapitulating altered neurodevelopmental differentiation circuits. The corresponding Waddington
landscape for their stalled differentiation dynamics is shown to the right. The cancer cell fates are shown as stalled attractors on the landscape (gene expression or
signalling state-space) resembling stem cell states. Below, a string of the amino acid sequence of the histone tail H3 code is provided with the sites of the recurrent
epigenetic mutations in these pHGGs. Some of these epigenetic modifications correspond to active chromatin marks with transcriptional activity while others are
repressive marks (inhibited gene expression). The polycomb system is an essential regulator of pHGG differentiation dynamics. The toy-model system provides the
biological insights underlying the complex dynamics and mathematical concepts discussed in the paper.
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adaptive heterogeneity. Such complex behavioral patterns allow
cancers to develop adaptive traits such as therapy resistance,
recurrence/relapse, and metastatic invasion leading to cancer-
related deaths. The mathematical and computational tools allow
clinician-researchers to dissect the complex networks underlying
these behavioral patterns and help elucidate putative therapeutic
targets specific to these behaviors. Network medicine and
attractor reconstruction allow the control and regulation of
patient-derived cancer systems both in silico and in
experimental settings, to find novel effective strategies to
prevent disease progression or permit cancer cell fate
reprogramming. Further, causal inference tools such as
algorithmic information dynamics, allow clinician-researchers
to decode the causal relationships in driver networks steering the
multiscale dynamics of cancer ecosystems, examples of which
include transcriptional networks controlling cell fate plasticity
and stemness discussed in the paper. Such methods allow
treatments tailored towards dynamical responses in cancer
therapy since they treat cancers as complex dynamic and
adaptive diseases, and hence allow time-dependent progression
control-predictability of cancer evolution. These approaches is
most beneficial to clinical oncology as it would help pave more
effective, cancer network-targeted treatments, precision
diagnostics and prognosis with longitudinal screening of
patients (e.g., blood-sera biomarkers), and thereby provide
extension of cancer patient survival rates. We also predict the
complex systems framework of computational/systems oncology
may help reprogram cancer (stem) cells to benignity.
Frontiers in Oncology | www.frontiersin.org 21
AUTHOR CONTRIBUTIONS

The article was written by AU under the supervision of HZ.
All authors contributed to the article and approved the
submitted version.
FUNDING

HZ is supported by EPSRC grant no: EP/W004801/1.
ACKNOWLEDGMENTS

We thank Dr. Jacek Majewski of McGill University, for the
knowledge he granted on glioma epigenetics and computational
epigenetic modelling. Thanks to Rik Bhattacharja (Concordia
University) for redesigning the figures drafted by AU. Figure 1A
was adapted from https://ha0ye.github.io/rEDM/articles/
rEDM.html.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2022.
850731/full#supplementary-material
July 2022 | Volume 12 | Article 850731

https://ha0ye.github.io/rEDM/articles/rEDM.html
https://ha0ye.github.io/rEDM/articles/rEDM.html
https://www.frontiersin.org/articles/10.3389/fonc.2022.850731/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.850731/full#supplementary-material
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Uthamacumaran and Zenil Mathematical Methods Review for Oncology
REFERENCES

1. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discovery
(2022) 12(1):31–46. doi: 10.1158/2159-8290.CD-21-1059

2. Zahir N, Sun R, Gallahan D, Gatenby RA, Curtis C. Characterizing the
Ecological and Evolutionary Dynamics of Cancer. Nat Genet (2020) 52:759–
67. doi: 10.1038/s41588-020-0668-4

3. Gleick J. Chaos: Making a New Science. 2nd ed. N.Y., USA: Penguin Books
(2008).

4. Sipser M. Introduction to the Theory of Computation. Boston: PWS
Publishing Co. (1997).

5. Wolfram S. A New Kind of Science. Champaign, IL: Wolfram Media (2002).
6. Zenil H, Kiani NA, Tegnér J. Algorithmic Information Dynamics: A

Computational Approach to Causality With Applications to Living
Systems. (Cambridge, UK:Cambridge University Press) (2022).

7. Wolfram S. Complex Systems Theory. In: D Pines, editor. Emerging
Syntheses in Science: Proceedings of the Founding Workshops of the Santa
Fe Institute, Santa Fe, New Mexico. Redwood City, CA: Addison-Wesley
(1988). p. 183–9.

8. Lorenz EN. Deterministic Nonperiodic Flow. J Atmosph Sci (1963) 20
(2):130–41. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

9. Zenil H, Gershenson C, Marshall JAR, Rosenblueth DA. Life as
Thermodynamic Evidence of Algorithmic Structure in Natural
Environments. Entropy (2012) 14(11):2173–91. doi: 10.3390/e14112173

10. Anderson PW. More is Different. Science (1972) 177(4047):393–6. doi:
10.1126/science.177.4047.393
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146. Szabó A, Merks RM. Cellular Potts Modeling of Tumor Growth, Tumor
Invasion, and Tumor Evolution. Front Oncol (2013) 3:87. doi: 10.3389/
fonc.2013.00087

147. Hirashima T, Rens EG, Merks R. Cellular Potts Modeling of Complex
Multicellular Behaviors in Tissue Morphogenesis. Develop Growth Diff
(2017) 59(5):329–39. doi: 10.1111/dgd.12358

148. Rens EG, Edelstein-Keshet L. From Energy to Cellular Forces in the Cellular
Potts Model: An Algorithmic Approach. PloS Comput Biol (2019) 15(12):
e1007459. doi: 10.1371/journal.pcbi.1007459

149. Kumar S, Das A, Sen S. Multicompartment Cell-Based Modeling of Confined
Migration: Regulation by Cell Intrinsic and Extrinsic Factors. Mol Biol Cell
(2018) 29(13):1599–610. doi: 10.1091/mbc.E17-05-0313

150. Kumar S, Das A, Barai A, Sen S. MMP Secretion Rate and Inter-Invadopodia
Spacing Collectively Govern Cancer Invasiveness. Biophys J (2018) 114
(3):650–62. doi: 10.1016/j.bpj.2017.11.3777

151. Pally D, Pramanik D, Bhat R. An Interplay Between Reaction-Diffusion and
Cell-Matrix Adhesion Regulates Multiscale Invasion in Early Breast
Carcinomatosis. Front Physiol (2019) 10:790. doi: 10.3389/fphys.2019.00790

152. Serra R, Villani M. Differential Equations and Cellular Automata Models of
the Growth of Cell Cultures and Transformation Foci. Complex Syst (2001)
13:347–80.

153. Reichl LE. The Transition to Chaos. New York: Springer (1992).
154. Zenil H, Kiani NA, Tegnér J. Low-Algorithmic-Complexity Entropy-

Deceiving Graphs. Phys Rev E (2017) 96(1):012308. doi: 10.1103/
PhysRevE.96.012308

155. Heltberg M, Kellogg RA, Krishna S, Tay S, Jensen MH. Noise Induces
Hopping Between NF-kb Entrainment Modes. Cell Syst (2016) 3(6):532–
539.e3. doi: 10.1016/j.cels.2016.11.014

156. Alabert C, Loos C, Voelker-Albert M, Graziano S, Forné I, Reveron-Gomez
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