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ABSTRACT: Several studies have revealed that the transcription factor nuclear receptor related 1 (Nurr1) plays 

several roles not only in the regulation of gene expression related to dopamine synthesis, but also in alternative 

splicing, and miRNA targeting. Moreover, it regulates cognitive functions and protects against inflammation-

induced neuronal death. In particular, the role of Nurr1 in the pathogenesis of Parkinson’s disease (PD) has been 

well investigated; for example, it has been shown that it restores behavioral and histological impairments in PD 

models. Although many studies have evaluated the connection between Nurr1 and PD pathogenesis, the role of 

Nurr1 in Alzheimer’s disease (AD) remain to be studied. There have been several studies describing Nurr1 

protein expression in the AD brain. However, only a few studies have examined the role of Nurr1 in the context 

of AD. Therefore, in this review, we highlight the overall effects of Nurr1 under the neuropathologic conditions 

related to AD. Furthermore, we suggest the possibility of using Nurr1 as a therapeutic target for AD or other 

neurodegenerative disorders. 
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1. The nuclear receptor related-1 protein, Nurr1 

 

The nuclear receptor related 1 (Nurr1) protein, also known 

as nuclear receptor subfamily 4, group A, member 2 

(NR4A2). Nurr1 belongs to the nuclear receptor subfamily 

4A (NR4A), which consists of NR4A1, NR4A2, and 

NR4A3, also known as Nur77, Nurr1, and Nor1, 

respectively [1, 2]. Nurr1 is robustly expressed in the 

central nervous system (CNS) [3, 4]. Similar to other 

members of the NR4A, Nurr1 has been considered as an 

orphan nuclear receptor, whose endogenous ligand has 

not been identified [1]. Nurr1 is well known to play an 

essential role in the development, function, and 

maintenance of midbrain dopaminergic neurons [5-7]. In 

particular, Nurr1 is known to play an integral role in 

multiple signaling pathways involved in the 
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differentiation and phenotype of dopaminergic neurons 

[8]. It is also targeted by miRNAs in dopaminergic 

neurons, and is alternatively spliced by cyclic adenosine 

monophosphate (cAMP)-responsive element-binding 

protein (CREB)-regulated transcription co-activators [9, 

10]. Notably, a recent report suggesting that CREB-

regulated transcription coactivator-1 (CRTC1) mediates 

expression of the Nurr1 gene provided evidence for 

specific molecular mechanisms for the regulation of 

Nurr1 expression in primary cortical neurons [11]. Nurr1 

expression is also found to be directly induced by various 

stimuli such as inflammatory signals. Once Nurr1 is 

activated by various factors, it binds to specific DNA 

sequences in the promoter region of the target genes to 

positively regulate their expression [12]. 

In addition to the role of Nurr1 in the pathogenesis of 

dopamine-related neurological disorders [6, 13], several 

studies have revealed the involvement of Nurr1 in reward-

seeking behavior [14], symptoms of schizophrenia [15], 

and pathogenesis of Alzheimer’s disease (AD) [16]. 

Although the endogenous ligand of Nurr1 has not yet been 

identified, the cognition-enhancing effects of Nurr1 

agonists, which have been demonstrated in wild-type 

(WT) and PD mice, support the potential of Nurr1 as a 

therapeutic target for neurodegenerative disease [17-20]. 

 
Table 1. Overview of the possible roles of Nurr1 in AD. 
 References 

Nurr1 expression in AD 

● Nurr1 immunofluorescence intensity is reduced in the substantia nigra of AD patients [13] 

● Nurr1 mRNA levels are reduced in APPswe, lnd mutant mice [62, 63] 

● The number of Nurr1(+) cells is age-dependently reduced in the subiculum of 

5XFAD mice 
[90] 

● Nurr1 protein is co-localization with Aβ at the early stage in 5XFAD mice [90] 

● Nurr1 protein and mRNA are downregulated in Aβ1-42 fibril-treated CGNs and the 

hMSC cell line 
[65] 

Neuroprotective effects 

● MPTP-induced neurotoxic vulnerability of dopaminergic neurons is increased in 

Nurr1(+/-) mice 
[59] 

● Nurr1 in microglia and astrocytes protects neurons by regulating the production of 

toxic mediators 
[79] 

● Ligand and agonist of Nurr1 shows neuroprotective effect against oxidative insult 
such as MPTP and 6-OHAD  

[17, 19, 
20] 

● Increased expression of Nurr1 upregulates genes involved in ROS detoxification such 

as Sesn3, Alb2, and Sod1 
[81] 

● In NSCs, the overexpression of Nurr1 protects against oxidative stress by 

downregulating cell death-related proteins such as caspase-3 and caspase-11 
[60] 

● Exogenous Nurr1 induces the differentiation of dopaminergic neurons, and sustained 
Nurr1 expression improves survival of dopaminergic neurons 

[83, 149] 

Anti-inflammatory 

effects 

● Nurr1 phosphorylation promotes binding to p65 and recruits the CoREST complex to 

promoters of inflammatory genes, resulting in inhibition of neuroinflammation 
[79] 

● Overexpression of Nurr1 suppresses inflammation, whereas knockdown of Nurr1 

enhances inflammation 
[16] 

● NR4A receptors are involved in a negative feedback loop as modulators of the 

inflammation mechanism 
[93] 

● Inflammatory stimulus (e.g., LPS) up-regulates Nurr1 mRNA expression in microglia [96] 

Peripheral immune 

regulation 

● Nr4a-TKO mice cannot produce Treg cells and die early due to systemic 

autoimmunity 
[118] 

● Nurr1 induces Foxp3 in CD4+ T cells via modulating histone modifications [94] 

● Nurr1 can regulate Th17 cell-mediated autoimmune inflammation [112] 

Cell-cycle regulation 

● Nurr1 promotes cell-cycle arrest in the G1 phase as well as differentiation of MN9D 

cells 
[134] 

● Overexpression of Nurr1 inhibits proliferation via increased expression of p27Kip1 

in VSM cells 
[135] 

● Nurr1 overexpression restricts proliferation via upregulated expression of p18 in HS 
cells 

[136] 

● Nurr1 induced after ischemic injury promotes IE cell proliferation via inhibition of 

p21 
[139] 

● Treatment with the Nurr1 agonist increases proliferation via phosphorylation of Akt 

and Erk1/2 in AHP cells 
[18] 
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Neurogenic effects 

● Nurr1 induces neural differentiation of ECP cells through an extrinsic paracrine 
mechanism 

[152] 

● The ventral midbrain in Nurr1 knockout mice shows reduction of NPC differentiation [150] 

● Nurr1 promotes dopaminergic neuron production and suppresses inflammatory 
factors 

[155] 

● Overexpression of Nurr1 in NPCs obtained from the SVZ of rats induces 

dopaminergic neurons 
[149] 

● The Nurr1 agonist amodiaquine causes a significant increase in adult hippocampal 

neurogenesis  
[18] 

Memory-enhancing 
effects 

● Formation of long-term memory in the hippocampus depends on the 

cAMP/PKA/CREB signaling pathway, which also controls transcription of Nurr1 
[48, 168] 

● Inhibition of HDAC increases Nurr1 expression, and enhances memory, which is 
attenuated by protein suppression, siRNA knockdown, and Nurr1 knockout 

[15, 53, 54, 
171] 

● Dominant negative Nurr1 mice inhibition of Nurr1 function impairs hippocampal 

long-term potentiation  
[55] 

Vascular pathology 

mitigation 

● Overexpression of Nurr1 inhibits vascular lesion via reducing SMCs proliferation 

and inflammation 
[135] 

● Overexpression of Nurr1 reduces oxidized–low-density lipoprotein uptake and 

inflammatory responses in macrophages 
[178] 

Role in metabolism 

● Abnormal expression of Nurr1 is associated with glucose metabolism and metabolic 

syndrome 
[183, 184] 

● NR4A receptors are induced by metabolic-related stimuli such as fatty acids, glucose 
and insulin 

[185] 

● NR4A receptors including Nurr1 are involved in increased glucose uptake in the 

skeletal muscle   
[186] 

Therapeutic potential of 

Nurr1 activation 

● Nuclear receptors serve as a critical mediator of Aβ homeostasis  [203-205] 

● Nurr1 expression can suppress NF-κB signaling pathway [79] 

● Nurr1 regulates AD-related pathogenesis and cognitive function in 5XFAD mice [16] 
 

AD: Alzheimer’s disease, Aβ: amyloid beta, APP: amyloid precursor protein, CGNs: cerebellar granule neurons, hMSC: human mesenchymal, 

NSCs: neuronal stem cells, MN9D cells: dopamine-synthesizing cell line, VSM cells: vascular smooth muscle cells, HS cells: hematopoietic stem 
cells, IE cells: intestinal epithelial cells, AHP cells: adult hippocampal neural precursor cells, CoREST: co-repressor for RE1 silencing transcription 
factor, NPCs: neural precursor cells, SVZ: subventricular zone, SMCs: Smooth muscle cells, ECP cells: embryonic cortical precursor cells, HDAC: 
histone deacetylase, BACE1: beta-secretase 1 

 

2. The roles of Nurr1 in AD-related pathology 

 

AD is known to be the most common cause of dementia 

and is responsible for 60%-70% of the cases of dementia 

[21, 22]. AD patients exhibit impairment of cognitive 

functions, which is mediated by abnormal accumulation 

of amyloid plaques containing amyloid beta (Aβ) and 

neurofibrillary tangles (NFT) in the brain [23-25]. With 

the increasing focus on AD over the past century because 

of the gradual aging of the global population, the 

pathophysiologies of AD [26-29], as well as its clinical 

manifestations [30, 31], diagnosis [32, 33], and genetic 

characteristics [34, 35] are now relatively well 

understood. Several studies on therapeutic approaches for 

AD have been performed, including those involving 

cholinesterase inhibitors, N-methyl-D-aspartate (NMDA) 

receptor antagonists [36-39], and anti-Aβ therapy [40-

43]. Nevertheless, there is no disease-modifying therapy 

yet [44]. Although the exact mechanisms of AD 

pathogenesis are unclear, intracellular and extracellular 

Aβ are thought to be major causative factors associated 

with AD-related pathologies, such as neurodegeneration 

and cognitive dysfunction [45-47]. Interestingly, Nurr1 is 

known to act as a critical regulator of hippocampal 

function, hippocampal synaptic plasticity, and cognitive 

functions [15, 48-55], and is an essential mediator of 

neuroprotection or anti-inflammation after exposure to 

neuropathological stress [19, 56-61]. In addition, a 

number of studies have indicated altered levels of Nurr1 

in Aβ-treated neuronal cells, animal models of AD, and 

the brains of patients with AD [13, 62-65], implying that 

Nurr1 may play a role in the pathogenesis of AD. Recent 

studies have shown that Aβ1-42 fibrils not only lead to 

upregulation of tau hyperphosphorylation and presenilin 

1 mRNA, which are hallmarks of AD pathology, but also 

significantly reduce Nurr1 mRNA levels in an in vitro  

model of AD [65]. Immunofluorescence staining with 

Nurr1-specific antibody in 5XFAD mice, an animal 

model of AD, showed that the Nurr1 protein is markedly 

expressed in the brain areas with Aβ accumulation. 

Moreover, the number of Nurr1-expressing cells is 

decreased in 5XFAD mice with AD progression, 

compared with WT mice [64]. In contrast, the levels of 

miR-184, which directly targets the 3′ UTR of the NR4A2 
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transcript, are reduced in the hippocampus of late-onset 

AD patients. In addition, expression of NR4A2 and miR-

184 is inversely correlated [66]. These findings suggest 

that Nurr1 is not only highly implicated in cases of AD, 

but also can modulate AD pathogenesis. The following 

sections will discuss the critical roles and effects of Nurr1 

in neurodegenerative diseases (Table 1). 

 

2.1. Neuroprotective effects of Nurr1 

 

Neuronal death is the main pathogenic factor underlying 

neurodegenerative diseases such as AD and PD [67, 68]. 

Under neuropathological conditions, including 

neuroinflammation, excitotoxicity, and oxidative stress, 

neurons can be rescued by upregulation or activation of 

neuroprotective factors such as reactive oxygen species 

(ROS) scavengers or anti-apoptotic molecules [69-71]. 

Therefore, induction of neuroprotective factors may be a 

therapeutic strategy for the treatment of neuro-

degeneration-related diseases. 

Several studies have shown that Nurr1 has anti-

apoptotic or neuroprotective roles against 

neuropathological stress or insults [56-60, 72-74]. Nurr1 

expression is known to be regulated by various stimuli 

such as inflammatory cytokines, cAMP, and growth 

factors [75-77]. In comparison with WT mice, neurons 

from Nurr1 heterozygous mice exhibit greater 

vulnerability to neurotoxic challenges [59]. In addition, 

survival of dopaminergic neurons in the midbrain of mice 

was inhibited by genetic deletion of Nurr1 during 

development [78]. Moreover, it has been demonstrated 

that Nurr1 inhibits dopaminergic neuronal loss by 

suppressing inflammatory stimuli in the microglia and 

astrocytes [79]. Nurr1 changes its subcellular distribution 

in response to oxidative stress [80]. In addition, the ligand 

and agonist of Nurr1 showed neuroprotective effects on 

subsequent oxidative insult such as MPTP and 6-OHAD 

[17, 19, 20]. Especially, increased expression of Nurr1 by 

lentiviruses upregulated genes involved in ROS removal, 

such as Sesn3, Abl2, and Sod1, and demonstrated that 

Nurr1 is an essential mediator of CREB-dependent 

neuroprotection in oxidative stress [81]. Furthermore, 

Nurr1 overexpression protected neuronal stem cells 

against oxidative stress through downregulating cell death 

related protein such as caspase-3 and caspase-11 [60]. 

A number of studies have demonstrated the protective 

role and correlation of Nurr1 in cell death by oxidative 

stress, but the detailed molecular mechanism of Nurr1 

against oxidative stress remains unclear [17, 19, 20, 60, 

81-83]. Interestingly, a contemporary study reporting the 

direct binding of dopamine metabolite on Nurr1 and its 

stimulation of Nurr1 activity may provide an evidence for 

mechanism underlying the role of Nurr1 in sensing and 

responding the oxidative stress [84]. Moreover, Jo et al. 

reported that exogenous Nurr1 expression in neural 

precursor cells (NPCs) induced differentiation of 

dopaminergic neurons, higher resistance to toxic stimuli, 

and enhanced survival [83]. Although there has been only 

a few reports regarding the direct roles of Nurr1 in 

neuronal death in AD, interestingly, it has been 

demonstrated that Nurr1 is not only involved in the 

protection of dopaminergic neurons but also of GABA-

positive neurons in vitro [79]. Since the levels of 

GABAergic neurotransmission as well as GABAergic 

signaling are significantly altered in AD [85, 86], it can be 

speculated that strategies for preserving GABAergic 

neurons by maintaining Nurr1 expression. All these 

reports suggest that Nurr1 may have neuroprotective 

effects against the pathogenesis of neurodegenerative 

diseases. A recent study has reported the protective role 

of Nurr1 in neuronal death in AD [16].  

 

2.2. Anti-inflammatory effects of Nurr1 

 

Neuroinflammation is one of the most important aspects 

of AD pathogenesis. Although resting glial cells maintain 

the microenvironment in the brain, activated glia 

contributes to neuronal damage by releasing neurotoxic 

molecules [87, 88]. Over-activated microglia and 

astrocytes release several detrimental compounds such as 

ROS, superoxide (O2
•−), nitric oxide (•NO), and 

cytokines, which cause neuronal damage. The Aβ peptide 

is known to directly activate microglial cells, and 

activated cells are recruited around Aβ plaques before 

symptom development [89]. In addition, our previous 

studies revealed that Aβ oligomers (AβO) may induce 

both gliosis and neurodegeneration in the animal brain 

[90-92]. A significant increase in the number of microglial 

cells and decrease in the number of neurons were 

simultaneously observed in the brain of AβO-injected 

mice [90-92]. NR4A receptors are promptly activated by 

inflammatory stimuli, thus regulating not only initiation 

of inflammatory responses but also in the late stages of 

inflammation. NR4A receptors are involved in a negative 

feedback loop as modulators of inflammation [93]. Nurr1 

can mediate inflammatory responses and regulate the 

function of immune cells [94, 95]. In microglia, 

inflammatory stimuli such as lipopolysaccharides (LPS) 

up-regulate Nurr1 mRNA expression [96]. Notably, 

Nurr1 shows potent anti-inflammatory activity in the 

CNS. In microglia and astrocytes, Nurr1 receptors inhibit 

the expression of pro-inflammatory cytokines, which are 

neurotoxic and eventually induce neuronal death, whereas 

reduction of Nurr1 enhances the inflammatory responses 

[79]. Nurr1 mediates the GSK3β-dependent repression of 

nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-κB). Mechanistically, inflammatory signals 

induce Nurr1 phosphorylation and sumoylation, thus 
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promoting Nurr1 binding to p65 and recruitment of the 

co-repressor for the RE1 silencing transcription factor 

(CoREST) complex to promoters of inflammatory genes, 

resulting in modulation of neuroinflammation [79]. 

Interestingly, a previous study revealed that deletion of 

amino acids 1-31 from the N-terminal region of Nurr1 

yields better performance in transcription compared to 

full-length Nurr1 [97]. In addition, a recent study has 

provided direct evidence that modulation of Nurr1 can be 

involved in Aβ-mediated neuroinflammation [16]. In 

conclusion, Nurr1 can serve as a possible therapeutic 

target for treatment of AD by inhibiting the transcription 

of inflammatory genes and modulating the function of 

immune cells. 

 

2.3. Peripheral immune cell modulation of Nurr1 

 

The early stage of AD involves both the activation of 

microglia and astrocytes overexpressing cytokines around 

the Aβ plaques and an increase in the levels of pro-

inflammatory cytokines in the peripheral blood [98]. In 

addition, the cross-talk between the peripheral blood and 

the brain via a damaged blood–brain barrier (BBB) may 

be enhanced in AD patients, thereby contributing to 

neuroinflammation in AD [99]. As evidenced, an increase 

in the number of T cells was observed in the brain 

parenchyma of AD patients [100]. Several lines of 

evidence have indicated that modulation of T helper (Th) 

cells may be involved in AD pathologies [101-104]. In 

particular, CD4 and CD8 T cells specifically migrated to 

the Aβ plaques, thus enhancing elimination of Aβ plaques 

[105]. Moreover, immunization with the Aβ42 DNA 

trimmer was shown to suppress antigen-specific Th17 and 

Th1 cell proliferation [106]. 

Peripheral blood mononuclear cells, CD4+ T cells 

and monocytes obtained from patients with multiple 

sclerosis (MS) have been reported to have decreased 

Nurr1 gene expression [107, 108]. In addition, microarray 

analysis showed that key nuclear receptor family genes 

such as NR4A1 (Nur77) and NR4A2 (Nurr1), which are 

important for the nuclear receptor-dependent apoptosis in 

the peripheral blood of the pre-disease state in MS 

patients, were suppressed [109]. In contrast, over-

expression of Nurr1 was observed in peripheral blood T 

cells derived from relapsing-remitting MS patients [110]. 

In an experimental autoimmune encephalomyelitis (EAE) 

model that serves as an animal model of MS, effector T 

cells infiltrated the parenchyma of the CNS [111]. Nurr1 

is selectively over-expressed in T cells in the peripheral 

blood whereas expression of Nurr1 in the T cells in 

lymphoid organs did change during the induction of EAE. 

In addition, interleukin (IL)-17-producing tyrosine 

hydroxylase (TH)-positive cells express Nurr1 regardless 

of interferon (IFN)-γ secretion [112]. Hence, since Nurr1 

could be a useful biomarker for determining the status of 

T cells in MS [113], assessment of Nurr1 expression in T 

cells in AD could also be useful to identify changes in T 

cell activation status. In addition, heterozygous Nurr1 

mice promoted early onset of EAE and increased the 

infiltration of inflammatory cells into the spinal cord 

[114], indicating that Nurr1 is involved in the 

pathophysiology of autoimmune diseases such MS. 

Consequently, Nurr1 could be an innovative therapeutic 

target for various autoimmune diseases. In human 

inflammatory joint disease, Nurr1 has been identified as a 

molecular target of methotrexate (MTX)-related 

reactions. MTX considerably subdues Nurr1 expression 

in patients with active psoriatic arthritis. In the synovial 

tissue, MTX selectively regulates Nurr1 induced by 

inflammatory stimulation and also modulates expression 

of growth factors in resident cells. Moreover, suppressive 

effect of MTX on Nurr1 expression is mediated by 

adenosine release [115]. 

Because Nr4a receptors play an important role in 

initiating regulatory T (Treg) cell development in the 

thymus [94, 116, 117], the role of Nr4a receptors in 

peripheral immune regulation has been examined in Nr4a-

triple-knockout (Nr4a-TKO) mice, Nur77 (Nr4a1)-/-, 

Nurr1 (Nr4a2)-/-, and Nor-1 (Nr4a3)-/-. The Nr4a-TKO 

mice could not produce Treg cells and died early due to 

systemic autoimmunity [118]. Specifically, Nurr1 binds 

directly to the Foxp3 promoter, leading to activation of 

transcription and the development of Treg cells. In 

addition, Nurr1 has been reported to bind directly to the 

regulatory regions of Foxp3, at which Nurr1 intervenes 

via histone modifications. Furthermore, in Nurr1-

deficient T cells, aberrant Th1 induction is increased but 

Treg cell induction is rather decreased [94]. In conclusion, 

Nurr1 plays central roles not only in regulating the 

induction and suppressive functions of Treg cells but also 

in inhibiting aberrant Th1 induction. Moreover, Nurr1 can 

regulate the Th17 cell-mediated autoimmune 

inflammation, contributing to the pathogenesis of MS, an 

immune disease of the nervous system [112]. Since 

peripheral immune functions are involved in the 

pathogenesis of AD [119, 120], modulation of peripheral 

immune responses though Nurr1 may be a potential 

therapeutic strategy against AD.  

 

2.4. Cell-cycle regulation of Nurr1 and AD 

 

Neurons are generally considered as postmitotic cells, and 

can cell undergo cell cycle re-entry in neurodegenerative 

conditions [121, 122]. Basal forebrain and hippocampal 

pyramid neurons in the brain with AD have been reported 

to progress from the G1-phase to the S-phase [123]. In 

brains with AD and mild cognitive impairment, the 

expression levels of markers associated with cell cycle 
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and proliferation, such as the proliferating cell nuclear 

antigen (PCNA), cyclin D, and B1, are increased in 

various regions including the entorhinal cortex, 

hippocampus, and nucleus basalis of Meynert [124]. 

Moreover, the presence of active cdc2 and cyclin B1 

complex was observed in the AD brain tissue [121]. In 

addition, senescence-accelerated mice-prone 8, which 

show the major pathologic features of AD such as Aβ 

accumulation and tau phosphorylation, not only show 

enhanced CDK5 and GSK3β expression, but also show 

increased expression of various cell-cycle re-entry 

markers such as CDK2, cyclins A, D1, E, and B [125]. 

There are several reports on the correlation between cell-

cycle–related kinases and histological hallmarks of AD. 

p25, a truncated form of the subunit p35 that activates 

CDK5, is not readily degraded and is found to accumulate 

in the brain of patients with AD. Subsequently, the 

formation of the p25/CDK5 complex induced tau 

hyperphosphorylation and apoptosis [126]. In addition, 

soluble Aβ oligomers also promoted neuronal cell-cycle 

re-entry via phosphorylation of tau [127]; cell-cycle 

progression through CDK5 and CDC2 kinases induced 

phosphorylation of the amyloid precursor protein (APP) 

[128-130], and phosphorylation of APP facilitated Aβ 

generation [131]. Moreover, a broad promotion of the cell 

cycle in the AD brain leads to a mitotic catastrophe, which 

is the result of dysregulated or failed mitosis, suggesting 

that this may be one of the mechanisms of neuronal death 

in AD [132, 133]. 

 The role of Nurr1 in the cell cycle has been suggested 

after assessment of cell-cycle–related molecules in 

various cells. In the dopamine-synthesizing cell line 

(MN9D cells), Nurr1 promoted cell-cycle arrest in the G1 

phase as well as morphological differentiation, and these 

effects did not require the formation of heterodimers with 

retinoid X receptors (RXR) [134]. In vascular smooth 

muscle cells, lentivirus-mediated Nurr1 overexpression 

inhibited proliferation with increased expression of the 

crucial cell-cycle inhibitor p27Kip1 which induces G1 cell-

cycle arrest [135]. Similarly, in hematopoietic stem cells, 

Nurr1 overexpression restricted cell proliferation by 

upregulating the expression of p18, which inhibits the 

cyclin D/CDK4/6 complexes required for cell-cycle 

progression in G1-phase [136]. In addition, the 

mechanism by which Nurr1 promotes migration and 

inhibits proliferation in mesenchymal stem cells (MSCs) 

may involve the ability of Nurr1 to reduce the percentage 

of cells in the S-phase [137]. Furthermore, overexpression 

of Nurr1 in olfactory bulb stem cells induces cell-cycle 

exit, inhibits proliferation, and induces a TH neuronal fate 

mediated by Fgfr2 expression [138]. In contrast, Nurr1 

induced after intestinal ischemia/reperfusion injury 

promoted proliferation of intestinal epithelial cells via 

inhibition of p21Waf1/cIP1 gene transcription [139]. 

Moreover, in the mouse hippocampus and adult 

hippocampal neural precursor cells, pharmacological 

stimulation of Nurr1 with a Nurr1 agonist resulted in 

increased proliferation as well as phosphorylation of Akt 

and Erk1/2 [18]. 

These results suggest that Nurr1 may interfere 

negatively or positively with the cell cycle depending on 

the cell type and its environment. They also suggest that 

Nurr1 may have a positive effect on AD by promoting 

proliferation of neural stem cells or by suppressing the 

abnormally promoted cell cycle in the AD brain. 

However, the correlation of Nurr1 with the cell cycle in 

AD has not yet been directly reported. 

 

2.5. Neurogenic effects of Nurr1 in the adult brain 

 

Neurons are generated and differentiated from neural stem 

cells in the adult brain. This process is called adult 

neurogenesis, and takes place mainly in two brain regions, 

the subgranular zone of the hippocampal dentate gyrus 

(SGZ) and the subventricular zone of the lateral ventricle 

(SVZ) [140, 141]. In particular, adult hippocampal 

neurogenesis at SGZ regulates learning and memory 

functions by generating newborn neurons derived from 

neural stem cells [140, 142, 143]. Studies have shown that 

altered hippocampal neurogenesis occurs in the early 

stage of AD even prior to pathologic changes [144]. 

Several key molecular players involved in AD 

pathogenesis have been found to regulate hippocampal 

neurogenesis [144-148].  

A recent study demonstrated that treatment with the 

Nurr1 agonist amodiaquine (AQ) in mice significantly 

contributed to enhanced adult hippocampal neurogenesis, 

resulting in enhancement of cognitive function. 

Moreover, knockdown of Nurr1 inhibited proliferation of 

adult hippocampal neural stem cells [18]. In addition, 

overexpression of Nurr1 in NPCs isolated from the SVZ 

of adult rats resulted in functional dopaminergic neurons. 

Transplantation of Nurr1-induced dopaminergic neurons 

lead to differentiation and integration in vivo, and 

improved the behavioral disorders of parkinsonian rats 

[149]. Furthermore, in vivo studies showed that Nurr1-

deficient mice exhibited deficits in the differentiation of 

dopaminergic neurons in the ventral midbrain [78, 150]. 

In support of this notion, Nurr1 is not only well known to 

play a key role in the differentiation and maturation of 

dopaminergic neurons [151-155] but may also exert an 

important role in neurogenesis [156]. These studies 

suggest that Nurr1 may contribute to the rescue of 

impaired adult neurogenesis in AD. Indeed, a recent study 

has shown that administration of the Nurr1 agonist AQ 

can reverse impaired neuronal fate specification of 

hippocampal neural stem cells in Aβ-overexpressing mice 

[16]. 
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2.6. Memory-enhancing effects of Nurr1 

 

Aβ is known to be a major contributor of memory 

impairment in AD, and results in cognitive deficits by 

inducing neuroinflammation, neuronal death, inhibition 

of synaptic transmission, synaptic loss, and impairment of 

adult neurogenesis [88, 157-159]. Furthermore, under AD 

conditions, there are other pathways that cause cognitive 

dysfunction and memory decline, such as abnormal 

activity of the NMDA receptor [160, 161]. Recent studies 

have suggested that Nurr1 may play a role in the 

regulation of cognitive function, since hippocampus-

dependent memories were impaired in Nurr1 knockdown 

or NR4A dominant-negative transgenic mice [48, 49, 54] 

and an increase in Nurr1 mRNA expression was observed 

when mice were submitted to spatial learning tasks [50]. 

Thus, it is important to investigate whether Nurr1 has a 

direct influence on AD-related cognitive functions. 

Several studies have discovered that Nurr1 regulates 

learning and memory functions [15, 49-55]. In many 

systems, the CREB signaling pathway is important for 

transcription of memory-related genes [162], and this 

pathway controls transcription of Nurr1 [163]. 

Additionally, long-term memory in the hippocampus 

depends on CREB-related pathways that can regulate 

Nurr1 expression [48, 164-168]. Several studies 

demonstrated that behavioral task training increases 

Nurr1 gene expression in subregions of the hippocampus 

[50, 53, 54]. Moreover, a network analysis of genes in the 

dentate gyri of long-term potentiation-induced rats 

revealed that expression of NR4A nuclear receptors, 

including Nurr1, was upregulated [169]. Expression of 

Nurr1 in cultured hippocampal neurons is revealed to be  

increased after treatment with GABA antagonists [170]. 

Inhibition of histone deacetylase (HDAC) by trichostatin 

A increases Nurr1 expression, and enhances memory 

[171]. Similarly, enhancement of memory by HDAC 

inhibition is attenuated and memory enhancement is 

impaired by negative protein expression of Nr4a family 

receptors [54]. Moreover, memory functions are impaired 

by siRNA knockdown of Nr4a2 [53] and generation of 

heterozygosity for the Nurr1 gene [15]. A recent study 

also revealed the importance of the NR4A family, 

including Nurr1, showing that hippocampal long-term 

potentiation was impaired in dominant-negative Nr4a 

transgenic mice [55]. Interestingly, although the precise 

mechanism for cognitive enhancement is unclear, one 

placebo-controlled study showed that the intermittent 

preventive administration of AQ, an antimalarial agent 

and Nurr1 agonist, enhanced cognitive performance in 

semi-immune schoolchildren [172]. Furthermore, a recent 

study has demonstrated that administration of the Nurr1 

agonist AQ restored damaged spatial working memory in 

Aβ-overexpressing mice [16]. However, how Nurr1 

affects AD patients with memory failure has not been 

examined, and we anticipate that further studies on Nurr1 

will uncover its importance on cognitive functions in 

brains with AD. 

 

2.7. The role of Nurr1 in vascular pathologies 

 

Cerebral amyloid angiopathy (CAA) is an AD-related 

histopathology showing pathological changes such as 

deposits of Aβ in the blood vessels of the CNS and the 

walls of leptomeningeal arteries [173]. CAA is not only 

associated with the Aβ burden of the brain parenchyma, 

but also occasionally induces necrosis resulting in 

cerebral hemorrhage [174, 175]. However, the degree of 

CAA varies between AD brains, and the majority of AD 

patients showing microvascular amyloid deposits do not 

experience cerebral hemorrhage [176]. Nonetheless,  

because CAA could contribute to cortical dysfunction, 

regulation of vascular Aβ accumulation is suggested for 

mitigation of secondary AD pathology. 

In human atherosclerosis, expression of NR4A 

including Nurr1 receptors is increased in macrophages 

after inflammatory stimulation [177]. In addition, 

overexpression of Nurr1 inhibited vascular lesion 

formation through reduction of smooth muscle cell 

proliferation and inflammatory response [135, 178]. 

These findings prove that endogenous Nurr1 suppresses 

macrophage activation, foam-cell formation, and further 

differentiation. Thus, it provides further evidence that 

atherogenesis could be prevented by modulation of Nurr1 

expression. Therefore, Nurr1 may be proposed as a novel 

therapeutic target for preventing vascular disruption-

related diseases mediated by AD. 

 

2.8. The role of Nurr1 in metabolism 

 

There are a number of studies describing both a 

correlation between type 2 diabetes and the risk of AD, 

and an association of hyperglycemia with AD 

pathophysiology [179, 180]. In addition, it has been 

reported that excess weight in middle age is related to 

increased risk of AD [181]. Metabolic hormones such as 

insulin, leptin, ghrelin, and adiponectin have been 

reported to have therapeutic potential and are also 

involved in the pathogenesis of AD [182]. Since AD could 

be accompanied by metabolic disturbances, normalization 

of metabolism will provide new insights into AD 

treatment. 

There are several studies showing the roles of Nr4a 

receptors associated with metabolic functions. In 

particular, it has been reported that aberrant expression of 

Nurr1 is correlated to glucose metabolism and metabolic 

syndrome [183, 184]. Moreover, Nr4a receptors are 
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expressed under metabolism-related stimuli including 

cold, fatty acids, glucose, insulin, and cholesterol. 

Therefore, it has been suggested that Nr4a receptors can 

be therapeutic targets for metabolism-related disorders 

[185]. There is also compelling evidence suggesting that 

Nr4a receptors show a potent association with the course 

of type 2 diabetes through regulation of insulin sensitivity 

and glucose homeostasis. Even though the mechanisms 

underlying the regulation of glucose metabolism by Nr4a 

receptors have not been elucidated, Nr4a receptors are 

identified as potential biological targets for diabetic 

patients [186]. However, the association of Nurr1 with 

carbohydrate metabolism is currently unclear. Therefore, 

identification of the correlation between Nurr1 and 

metabolic disorders in AD will be a novel pioneering field 

of study. 

 

2.8. The role of Nurr1 in the habenula 

 

The habenula is a part of the epithalamus in the 

diencephalon, located dorsal-medial to the posterior 

thalamus. It is divided into two regions: (1) the lateral 

habenula (LHb), which is innervated by the rostromedial 

tegmental nucleus (RMTg) to the dopamine-related 

regions, such as the ventral tegmental area (VTA) and 

substantia nigra (SN) or the serotonin system, such as the 

dorsal raphe nucleus and median raphe nucleus, and (2) 

the medial habenula (MHb), which is innervated with the 

serotonin system through the interpeduncular nucleus 

(IPN) [187-190]. The habenula, which is connected to the 

limbic system, basal ganglia, and pineal gland, is involved 

in the reward system and cognitive functions such as 

learning, memory, and attention [191]. Therefore, it has 

been suggested that the habenula may be involved in 

psychiatric disorders such as depression, schizophrenia,  

and drug-induced psychosis [192].  

In adults and during development, the Nurr1 and 

Nr4a2 genes are robustly and specifically expressed in the 

MHb expressing both the choline acetyltransferase in the 

ventral part and the neuropeptide SP in the dorsal part 

[191, 193-195]. In addition, Nurr1 has been reported to 

mediate a gene pathway involved in habenula 

development regulated by the POU-domain transcription 

factor Brn3a [195]. Notably, several studies have 

suggested that habenular activity is involved in 

depression, which is one of the most common psychiatric 

symptoms in AD and a risk factor for AD development. 

In the genetic helpless model and α-methyl-para-

tyrosine-induced depression model, brain metabolism and 

glucose metabolism were elevated in the habenular 

compared to the control while metabolism of other brain 

regions was reduced [196, 197]. In patients with 

depression, it is shown that habenula activity is strongly 

correlated with dorsal raphé nuclei activity providing an 

evidence for the important roles of feedback pathway 

between habenula and dorsal raphé nuclei in controlling 

release of serotonin [198]. Application of deep brain 

stimulation to the LHb in a therapy-refractory patient with 

depression caused successful remission of depression,  

clarifying the relationship between the habenula and 

depression [199]. These reports suggest that upregulation 

of Nurr1 may have a positive effect on not only AD-

related pathology but also the psychiatric symptoms that 

may occur in patients with AD. 

 

3. Therapeutic potential of Nurr1 activation for AD 

treatment 

 

As described so far, Nurr1 has the potential to mitigate the 

various pathophysiological consequences caused by AD. 

Nurr1 inhibits NF-κB signaling by binding to and 

clearance of NF-κB-p65 [79]. Therefore, it can be 

speculated that modulation of Nurr1 expression can 

suppress neuroinflammatory responses as well as beta-

secretase 1 (BACE1), which is mediated by NF-κB 

signaling [200]. In addition, Nurr1 plays a 

neuroprotective role against neuronal death induced by 

various toxic mediators such as ROS and 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) [59, 60]. 

Furthermore, upregulation of Nurr1 has been reported to 

enhance cognitive function as well as increase 

hippocampal neurogenesis by enhancing the proliferation 

and differentiation of NPCs [18]. Considering the 

beneficial effects of Nurr1 enhancement on the 

pathological symptoms associated with AD, such as 

neuroinflammation, neuronal loss, impaired 

neurogenesis, and cognitive dysfunction, compensation 

and enhancement of the degenerated Nurr1 in AD patients 

may be a promising therapeutic target. Remarkably, one 

recent study reported that Nurr1 regulates AD-related 

pathogenesis and cognitive function in Aβ-

overexpressing mice, supporting the therapeutic potential 

of Nurr1 for AD [16]. 

 Interestingly, Nurr1 not only forms homo- or 

heterodimers with other members of the NR4A family, 

but can also forms heterodimers with RXRs via DR5 

response element [201]. In addition, since the activation 

of nuclear receptors such as RXR, liver X receptor (LXR), 

and peroxisome proliferator-activated receptor (PPAR)-γ 

is known to affect Aβ generation and Aβ clearance, Nurr1 

may contribute to the alleviation of Aβ-related 

pathophysiology through interactions with other nuclear 

receptors [202-205]. 

Therefore, many researchers have applied various 

methods to identify potential activators, ligands, and 

agonists of Nurr1 and have suggested several candidate 

structures [206-208]. To date, several Nurr1 

agonists/activators have been identified and have shown 
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positive effects in autoimmune disease and various PD 

models, suggesting the potential for the therapeutic effect 

of Nurr1 in neurodegenerative disease including AD [19, 

20, 209-213]. Therefore, a breakthrough for AD treatment 

will be to prove the efficacy of Nurr1 agonists/mimetics 

or gene delivery of Nurr1 in animal experiments or 

clinical trials. A number of studies have suggested that 

modulation of Nurr1 function may serve as a great 

strategy to control AD pathogenesis (Fig. 1), and one 

recent study has shown a colocalization and correlation 

between Nurr1 and Aβ, and demonstrated that 

administration of Nurr1 agonists alleviates AD-related 

pathologies in Aβ-overexpressing mice [16].  

 

 

 
 
Figure 1. Overview of effect of Nurr1 in Alzheimer’s disease. 

 

4. Nurr1 and brain disorders 

 

As mentioned earlier, Nurr1 can contribute to the 

beneficial effects on AD-associated pathologies and may 

have therapeutic potential for AD. Notably, there have 

been studies regarding the roles of Nurr1 in various 

conditions in related to AD pathologies. It is speculated 

that reviewing the roles of Nurr1 in these conditions could 

provide and extend insights about possible applications of 

Nurr1 in the modulation of AD pathogenesis. In the 

following sections, the roles of Nurr1 in brain disorders 

will be described. 

 

4.1. Parkinson’s disease 

 

Nurr1 is known to be a key regulator of the development 

and maintenance of dopaminergic neurons in the midbrain 

[7, 78, 214, 215] and plays an important role in inhibiting 

neuronal death through suppression of inflammatory gene 

expression in microglia and astrocytes [79, 216]. 

Therefore, numerous studies have investigated whether 

Nurr1 may be associated with the pathogenesis of PD, 

which results from the degeneration of midbrain 

dopaminergic neurons [217]. In addition to decreased 

expression of Nurr1 in postmortem brain tissue and the 

peripheral blood of PD patients, a functional mutation of 

Nurr1 was found in PD [13, 218-220]. Interestingly, 

activation of Nurr1 or the Nurr1:RXRα heterodimer by 
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agonists such as AQ, SA00025, and BRF110 has been 

reported to diminish neuronal loss, neuroinflammation, 

and behavioral symptoms that occur in 6-

hydroxydopamine or MPTP-induced PD models [19, 20, 

221, 222]. Remarkably, it has been reported that Nurr1 

expression is down-regulated in dopaminergic neurons 

with NFTs of the SN of AD patients. This results indicate 

that dysregulation of Nurr1 is associated with tauopathies 

in the dopaminergic neurons of AD patients [13]. In 

contrast, a recent study demonstrated that Nurr1 

expression is not altered in the SN of postmortem brains 

of AD patients [16]. This inconsistency may be due to the 

presence of NFT in the neurons of AD brains. As Nurr1 

expression levels were not altered in neurons without NFT 

[13], although the latter study did not provide further 

information regarding the presence of NFT in the neurons 

[16]. These data provide evidence that Nurr1 may be a 

relevant target for alleviating AD pathogenesis, especially 

in tauopathy. 

 

4.2. Ischemic stroke 

 

A recent study has shown that Nurr1 expression was 

dynamic following acute ischemia induced by middle 

cerebral artery occlusion (MCAO)/reperfusion in a rat 

model. There was a negative correlation between Nurr1 

and infarct volume up to 12 hours after ligation, but a 

positive correlation was observed after 24 hours. Nurr1 

overexpression inhibited tumor necrosis factor-α (TNF-α) 

levels in microglia. Increase of Nurr1 expression through 

suppression of miR-145-5p, a negative regulator of Nurr1 

alleviated infarct volume and improved the neurological 

outcomes in an acute stroke model [223]. In addition, 

transplantation of Nurr1-overexpressing human 

embryonal carcinoma cells into the ischemic striatum 

restored the behavioral disorder in a transient MCAO rat 

model [153]. Considering that TNF-α released from Aβ-

activated microglia is a key cytokine causing cell cycle 

events, which are related to pathogenesis of neuronal 

death in AD [224], these regulatory effects of Nurr1 on 

microglial activation could be a therapeutic target for AD 

as well as ischemic stroke. 

 

4.3. Schizophrenia 

 

Nurr1 heterozygous mice exhibited behavioral patterns 

associated with the symptoms of schizophrenia and were 

suggested as a potential animal model of schizophrenia 

[15, 51]. Furthermore, protein and mRNA expression 

levels of Nurr1 were reduced in the prefrontal cortex of 

schizophrenia patients [225]. Considering that the 

abnormal function of dopaminergic neurons in the 

cerebral cortex and subcortical areas is associated with 

schizophrenia [226], the changes in Nurr1 expression in 

schizophrenia address necessitate studies examining the 

correlation between schizophrenia and Nurr1. Despite 

that hyperactivation of dopaminergic neurotransmission, 

conventionally considered a major hypothesis for 

pathology schizophrenia, these findings may support the 

recent challenges against the conventional dopamine 

hypothesis [226]. In relation to changes in Nurr1 

expression in AD, the reduced number of Nurr1-

expressing cells in subiculum of AD model mice with 

disease progress [64] and decreased levels of dopamine in 

various regions including the hippocampus of Nurr1 

heterozygous mice, a schizophrenic animal model [15], 

may demonstrate some similarities in molecular changes 

involving both disorders as well as provide additional 

insights for further studies comparing mechanisms 

between two diseases. 

 

4.4. Addictive behaviors 

 

Although the role of Nurr1 in addiction is controversial, 

depending on the duration of treatment and the drug used, 

a number of studies have reported that the administration 

of addictive drugs such as cocaine and heroin reduces 

Nurr1 transcript levels in the midbrain [227-230]. In 

addition, Nurr1 heterozygous mice exhibited reduced 

reward-seeking behaviors mediated by dopaminergic 

neurotransmission and were vulnerable to neuro-

degeneration during long-term methamphetamine 

administration [14, 231]. In contrast, the hippocampus of 

ketamine-addicted rats has been reported to show 

increased levels of Nurr1 due to CREB-medicated 

phosphorylation [232, 233]. These studies suggest that 

Nurr1 is involved in the initiation and progression of 

addictive disorders, which may depend on the type of drug 

and the duration of administration. As several lines of 

evidence suggest that reward processing is defective in 

neurodegenerative diseases including AD [234], the 

correlation between Nurr1 expression and addictive 

behaviors may suggest the need for further investigation 

regarding the relationship between Nurr1 function in AD 

and addictive behaviors. 

 

4.5. Attention deficit hyperactivity disorder (ADHD) 

 

VTA, a dopamine nucleus brain region with robust 

expression of Nurr1 [235, 236], projects dopamine axons 

to the prefrontal cortex [237], and dopamine system is 

considered to be an important part of ADHD pathogenesis 

[238, 239]. In addition, decreased dopamine synaptic 

markers have been reported in the dopamine reward 

pathway in ADHD patients [240]. An in vivo study using 

Nurr1 knockout mice with prenatal immune activation as 

an attention impairment model reported that genetic and 

environmental factors synergistically affected attentional 
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impairment as well as additively affected locomotor 

hyperactivity. Remarkably, Nurr1 heterodeficient mice 

showed increased locomotor activity, and exhibited 

altered inflammatory cytokine responses against prenatal 

immune activation [241]. Although there were 

inconsistent reports regarding the levels of cytokines in 

AD, cytokines such as IL-6 and IL-10 are known to play 

important roles in AD pathogenesis [242]. Given that two 

NR4A2 polymorphisms were found in patients with 

ADHD [243], further studies investigating the changes of 

Nurr1 expression in ADHD may provide a better 

understanding of AD pathogenesis. 

 

4.6. Circadian rhythm disorder 

 

Disorders of the midbrain dopaminergic neurons, which 

are the basis of the reward system in the brain, are 

involved in the disruption of the circadian rhythm [244]. 

Notably, sleep and circadian rhythm disorder are early 

biomarkers of AD [245, 246]. The circadian nuclear 

receptor REV-ERBα encoded by the NR1D1 gene, 

competes with Nurr1 for the regulation of circadian TH 

expression via a target-dependent antagonistic 

mechanism [247]. In 6-month old 3xTg-AD mice, an 

animal model of AD, gene expression of NR1D1 is 

increased in the brainstem after exposure to darkness, 

compared to control mice [248]. Thus, these data may 

imply that controlling the balance between expression of 

ERV-ERBα and Nurr1 could be a potential target for 

treating circadian rhythm disorder in AD. 

 

5. Conclusion 

 

Recent findings regarding the Nurr1 role in the CNS have 

demonstrated molecular, cellular, and physiological 

responses underlying various conditions, and these 

findings may provide insights for the association between 

Nurr1 and the underlying mechanisms of AD (Fig. 1). 

Studies on the effect of Nurr1 support the correlation 

between Nurr1 expression and various stages of AD 

pathology and symptoms, including neuronal cell death, 

inflammation, synaptic loss, impaired adult neurogenesis, 

psychiatric symptoms, and cognitive deficits. 

All mechanisms of development of neuro-

degenerative diseases, especially of AD, are closely 

related to the actions of Nurr1. Nurr1 may be capable of 

regulating AD-related pathogenesis, based on recent 

studies showing the critical roles of Nurr1 in AD-related 

pathology (Fig. 1). As a result, subsequent experiments 

have been performed to prove Nurr1 as a potential target 

for treatment of AD, and have suggested Nurr1 

agonists/mimetics as potential therapeutic agents for AD.  
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