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Abstract

Humans respond differently than other primates to a large number of infections. Differences in susceptibility to infectious
agents between humans and other primates are probably due to inter-species differences in immune response to infection.
Consistent with that notion, genes involved in immunity-related processes are strongly enriched among recent targets of
positive selection in primates, suggesting that immune responses evolve rapidly, yet providing only indirect evidence for
possible inter-species functional differences. To directly compare immune responses among primates, we stimulated
primary monocytes from humans, chimpanzees, and rhesus macaques with lipopolysaccharide (LPS) and studied the
ensuing time-course regulatory responses. We find that, while the universal Toll-like receptor response is mostly conserved
across primates, the regulatory response associated with viral infections is often lineage-specific, probably reflecting rapid
host–virus mutual adaptation cycles. Additionally, human-specific immune responses are enriched for genes involved in
apoptosis, as well as for genes associated with cancer and with susceptibility to infectious diseases or immune-related
disorders. Finally, we find that chimpanzee-specific immune signaling pathways are enriched for HIV–interacting genes. Put
together, our observations lend strong support to the notion that lineage-specific immune responses may help explain
known inter-species differences in susceptibility to infectious diseases.
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Introduction

Due to our natural focus on humans, we know of a large

number of diseases or medical conditions that affect humans more

severely than non-human primates. Examples include progression

to AIDS following infection with HIV, progression to malaria

following infection with Plasmodium falciparum, Alzheimer’s disease,

cancer, and adverse complications following infection with

hepatitis B and C (reviewed in [1,2]). Differences in susceptibility

to infectious agents between humans and other primates might be

explained, at least in part, by inter-species differences in immune

response to infection. Indeed, a large body of work indicates that

immune systems are rapidly evolving. In particular, while very

little comparative functional data in primates has been collected,

recent genomic scans for signatures of natural selection have

reported that genes involved in immunity processes are strongly

enriched among targets of positive section in human and

chimpanzee [3–11].

Immune responses are typically classified as either ‘innate’ or

‘adaptive.’ Historically, the focus of most immunological studies

has been on the adaptive response and its hallmarks, namely the

generation of a large repertoire of antigen-recognizing receptors

and immunological memory. Recently, however, more effort has

been expended on understanding the innate immune system, as it

became clear that innate immunity is an evolutionarily ancient

defense mechanism, which governs the initial detection of

pathogens and stimulates the first line of host defense [12–15].

Moreover, innate immune responses were shown to play a pivotal

role in the development of pathogen-specific humoral and cellular

adaptive immune responses, which are mediated by B and T cells

[16–18].

The recognition of pathogens by the innate immune system is

primarily mediated by phagocytic cells (e.g., monocytes, macro-

phages, and dendritic cells) through germline-encoded receptors,

known as pattern recognition receptors (PRRs) [17,19,20]. The

PRRs recognize conserved molecular features characteristic of the

microbial world, commonly referred to as pathogen-associated

molecular patterns (PAMPs) [17,19,20]. Among the different

PRRs, the Toll-like receptor (TLR) family, which comprises 10

functional members in humans, has been the most extensively

studied. For example, by stimulating primary cell cultures with

different TLR agonists in vitro (e.g., references [21–23]) and by

studying mouse models that lack one or several TLRs (e.g.,

references [24–26]), it has been shown that TLRs can be activated

in response to virtually any microbe that invades the host.

Once activated, TLRs play a crucial role in orchestrating the

response to pathogenic microbial infections through the induction

of two major regulatory programs. First, a universal regulatory

response, which can be activated by all TLRs and is triggered by

infection with a diverse range of microbes or TLR agonists
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[21,22,27–29]. This response has been interpreted as a generic

‘alarm signal’ for infection [22,28,29]. Second, individual TLRs

can activate regulatory programs that are specific to individual

microbial agents [19]. Comparative functional studies of TLR-

mediated immune response in primates might therefore shed light

on inter-species differences in susceptibility to certain infectious

agents. However, at present, there is very little functional data with

which one can study the evolution of the immune system in

primates.

Results

In order to study functional differences between the innate

immune response of humans and two close evolutionary relatives,

chimpanzees (Pan troglodytes) and rhesus macaques (Macaca mulatta),

we stimulated primary monocytes from six individuals from each

of the three species with LPS for 4, 12, and 24 hours (see Figure S1

for an illustration of the study design). LPS activates the TLR

pathway (specifically, TLR4) and mimics an infection with Gram

negative bacteria [16–18]. We chose this treatment because LPS,

via TLR4, activates multiple immune signaling pathways, leading

to the induction of both inflammatory and ‘viral-like’ responses

[19]. Additionally, the stimulation of immune cells with LPS was

shown to result in a very similar regulatory response (87% overlap)

to the response to infection with a live bacteria such as E. coli [22].

To confirm that the LPS treatment activated TLR4-mediated

immune responses, we used quantitative PCR to estimate the

induction levels of three inflammatory cytokines (IL6, IL1b, and

TNF). In all samples (from all individuals at all time points), levels

of the three inflammatory cytokines were significantly higher

following stimulation with LPS (Figure S2). However, we noticed

that the quantitative responses to the treatment in the chimpanzee

samples were lower than those of the human and rhesus macaque

samples. This observation probably reflects a technical difficulty in

culturing chimpanzee primary monocytes without inducing a

general stress response, which results in the attenuation of the

quantitative response to further stimuli (see Materials and Methods

for more details). In what follows, we therefore focus primarily on

qualitative rather than quantitative differences between individuals

and species in the regulatory response to stimulation with LPS.

LPS-mediated immune responses in primates
To estimate and compare gene expression levels in samples

from multiple species, we used a multispecies microarray, which

includes orthologous probes from human, chimpanzee, and rhesus

macaque for 18,109 genes [30]. Following processing and

normalization of the array data, we used a gene-specific linear

mixed-effect model (see Materials and Methods) to identify inter-

species differences in the regulatory response to stimulation with

LPS (the ‘treatment’). To minimize the number of falsely identified

differences across species, we applied two statistical cutoffs for

classifying genes as responding to the treatment. Specifically,

conditional on observing a treatment effect with high statistical

confidence in one species, we assumed that a treatment effect likely

occurred in other species as well, and relaxed the statistical cutoff

for the classification of such secondary observations (see Materials

and Methods for more details and the specific statistical cutoffs

used). This procedure minimizes the number of falsely identified

inter-species differences that might ultimately arise from incom-

plete power to identify differences in gene expression levels

following the treatment.

Using this approach, we identified 3,170 genes whose

expression levels changed following the treatment in at least one

species, at any time point, of which 793 genes responded in all

three species (Figure 1A, Table S1, Figure S3). As expected, genes

that responded to stimulation with LPS in all three species are

enriched with genes involved in immune-related biological

processes such as ‘‘inflammatory-response’’ and ‘‘cytokine-signal-

ing’’, as well as in specific immune-related pathways including the

Toll-like receptor pathway, cytokine-cytokine receptor interac-

tions, and the Jak-STAT signaling pathway (FDR for all reported

results is ,0.01; Figure 1B, 1C, Table S2). Consistent with

previous observations in functional studies of the immune system

in mice [21,27], we found that the conserved regulatory response

to stimulation with LPS in primates included an enrichment of

genes that are likely regulated by the transcription factor NF-kB

(P,1025) and several interferon regulatory factors (e.g., IRF7 and

IRF1; P,1023; Figure 1D, Table S3). Put together, these

observations clearly demonstrate that the monocytes from all

three species responded to the treatment with LPS by engaging

TLR4-mediated regulatory pathways [19], leading to the

induction of pro-inflammatory and anti-viral immune responses

via the activation of NF-kB and IRF mediated pathways.

To gain further insight into the evolution of LPS-induced

immune responses in primates, we classified genes as participating

in either the universal regulatory response to infection (which can

be triggered by a diverse range of microbes or TLR stimuli

[21,22,27]), or in the microbial-specific response (which we then

further classified as responses to either bacterial or viral infections

[21,22,27]). Based on these classifications (Table S4), we examined

how genes falling into each of the categories responded to infection

in humans, chimpanzees, and rhesus macaques. We found that the

majority (58%) of genes involved in universal response to infection

showed a conserved regulatory response to stimulation with LPS in

all three species, compared to only 31% of genes known to

respond primarily to either viral or bacterial infection (x2 test,

P,0.001; Figure 2A). Viewed from a different perspective, we

observed that the proportion of genes involved in immune

response to viral infections is significantly higher (1.5-fold) among

genes that responded to stimulation with LPS in only one of the

species, compared with genes that responded to the treatment in

Author Summary

We know of a large number of diseases or medical
conditions that affect humans more severely than non-
human primates, such as AIDS, malaria, hepatitis B, and
cancer. These differences likely arise from different
immune responses to infection among species. However,
due to the lack of comparative functional data across
species, it remains unclear how the immune system of
humans and other primates differ. In this work, we present
the first genome-wide characterization of functional
differences in innate immune responses between humans
and our closest evolutionary relatives. Our results indicate
that ‘‘core’’ immune responses, those that are critical to
fight any invading pathogen, are the most conserved
across primates and that much of the divergence in
immune responses is observed in genes that are involved
in response to specific microbial and viral agents. In
addition, we show that human-specific immune responses
are enriched for genes involved in apoptosis and cancer
biology, as well as with genes previously associated with
susceptibility to infectious diseases or immune-related
disorders. Finally, we find that chimpanzee-specific im-
mune signaling pathways are enriched for HIV–interacting
genes. Our observations may therefore help explain
known inter-species differences in susceptibility to infec-
tious diseases.

Evolution of Immune Responses in Primates
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all three species (x2 test, P = 0.002; Figure 2B). Taken together, our

data strongly support the notion that the universal TLR response

is mostly conserved across primates and that much of the

divergence in immune response is observed in genes that are

involved in response to specific microbial and viral agents.

Characterization of species-specific innate immune
responses

We proceeded by focusing on species-specific immune respons-

es. Using the conservative approach described above, we identified

335, 273, and 393 genes as responding to stimulation with LPS

exclusively in the human, chimpanzee, and rhesus macaque

monocytes, respectively (see Figure 3A–3C for examples). To

characterize these gene sets, we considered functional annotations

based on the GO and KEGG databases (Table S5, S6, S7).

Somewhat surprisingly, the only significant enrichments (after

correction for multiple tests) were observed among the 335 genes

that responded to the treatment exclusively in humans. We found

that human-specific immune response was enriched for genes in

pathways previously associated with cancer (e.g., Chronic myeloid

leukemia or prostate cancer; P#3.061023, FDR,0.06), the B cell

receptor signaling pathway (P = 3.261023, FDR = 0.06), and

pathways related to apoptosis (P = 5.061023, FDR = 0.07; see

Table S5 for a complete list of significant results). Further, by using

the STRING database [31] to visualize all known functional

interactions between these 335 genes, we found that 151 of the

genes in this set (45%) are known to interact with each other –

using the default cutoff suggested by STRING to define a

functional interaction (Table S8). Applying a more stringent cutoff

(a STRING confidence-score higher than 0.7), we identified 78

genes (23%) that interact with each other, in a functional module

that is enriched with genes involved in cancer biology and

apoptosis pathways (Figure 4, Table S9). In order to obtain further

support for interactions across these 78 genes, we used GRAIL, a

tool that uses text mining of PubMed abstracts to identify

published functional interactions between genes. We found that

43 out of the 78 human-specific immune response genes (55%) had

a GRAIL score of P-text,0.05, statistically supporting the notion

that they have a functional interaction with at least one other gene

in the list (only ,7% of genes are expected to have GRAIL score

of P-text,0.05 in randomly chosen sets of 78 genes).

We then considered networks of co-expressed genes (namely

genes with coordinated patterns of expression) for each species, to

find additional putative modules of interacting genes (see Materials

and Methods). We found 33, 17 and 32 regulatory modules in

humans, chimpanzees and rhesus macaques, respectively, with an

average connectivity (|r|) higher than 0.5 (Figure 5, Table S10,

S11, S12). Based on 100 random permutations of the gene

expression values, we estimated that the number of clusters with

|r|.0.5 expected by chance alone is 1.2861.04, 1.1661.08, or

1.3761.08, using data from humans, chimpanzees and rhesus

macaques, respectively, suggesting that the observed excess

of regulatory modules likely describe meaningful biological

relationships.

Figure 1. LPS-mediated innate immune response to infection in humans, chimpanzees, and rhesus macaques. (A) Venn-diagram
showing the number of genes whose expression levels were altered following stimulation with LPS in humans, chimpanzees and rhesus macaques at
any time point (see Figure S4 for data from specific time points). (B) Gene ontology (GO) enrichment analysis using the subset of genes that
responded to the treatment in all three species. GO terms related to immunity processes are plotted (see Table S2 for results including all GO terms).
(C) KEGG pathway enrichment analysis for genes that responded to the treatment in all three species. (D) Transcription factor binding site enrichment
analysis in the promoters of genes that responded to the treatment in all three species (see Table S3 for complete results).
doi:10.1371/journal.pgen.1001249.g001

Evolution of Immune Responses in Primates
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In humans, the largest regulatory module contains 82 genes,

which are significantly enriched for several biological processes

involved in extracellular matrix remodeling (P,0.002; Table S10).

The second largest regulatory module is significantly enriched for

genes involved in apoptotic pathways (P,0.04; Table S10).

Interestingly, ‘‘apoptosis-related’’ processes appeared to also be

enriched among genes in one of the largest regulatory modules

identified in chimpanzees, with 23 genes (Table S11), as well as

among three large regulatory modules (.30 genes each) identified

in rhesus macaques (Table S12). As the regulatory modules

comprise of mutually exclusive sets of genes across the three

species (by the nature of the analysis), these observations support

the notion that immunological-associated apoptosis mechanisms

evolve rapidly in primates.

Finally, we asked whether the observed inter-species differences

in immune response might provide insight into the mechanisms

underlying differences in susceptibility to infectious diseases

between humans and non-human primates. To do so, we

considered the subsets of genes that responded to stimulation

with LPS exclusively in humans, chimpanzees or rhesus macaques,

and examined whether they were enriched for genes previously

reported to be associated with immune disorders in humans and/

or susceptibility to infectious diseases (see Materials and Methods).

We found an enrichment of ‘‘immune-related-disease-genes’’

among genes that responded to the treatment with LPS exclusively

in humans (x2 test, P = 0.03; Figure 6A). Interestingly, we also

found that the set of genes that responded to stimulation with LPS

exclusively in chimpanzees was enriched with genes that code for

host cell proteins known to interact with HIV-1 (Figure 6B; x2 test,

P = 0.0002). No significant enrichment of HIV-1 interacting genes

was observed among genes that responded to stimulation with LPS

exclusively in either humans or rhesus macaques. This observation

is robust with respect to the specific cutoffs used to classify

genes that responded to stimulation in LPS in only one species

(Figure S5).

Discussion

We have performed a genome-wide study of LPS-mediated

immune responses in primary monocytes from humans, chimpan-

zees, and rhesus macaques. Our study design allowed us to

characterize conserved innate immune response mechanisms in

primates as well as to identify species-specific regulatory responses

to stimulation with LPS.

An important difficulty of all studies of gene regulation in

primary tissues from primates, apes in particular, is the inability to

stage the environment for each of the donor individuals across

species. In our study, biological replication within species partially

addresses this difficulty, but the possibility that a subset of the

observed inter-species differences in gene regulation are due to

differences in environments (e.g., diet) across species still exists. An

additional difficulty is that most available tools for manipulating

cell cultures and performing immune-related assays have not been

optimized to work with non-human primate cells. We addressed

this issue by performing a large number of quality controls,

including the validation of the response to stimulation with LPS in

each cell culture by using qPCR. Nevertheless, our observation of

systematic differences in the quantitative response to infection

across cultures from different species (in particular, from

chimpanzees) probably has a technical rather than a biological

explanation. For that reason, we chose to draw conclusions

primarily based on qualitative differences between species. Thus,

the inter-species regulatory differences reported in our study likely

Figure 2. Universal TLR response is more conserved than the
immune responses to specific bacterial or viral infections. (A)
The proportion of genes that responded to the treatment in all three
species, in any two species, or in only one species are plotted for the
subsets of genes classified as part of the universal TLR response, the
immune responses specific to bacterial infections, or the immune
responses specific to viral infections (B) The proportion of genes
classified as part of the universal TLR response, the immune responses
specific to bacterial infections, or the immune responses specific to viral
infections among genes that responded to the treatment in all three
species or exclusively in one species. Genes were classified as part of the
universal, bacterial, or viral TLR response, based on the findings of Amid
and colleagues [21].
doi:10.1371/journal.pgen.1001249.g002

Figure 3. Species-specific responses to infection. Examples of (A)
human-specific, (B) chimpanzee-specific, and (C) rhesus-specific im-
mune responses to the treatment. In all panels, the log2 fold difference
in expression levels (+SE) following the treatment (y-axis) is plotted for
each species at the different time points following infection (x-axis).
doi:10.1371/journal.pgen.1001249.g003

Evolution of Immune Responses in Primates
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provide a lower boundary for the actual number of differences in

immune response between humans, chimpanzees and rhesus

macaques.

Conserved innate-immune responses in primates
We identified 793 genes that responded to stimulation with LPS

in all three species. As expected, this set of genes was significantly

enriched for genes involved in immune responses, and specifically

for genes involved in TLR-mediated pathways. Some examples of

conserved TLR4-induced immune responses include the strong

up-regulation of several pro-inflammatory cytokines, such as IL-6,

IL1-b and tumor necrosis factor (TNF), and chemokines, such as

CCL2, CCL3 and CCL4, whose roles are to recruit other effector

cells to the inflammatory site [29,32]. We also observed a

conserved up-regulation of the anti-inflammatory cytokine IL-10,

probably to control the levels of inflammatory response and avoid

tissue damage [29], as well as the up-regulation of several

interferon-a inducible genes (e.g., IFIH1, IFIT1, and IFIT3).

Overall, conserved immune responses were enriched for genes

whose expression levels are regulated by the transcription factor

NF-kB, or by several interferon regulatory factors, which are the

master regulators of TLR4-dependent pathways. Interestingly,

before infection, the expression levels of many of these master

regulators (e.g., REL, NFKB1, RELB, IRF2, IRF9) were different

across the three species, while post-infection, their expression

converged to practically the same level, regardless of species

(Figure S6). This observation suggests that the regulatory response

of these key transcription factors likely evolve under strong

evolutionary constraints, probably to ensure efficient downstream

immune responses.

A known property of the regulatory programs mediated by

different TLRs is the activation of both a universal response

(shared by all TLRs) as well as a response that is specific to each

microbial agent (or TLR ligand) [21,22,27–29]. We found that the

universal TLR response is remarkably more conserved across

primates compared to microbial-specific responses. From an

evolutionary perspective this observation makes intuitive sense.

Indeed, ‘core’ immune responses, which are critical to fight any

invading pathogen, are expected to be under stronger evolutionary

constraint compared to immune programs that are only important

in the presence of specific microbial infections. Consistent with this

expectation, our data also support the notion that adaptation of

innate immune responses in primates primarily took place at the

level of ‘peripheral’ responses, namely, pathogen-specific immune

responses.

Species-specific immune responses
Among genes whose regulation was affected by stimulation with

LPS in only one species, we found an enrichment of genes

associated with response to viral infections. This observation might

Figure 4. An example of a functional network of genes that responded to stimulation with LPS exclusively in humans. Genes involved
in apoptosis and/or cancer pathways are highlighted.
doi:10.1371/journal.pgen.1001249.g004

Evolution of Immune Responses in Primates
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reflect the need of the host immune system to frequently devise

new defense mechanisms to fight viral infection, as viruses tend to

evolve faster than other microbes [33]. We also found that species-

specific immune responses are enriched with genes annotated to

have a role in apoptotic pathways. Apoptosis is a critical

component of successful immune response as infected cells have

to be efficiently removed without inciting an inflammatory

reaction [34]. Moreover, controlled cell death is used to restore

normal cell numbers following clonal expansion of antigen-specific

lymphocytes [34]. Consistent with our observation of rapid

evolution of the regulation of apoptotic pathways, coding regions

of apoptosis-related genes have previously been shown to be

rapidly evolving during primate evolution [7,35]. Put together,

these observations suggest that inter-species differences in

apoptosis-related immune responses may be adaptive. Although

the selective pressures underlying these adaptations are unclear,

these observations might help elucidate the basis for important

phenotypic differences between humans and non-human primates,

such as differences in susceptibility to cancer.

Indeed, cancer incidence in non-human primates is low

compared to that observed in humans, even when age is taken

into account [1,2,36–39]. The deregulation of apoptosis has been

extensively described as a hallmark of cancers [40]. Thus, while

our observation that the human-specific immune response to

stimulation with LPS is characterized by a significant enrichment

of cancer-related genes is not surprising (because the ‘cancer-

related’ and ‘apoptosis-related’ gene sets are not mutually

exclusive), it may provide a first step towards understanding the

mechanisms underlying the differences in cancer incidence

between humans and other primates. For example, we observed

that the pro-apoptotic gene CASP10 was strongly down regulated

early after stimulation with LPS, exclusively in humans (Figure

S7). Somatic mutations in CASP10, as well as reduced expression

levels of this gene, were found to be associated with a number of

different human cancers [41–44]. The observed inter-species

differences in the regulation of CASP10 following infection may

therefore be related to differences in the rates of cancer across

species. Detailed comparative studies of apoptosis-related regula-

tory mechanisms in model organisms will be necessary to fully

explore the possible connection between the predisposition to

cancer and inter-species differences in immune responses.

Inter-species differences in susceptibility to HIV/AIDS
Genes whose regulation was altered following stimulation with

LPS exclusively in humans were enriched with genes known to be

associated with susceptibility to infectious diseases or to immune-

related diseases. We did not observe such enrichment when we

considered the immune responses specific to chimpanzees or

rhesus macaques. Our observations make intuitive sense, as we

know more about the genes associated with diseases that affect

humans than those that affect the two non-human primate

species. In other words, it is reasonable to assume that we would

have found similar enrichments in chimpanzees and rhesus

macaques if we knew more about the genetic basis of infectious

and immune-related diseases that primarily affect these two

species. Our observations thus underscore the link between

Figure 5. Co-expression regulatory networks. Heatmaps illustrating the correlations of expression profiles for genes responding to stimulation
with LPS exclusively in (A) humans, (B) chimpanzees, and (C) rhesus macaques are plotted. Blocks of genes with highly correlated expression profiles
correspond to regulatory modules determined by the MMC algorithm. We found 33, 17 and 32 modules in humans, chimpanzees and rhesus
macaques, respectively, with an average connectivity (|r|) higher than 0.5. In addition to the modules discussed in the text, regulatory modules that
merit particular attention include (D) module 13 in chimpanzees, which is significantly enriched for immune response genes (highlighted in yellow),
and (E) regulatory module 18 in rhesus macaques, which is significantly enriched for genes involved in immune-related pathways; in particular in MAP
kinase signaling pathways (highlighted in yellow), which control a range of cellular activities related to innate immune responses and are particularly
important in regulating cytokine gene expression levels and pathways related to programmed cell death [60].
doi:10.1371/journal.pgen.1001249.g005

Evolution of Immune Responses in Primates
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species-specific immune responses and susceptibility to infectious

disease.

One interesting example is the enrichment of genes known to

interact with HIV among genes whose regulation was affected by

the stimulation with LPS exclusively in chimpanzee. This

observation is intriguing because, unlike humans and rhesus

macaques, a large number of studies propose that chimpanzees

only rarely develop AIDS following infection with HIV [45–47].

This notion has recently been challenged by Keele et al. [48], who

reported that wild chimpanzees naturally infected with SIVcpz do

develop hallmarks of AIDS. The apparently contradictory

observations in the literature might be explained by the fact that

Keele et al. used data collected from an eastern subspecies of

chimpanzees (Pan troglodytes schweinfurthii), whereas previous obser-

vations of increased protection from AIDS, were based on studies

with the western chimpanzee subspecies (Pan troglodytes verus), the

one used in our study. Differences in susceptibility to HIV between

sub-species of chimpanzees might be explained by the fact that Pan

troglodytes verus were physically separated from the two other sub-

species prior to systemic infection with the two recombinant

monkey viruses of SIVcpz.

Some examples of HIV-interacting gene that responded to

stimulation with LPS exclusively in chimpanzees include

ITGB2(CD18) and ITGAM(CD11b), which are the two members

of the complement receptor 3 (CR3) that have been shown to play

a key role in the infection of dendritic cells by C3-opsonized HIV

[49,50] and the viral transfer to CD4 T cells [50]. Interestingly,

these two genes were down-regulated after LPS stimulation,

exclusively in chimpanzee monocytes. Another example is the

APOBEC3F gene, which is one of the most potent inhibitors of

HIV replication [51] and was significantly up-regulated in

response to stimulation with LPS, only in chimpanzee monocytes.

The direction of regulatory change in these cases (namely, the

down regulation of a receptor that may be used by the HIV virus,

and the up-regulation of a known inhibitor of HIV replication), is

consistent with a theoretical mechanism of increased resistance of

chimpanzees (or at least Pan troglodytes verus) to progression of

AIDS. That said, future studies are now required to evaluate if the

down-regulation of CR3 and up-regulation of APOBEC3F are also

observed after infection with HIV (or SIVcpz).

Our observations may reflect an adaptation of the chimpanzee

immune system to infection with HIV/SIV or perhaps to other

retroviral infection(s). Previous studies of variation at the nucleotide

level have reported that genes associated with HIV infection (such as

CD45, APOBEC3G and APOBEC3H) evolved under positive

selection in primates [52], particularly after the divergence of

humans and chimpanzees [11]. Taken together, our data suggest

that regulatory changes occurring specifically in the chimpanzee

lineage might explain, at least in part, why chimpanzees tend not to

progress to AIDS following infection with HIV/SIV.

More generally, our observations may help to explain other

inter-species differences in susceptibility to infectious agents, such

as the increased resistance of chimpanzees to certain other viral

infections, including hepatitis B and C, and influenza A. Our

study, however, is only the first step in characterizing inter-species

differences in immune response, in particular because LPS is a

general stimulant. We expect future comparative studies in

primates to focus on the immune response to different individual

infectious agents.

Materials and Methods

Ethics statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. An IRB approved consent form was

obtained from each human donor. Collection of the non-human

primate samples was perform at the Yerkes Primate Center, in a

manner that conformed to the animal subject regulatory standards

enforced by the Emory University Institutional Animal Care and

Use Committee (IACUC approved protocol #028-2009Y).

Sample collection
We measured gene expression levels in blood monocytes from

six humans, six chimpanzees and six rhesus macaques (three males

and three females from each species; see Table S13 for details on

all samples). Blood samples were collected in BD Vacutainer CPT

Cell Preparation Tube (BD, Franklin Lakes, NJ) and peripheral

blood mononuclear cells (PBMCs) were purified according to the

manufacturer’s instructions. Non-human primate blood samples

were collected at the Yerkes primate center and human samples

were obtained from Research Blood Components.

Monocyte purification and culturing
Blood monocytes from the three species were purified from

PBMCs using magnetic cell sorting technology (MACS technology

from Miltenyi Biotech). Specifically, monocytes from humans and

rhesus macaques were purified by positive selection with magnetic

CD14 MicroBeads (Miltenyi Biotech). This method did not work well

with the chimpanzee samples (less than 3% of chimpanzee PBMCs

were isolated using cell sorting with a CD14 antibody). Instead,

monocytes from chimpanzees were purified by depletion of non-

monocyte cell types using the ‘‘Monocyte Isolation Kit II’’ (Miltenyi

Biotech). Regardless of the method used, the purity of the isolated

monocyte population was evaluated by flow cytometry. For the

human and rhesus macaque samples we used a fluorochrome-

Figure 6. Species-specific immune responses and disease
susceptibility. In both panels, the ‘all genes’ category (gray bar)
refers to the set of genes that were classified as expressed (based on
the array data) in at least one of the conditions (i.e., at any time point in
either the treated or untreated samples). (A) The proportions of genes
associated with infectious diseases or immune related disorders (y-axis)
among genes that responded to stimulation with LPS exclusively in
humans, chimpanzees and rhesus macaques (x-axis). (B) The proportion
of HIV-1 interacting genes (y-axis) among the subsets of genes that
responded to stimulation with LPS exclusively in each of the three
species (x-axis). The observed pattern is robust with respect to the
cutoffs used to classify genes as differentially expressed following the
treatment (Figure S5).
doi:10.1371/journal.pgen.1001249.g006
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conjugated antibody against monocytes (CD14-FITC; Beckman-

coulter). For chimpanzees, we further confirmed the purity of the

monocyte population by also using two additional fluorochrome-

conjugated antibodies - against B-cells (CD20-PE; BD Bioscience)

and T-Cells (CD3-APC BD Bioscience). Regardless of species, only

samples with monocyte purity higher than 80% were used in

subsequent experiments (Figures S8 and S9). Finally, to further

increase the purity of the monocyte-enriched fraction (virtually to

100%), we performed an additional selection step based on the

unique capacity of monocytes/macrophages to strongly adhere to the

plastic of cell culture dishes. To do so, we cultured the cells overnight

(see below for details) and washed the cell culture wells in the morning

to retain only adherent cells (i.e., monocytes).

Since we used different methods to purify monocytes in samples

from chimpanzees (negative selection) than in samples from

humans or rhesus macaques (positive selection), we also performed

a control experiment to empirically evaluate to what extent the

purification method used affects the ability of the purified cells to

respond to LPS stimulation. To do so, we collected whole blood

samples from three additional humans, from which we purified

monocytes using both a positive and a negative selection method.

We then performed the same LPS treatment experiment we

applied to the main samples from all three species (described

below), and compared differences in response to LPS treatment

between monocytes purified by positive selection and monocytes

purified by negative selection. As discussed in Text S1 and Figures

S15 and S16, we found that the method used to purify the

monocytes (negative or positive selection) has only a minimal effect

on the measured regulatory response to stimulation with LPS.

That said, to be conservative, we excluded from all analyses

presented in the manuscript the 192 genes identified as responding

to LPS treatment only in monocytes purified by either positive or

negative selection.

Monocyte culture and LPS stimulation
Monocytes were cultured in 24-well cell culture plates (Corning)

in serum free media (CTL’s test media) at a density of 1 million

cells per ml. We used a serum free media to minimize the

probability that the monocytes were non-specifically activated as a

result of the undefined nature of serum products (e.g., as a result of

a mitogenic serum batch). The cells were then stimulated with

1 ug/ml of LPS (Invivogen, Ultrapure LPS, E. coli 0111:B4) for 4,

12, and 24 hours. These time points were chosen based on

previous observations that the transcription kinetics of immune

response to infection can generally be characterized by early,

middle, and late phases of response, which can be effectively

captured at 4, 12 and 24 hours post infection [22]. All time course

experiments were started at the same time of day (,8am) to

prevent the introduction of variation due to differences in

circadian rhythm. Untreated cell cultures were kept alongside

the stimulated cultures and were harvested at the same time

intervals (4, 12, and 24 hours post stimulation).

RNA extraction and amplification
Total RNA from each cell culture was extracted using RNeasy

columns (Qiagen, Valencia, CA). For all samples, RNA quantity

was evaluated spectrophotometrically, and the quality was assessed

with the Agilent 2100 bioanalyzer (Agilent Technologies Inc, Palo

Alto, CA). Only samples with no evidence for RNA degradation

(RNA integrity number .8.5) were retained for further experi-

ments. To evaluate the activation of monocytes after stimulation,

we used quantitative PCR to test for an over-expression of Tumor-

necrosis Factor (TNF-a), Interleukine-6 (IL-6) and IL1-b. inflam-

matory cytokines that are known to be induced following the

activation of TLRs (primer sequences and PCR conditions can be

found in Table S14). Only samples for which we observed a

significant induction of these cytokines were used in downstream

experiments. Once we confirmed that monocytes from all three

species responded to the treatment, we performed linear

amplifications of the total RNA samples by using in-vitro

transcription. Specifically, 400 ng of high-quality total RNA were

amplified using the MessageAmp II kit (Ambion). Unlike

exponential RNA amplification methods, aRNA amplification

has been shown to maintain the relative representation of the

starting mRNA population [53,54] (Figure S10).

Multi-species microarray
To compare genome-wide gene expression levels between

humans, chimpanzees, and rhesus macaques, we hybridized the

RNA samples to the multi-species microarray described by

Blekhman et al. [30]. This array contains orthologous probes

from the three species, thus allowing a comparison of gene

expression levels between species without the confounding effects

of sequence mismatches on hybridization intensities [30]. The

microarray contains probes for 18,109 genes (see Blekhman et al.

[30] for a detailed description of the multi-species array). The

labeling of the amplified RNA samples and subsequent hybrid-

ization to the microarray were performed by Nimblegen. For each

individual we hybridized one non-stimulated and one stimulated

sample at each of the three time points (4 hours, 12 hours and

24 hours). The total number of arrays analyzed was therefore 108

( = 3 species 66 individuals 66 arrays per individual). Quality

control, background correction and normalization of the expres-

sion data were performed as previously described [30] (Figure S11

and S12).

Statistical analysis
All the statistical analyses detailed in this and the following

sections were performed using the R statistical environment

(http://www.r-project.org).

Identifying genes differentially expressed between

species. We analyzed data from the 17,231 genes (95% of the

genes on the array) that were assayed by at least three orthologous

probes across all species. To identify differentially expressed genes

between the three species, across time-points and following the

treatment, we modeled the expression levels of each gene

independently by using a linear mixed-effects model similar to

the one described in Blekhman et al. [30]. Specifically, for each of

the 17,231 genes, if ysroi denotes the normalized log2 intensity

expression value for individual i (i = 1,..6), from species s

(s = human, chimpanzee or rhesus macaque), measured at probe

r (r = 1, …,7), which is derived from species o, we assume that:

ysroi*N(hsroi,s
2) ð1Þ

where:

hsroi~mszcsizprozksro

Here, ms is a species-specific fixed-effect (representing changes in

expression levels across the three species), pro is a fixed-effect

representing the probe effect for each individual probe within a

probe-set and the composition effect of species-specific orthologous

probes, and ksro is a fixed-effect representing the attenuation of

hybridization intensities due to sequence mismatches between

species of RNA and a species-specific derived probe, which are
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different for each individual probe within a probe-set (see

reference [30] for more details). The term csi represents a

random-effect for individual i from species s; this effect is assumed

to follow a Normal distribution with mean 0 and variance s2
rand .

To determine whether a gene was differentially expressed between

species, we assessed how well model (1) fitted the data under the

following parameterizations of ms:

M0 : mH~mC~mR

M1 : mH=mC=mR

In the null model (M0) the gene’s expression level is assumed to

be constant across the three species, while in the alternative model

(M1) the expression level is allowed to differ between species. We

maximized the likelihood under these two parameterizations using

an iterated least-squares approach and compared the fit of the

models by calculating the likelihood-ratio test statistic. We

calculated p-values based on a x2 distribution with two degrees

of freedom, and corrected for multiple testing using the FDR

approach of Benjamini and Hochberg[55].
Identifying genes whose expression level was altered

following stimulation with LPS treatment. Due to the

paired nature of the study design (untreated and treated cells

from the same individual are compared), parameterizations of an

extended version of model (1) are difficult to interpret. Instead, we

first regressed out probe effects and then used a linear model

framework to identify genes whose expression levels have changed

following the treatment. To regress out probe effects, we

considered data from each time point separately. For each gene,

if ysroit denotes the normalized log2 intensity expression value for

individual i (i = 1,..6), from species s (s = human, chimpanzee or

rhesus macaque), from class t (t = non-stimulated or stimulated)

measured at probe r (r = 1, …,7), which is derived from species o,

we assume that:

ysroit*N(hsroit,s
2) ð2Þ

where:

hsroit~mszcsitzprozksrozatzbst

In the above, ms, pro, and ksro are defined as in the previous

section. However, we have added two additional terms to the

model: at (a treatment effect) and bst (a treatment-by-species

interaction). Further, the parameterization of the random effect

has been modified to reflect the incorporation of the treatment

effect, such that csit*N(0,s2
rand ). We used a maximum likelihood

approach to estimate the parameters in this model, and

subsequently calculated a corrected measure of expression, ŷysit

for each individual i from each species s and for the two classes

t as: ŷysit~m̂mszĉcitzâatzb̂bst (m̂ms denotes the maximum likelihood

estimate of ms et cetera). We analyzed these corrected measures of

expression levels further using gene-wise models. Specifically, for

each species separately, if yit denotes the corrected gene expression

level in individual i undergoing treatment t at the four hour time-

point, we fitted the following two models:

H0 : yit~mzcizeit

H1 : yit~mzcizbtzeit

Here, m corresponds to an intercept, c corresponds to an

individual effect (shared across treatments), b corresponds to a

treatment effect and e is assumed to follow a normal distribution

with mean 0 and variance s2. We tested whether there was

significant evidence of a difference in expression levels between the

treated and un-treated samples by comparing the fit of these

models using a likelihood-ratio test statistic. We calculated p-values

based on a x2 distribution with one degree of freedom.

Ultimately, our goal was to identify inter-species differences in

the regulatory response to stimulation with LPS. To minimize the

number of falsely identified differences across species we applied

two statistical cutoffs for classifying genes as responding to the

treatment. Specifically, as a first step, at each time point, using

data from the human and rhesus macaque samples, we initially

classified genes as differently expressed following the treatment

using an FDR cutoff ,0.001, also requiring that the effect size of

the treatment was equal or larger than |0.3| (log2 scale). For data

from the chimpanzee samples, we chose to use different initial

cutoffs (an FDR,0.1, and an absolute effect size cutoff of 0.1), as

the effect sizes for the regulatory response to the treatment were

overall lower (importantly, however, the overlap in lists of

responding genes across species is high regardless of the specific

cutoff used; Figure S13, Table S15). We then assumed that,

conditional on observing a treatment effect with high statistical

confidence in one species, a treatment effect likely occurred in

other species as well. To classify such secondary observations we

used a relaxed cutoff of P,0.05. This approach is therefore

conservative with respect to identifying differences in immune

response across species. While the specific numbers reported in the

paper are based on arbitrarily chosen cutoffs, the qualitative

conclusions we discuss are robust with respect to the specific choice

of cutoffs within a considerable range (Table S16 and Figure S5).

Gene ontology and pathway enrichment analysis
We used GeneTrail (http://genetrail.bioinf.uni-sb.de) [56] to

test for enrichment of functional annotations among different

classes of genes (as detailed in the results). In all tests, we used a

background set of 13,244 genes, which were classified as expressed

(using an absolute log2 intensity cutoff of 7.5; Figure S14) in at least

one species at one condition; that is, any of the time points for the

non-stimulated or stimulated samples. The tests were performed

using all GO categories and KEGG pathways. We calculated p-

values using a Hyper-geometric distribution, and used the

approach of Benjamini and Hochberg [55] to control the false

discovery rate.

Enrichment of transcription factor binding sites
We applied the promoter analysis algorithm PRIMA imple-

mented in the EXPANDER package [57]. Given a target set and a

background set of genes, PRIMA identifies transcription factor

binding motifs that are significantly more prevalent in the

promoter of the target set than in the background set. As

background we used all the genes in the array that had at least 3

homologous probes across species and that were expressed in at

least one species in one of the six conditions (i.e., any of the three

time-point in either treated or non-treated samples).

Network analysis
We looked for known functional associations between the 335

human-specific LPS response genes using the STRING database

(http://string.embl.de/). STRING is a database of both known

and predicted protein-protein interactions, which includes direct

(physical) and indirect (functional) associations derived from

numerous sources, including experimental repositories, computa-
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tional prediction methods and public text collections [31]. We

selected all interactions/associations available for a given node

with a combined score greater than 0.7. The scores given in the

STRING database define the confidence limit for each described

interaction/association. A combined score of 0.7 is recommended

as the high stringency criterion by the database authors.

In turn, to identify modules of co-expressed genes, we used the

Modulated Modularity Clustering (MMC) algorithm, which seeks

community structure in graphical data; that is, a graph of genes

connected by edges whose weights reflect the degree to which their

transcriptional profiles are correlated (see reference [58] for a

detailed description of the method). Co-expression modules were

defined using the probe-corrected expression estimates for the set

of 335, 273 and 393 genes whose expression levels were altered

following the treatment exclusively in humans, chimpanzees and

rhesus macaques, respectively.

Analysis of genes associated with disease
Genes previously reported to be associated with immune

disorders and/or susceptibility to any infectious disease were

identified using the Genetic Association Database (http://

geneticassociationdb.nih.gov/). We downloaded the full GAD

dataset on Nov 9, 2009, and parsed the all.xls table, which

contains gene-disease associations. We labeled genes as immune-

related if they had been associated with diseases for which the

‘disease class’ field in the GAD database was defined as ‘Immune’

or ‘‘Infectious diseases’’. The list of host genes known to interact

with HIV-1 proteins was retrieved from the HIV-1 Human

Protein Interaction Database, which catalogues over 1,400 human

proteins reported in the scientific literature to participate in HIV-1

to human protein interactions [59].

Supporting Information

Figure S1 Illustrative representation of the microarray hybrid-

ization study design. From each individual we hybridized one non-

stimulated (NS) and one LPS stimulated (LPS) sample at each of

three time points (4 hours, 12 hours and 24 hours) yielding a total

of 6 arrays per individual. The total number of arrays analyzed

was therefore 108 ( = 3 species 66 individuals 66 arrays per

individual).

Found at: doi:10.1371/journal.pgen.1001249.s001 (0.07 MB

DOC)

Figure S2 Representative examples of the induction (y-axis) of

TNF-a, IL-6 and IL-1b after stimulation of monocytes with LPS,

as measured by real-time PCR in A) humans, B) chimpanzees and

C) rhesus macaques, at 4, 12, or 24 hours post treatment (x-axis).

Found at: doi:10.1371/journal.pgen.1001249.s002 (0.23 MB

DOC)

Figure S3 Pairwise comparisons of differences in gene expres-

sion levels following the treatment between (a) humans and rhesus

macaques, (b) humans and chimpanzees, and (c) rhesus macaques

and chimpanzees. Data for genes that were classified as differently

expressed following the treatment in both species is plotted in red.

As shown, the vast majority of genes responded to the treatment in

the same direction, regardless of species.

Found at: doi:10.1371/journal.pgen.1001249.s003 (0.62 MB

DOC)

Figure S4 Venn-diagrams showing the number of genes that

responded to the treatments in humans, chimpanzees and rhesus

macaques 4- 12- and 24-hours following the treatment.

Found at: doi:10.1371/journal.pgen.1001249.s004 (0.15 MB

DOC)

Figure S5 The proportion of HIV-1 interacting genes (y-axis)

among the subsets of genes that responded to stimulation with LPS

exclusively in each of the three species. In contrast to the results

reported in the main paper, here we used the same cutoffs in all

species (i.e., FDR,0.01 and 0.1 absolute fold-change cutoff) to

classify genes as differently expressed following the treatment. ‘‘all

genes’’ (gray bar) refer to the set of genes that were expressed in at

least one of the conditions (i.e., at any time point for either the LPS

treated or untreated samples). As can be seen, the pattern we

reported in the main paper is robust with respect to the particular

choice of the statistical cutoff. We note that the enrichment of

HIV-1 interacting genes among chimpanzee-specific responses is

also significant when compared to the proportions of HIV-1

interacting genes observed among human- and rhesus macaques-

specific immune responses (Chi2 test; P,0.002).

Found at: doi:10.1371/journal.pgen.1001249.s005 (0.08 MB

DOC)

Figure S6 Reduction of inter-species variation in gene expres-

sion levels following stimulation with LPS for a number of key

transcription factors involved in the regulation of TLR4-

dependent pathways. The genes presented in the figure are all

differently expressed between species before the treatment

(FDR,0.05), yet, following infection (mostly 4 hours after

infection) their expression converged to practically the same level,

regardless of species (P.0.05). The broken lines are for illustration

purposes only.

Found at: doi:10.1371/journal.pgen.1001249.s006 (0.13 MB

DOC)

Figure S7 CASP10 LPS responses in humans, chimpanzees and

rhesus-macaques at different time-points post stimulation. The

solid lines are for illustration purposes only.

Found at: doi:10.1371/journal.pgen.1001249.s007 (0.06 MB

DOC)

Figure S8 Representative plots of flow-cytometry analyses on

total PBMC (left panels) and CD14+ cell fractions (right panels)

purified by magnetic cells sorting for A) human and B) rhesus

macaque samples.

Found at: doi:10.1371/journal.pgen.1001249.s008 (0.29 MB

DOC)

Figure S9 Plots of flow-cytometry analyses of the different cell

fractions in a representative chimpanzee sample, obtained after

depletion of non-monocyte populations using MACS technology.

Total PMBCs (A), depleted fraction (B) or monocyte enriched

fraction (C) were stained with antibodies against CD20 - a marker

of B-cells and CD3 - a marker of T-cells (left panels), and CD14 - a

marker of monocytes (right panels).

Found at: doi:10.1371/journal.pgen.1001249.s009 (0.60 MB

DOC)

Figure S10 Representative examples of the minimal variance

introduced by RNA amplification. The fold induction in

expression levels (y-axis) observed 4 hours after stimulation with

LPS for three genes (x-axis) is compared between amplified and

non-amplified RNA samples.

Found at: doi:10.1371/journal.pgen.1001249.s010 (0.08 MB

DOC)

Figure S11 Boxplots of post normalization gene expression

values.

Found at: doi:10.1371/journal.pgen.1001249.s011 (0.21 MB

DOC)

Figure S12 Principal component analysis (PCA) of post

normalization array data. As expected based on the known
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phylogeny of the species, the fist principal component of the data

separates humans and chimpanzees from rhesus macaques and the

second principal component separates humans from chimpanzees.

Found at: doi:10.1371/journal.pgen.1001249.s012 (0.09 MB

DOC)

Figure S13 Overlap between species (y-axis) in the ranks of

genes showing the strongest responses to LPS-stimulation (x-axis).

Found at: doi:10.1371/journal.pgen.1001249.s013 (0.16 MB

DOC)

Figure S14 Cutoff defined to exclude genes that are not

expressed. Average intensity (y-axis) is plotted against estimates

of the between-individual variance (x-axis). The red line is the

cutoff below which genes are likely not to be expressed; hence we

excluded these genes from the enrichment analyses.

Found at: doi:10.1371/journal.pgen.1001249.s014 (0.06 MB

DOC)

Figure S15 Impact of the monocytes’ purification method on

the measured immune responses to LPS stimulation. Correlation

between the LPS responses of monocytes purified by positive

selection and monocytes purified by negative selection, at (A)

4 hours, (B) 12 hours, and (C) 24 hours after LPS treatment. (D)

Venn-diagram showing the number of genes whose expression

levels were altered following stimulation with LPS in monocytes

purified by positive selection (yellow) and monocytes purified by

negative selection (green).

Found at: doi:10.1371/journal.pgen.1001249.s015 (0.15 MB

DOC)

Figure S16 Lack of association between genes that responded to

LPS only in monocytes purified by negative section and genes

classified as responding to LPS treatment exclusively in chimpan-

zees. In the y-axis we report the P-value for the enrichment (using

a re-sampling procedure) of chimpanzee-specific response genes

among genes classified as responding to LPS only in monocytes

purified by negative section, using different cutoffs (x-axis). Blue

dots refer to a two-cutoff approach as we did in our manuscript.

Specifically, condition on observing a gene differently expressed in

one of the purification methods at a given cutoff (in the x-axis) we

consider that that gene was also differently expressed after LPS

treatment in the other purification method at a nominal P-

value = 0.05.

Found at: doi:10.1371/journal.pgen.1001249.s016 (0.07 MB

DOC)

Table S1 List of genes analysed in the study.

Found at: doi:10.1371/journal.pgen.1001249.s017 (10.08 MB

XLS)

Table S2 KEGG pathways and Gene Ontology (GO) enrich-

ment analyzes for the set of genes that responded to LPS in all

three species. Only the top 100 GO enrichment terms are shown.

Found at: doi:10.1371/journal.pgen.1001249.s018 (0.16 MB

DOC)

Table S3 Results of transcription factor binding sites enrichment

analyzes using the promoter sequences of the set of genes that

responded to LPS in all three species.

Found at: doi:10.1371/journal.pgen.1001249.s019 (0.08 MB

DOC)

Table S4 List of genes that responded to the LPS treatment in

our experiment and that, following the findings from Amit et al.,

were classified as being part of the universal TLR response, the

immune responses specific to bacterial infections, or the immune

responses specific to viral infections. As expected, genes classified

as part of the universal response are highly enriched for genes

annotated as being involved in the toll-like receptor signaling

pathway (FDR,10-9; no such enrichment is observed among

bacterial- or viral-specific response genes), whereas genes classified

as primarily involved in immune responses to viral infections are

markedly enriched for genes classified as involved in ‘‘response to

viruses’’ (GO term 0009615; FDR = 0.005), and virus-host

interaction (GO term 0019048; FDR = 0.04).

Found at: doi:10.1371/journal.pgen.1001249.s020 (0.29 MB

DOC)

Table S5 KEGG pathways enrichment analyzes for the 335

genes that responded to LPS only in humans.

Found at: doi:10.1371/journal.pgen.1001249.s021 (0.05 MB

DOC)

Table S6 KEGG pathways enrichment analyzes for the 273

genes that responded to LPS only in chimpanzees.

Found at: doi:10.1371/journal.pgen.1001249.s022 (0.03 MB

DOC)

Table S7 KEGG pathways enrichment analyzes for the 393

genes that responded to LPS only in rhesus macaques.

Found at: doi:10.1371/journal.pgen.1001249.s023 (0.03 MB

DOC)

Table S8 Functional interaction scores between the set of 335

genes that respond to LPS exclusively in humans. Only

interactions with a score higher than 0.4 (the default cutoff in

STRING) are shown.

Found at: doi:10.1371/journal.pgen.1001249.s024 (0.17 MB

DOC)

Table S9 Sources of information used to support evidence of a

functional interaction between genes that responded to LPS only

in humans.

Found at: doi:10.1371/journal.pgen.1001249.s025 (0.13 MB

DOC)

Table S10 Co-expression modules and GO enrichement

analyses for Human-specific response genes.

Found at: doi:10.1371/journal.pgen.1001249.s026 (0.09 MB

XLS)

Table S11 Co-expression modules and GO enrichement

analyses for Chimpanzee-specific response genes.

Found at: doi:10.1371/journal.pgen.1001249.s027 (0.08 MB

XLS)

Table S12 Co-expression modules and GO enrichement

analyses for Rhesus-specific response genes.

Found at: doi:10.1371/journal.pgen.1001249.s028 (0.10 MB

XLS)

Table S13 Details on the samples used in this study

Found at: doi:10.1371/journal.pgen.1001249.s029 (0.04 MB

DOC)

Table S14 Primer sequences and PCR conditions for the genes

used to validate the immune response to the treatment.

Found at: doi:10.1371/journal.pgen.1001249.s030 (0.03 MB

DOC)

Table S15 Overlap between the top-ranked genes that respond-

ed to the treatment in the different species. We considered the N

genes (100, 200, 300, 400, 500, or 1000) showing the largest

absolute changes in expression levels following the treatment for

each species, and then compared the sets of top ranked genes

among species. We report the fold-enrichment for overlap in the
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paired datasets, relative to that expected by chance (given the

number of expressed genes at that time point in each species).

Found at: doi:10.1371/journal.pgen.1001249.s031 (0.03 MB

DOC)

Table S16 Consistent enrichment of apoptosis and cancer

related genes among human-specific response genes regardless of

the cutoffs (within a considerable range) used to define differently

expressed genes.

Found at: doi:10.1371/journal.pgen.1001249.s032 (0.03 MB

DOC)

Text S1 Results from a control experiment testing for possible

biases due to the choice of monocyte purification approach.

Found at: doi:10.1371/journal.pgen.1001249.s033 (0.04 MB

DOC)

Acknowledgments

We thank the Yerkes primate center and the New Iberia research center

for providing primate blood samples. We thank Aviv Regev and Ido Amit

for providing us the lists of genes involved in universal, bacterial-specific,

viral-specific TLR-mediated immune responses. We thank Z. Gauhar, J.

Pritchard, G. Perry, and all members of the Gilad lab for discussions and/

or for comments on the manuscript.

Author Contributions

Conceived and designed the experiments: LBB YG. Performed the

experiments: LBB. Analyzed the data: LBB JCM RB MS YG. Contributed

reagents/materials/analysis tools: RB MS YG. Wrote the paper: LBB YG.

References

1. Varki A (2000) A chimpanzee genome project is a biomedical imperative.

Genome Res 10: 1065–1070.

2. Varki A, Altheide TK (2005) Comparing the human and chimpanzee genomes:

searching for needles in a haystack. Genome Res 15: 1746–1758.

3. Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the

chimpanzee genome and comparison with the human genome. Nature 437:

69–87.

4. Bustamante CD, Fledel-Alon A, Williamson S, Nielsen R, Hubisz MT, et al.

(2005) Natural selection on protein-coding genes in the human genome. Nature
437: 1153–1157.

5. Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, et al. (2007)

Evolutionary and biomedical insights from the rhesus macaque genome. Science
316: 222–234.

6. Kosiol C, Vinar T, da Fonseca RR, Hubisz MJ, Bustamante CD, et al. (2008)
Patterns of positive selection in six Mammalian genomes. PLoS Genet 4:

e1000144. doi:10.1371/journal.pgen.1000144.

7. Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, et al. (2005) A
Scan for Positively Selected Genes in the Genomes of Humans and

Chimpanzees. PLoS Biol 3: e170. doi:10.1371/journal.pbio.0030170.

8. Arbiza L, Dopazo J, Dopazo H (2006) Positive selection, relaxation, and
acceleration in the evolution of the human and chimp genome. PLoS Comput

Biol 2: e38. doi:10.1371/journal.pcbi.0020038.

9. Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive

selection in the human genome. PLoS Biol 4: e72. doi:10.1371/journal.

pbio.0040072.

10. Wang ET, Kodama G, Baldi P, Moyzis RK (2006) Global landscape of recent

inferred Darwinian selection for Homo sapiens. Proc Natl Acad Sci U S A 103:
135–140.

11. Barreiro LB, Quintana-Murci L (2010) From evolutionary genetics to human

immunology: how selection shapes host defence genes. Nat Rev Genet 11:
17–30.

12. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic
perspectives in innate immunity. Science 284: 1313–1318.

13. Janeway CA, Jr., Medzhitov R (2002) Innate immune recognition. Annu Rev

Immunol 20: 197–216.

14. Litman GW, Cannon JP, Dishaw LJ (2005) Reconstructing immune phylogeny:

new perspectives. Nat Rev Immunol 5: 866–879.

15. Kimbrell DA, Beutler B (2001) The evolution and genetics of innate immunity.

Nat Rev Genet 2: 256–267.

16. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol
1: 135–145.

17. Medzhitov R (2007) Recognition of microorganisms and activation of the

immune response. Nature 449: 819–826.

18. van Duin D, Medzhitov R, Shaw AC (2006) Triggering TLR signaling in

vaccination. Trends Immunol 27: 49–55.

19. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate

immunity: update on Toll-like receptors. Nat Immunol 11: 373–384.

20. Medzhitov R, Janeway CA, Jr. (2002) Decoding the patterns of self and nonself
by the innate immune system. Science 296: 298–300.

21. Amit I, Garber M, Chevrier N, Leite AP, Donner Y, et al. (2009) Unbiased
reconstruction of a mammalian transcriptional network mediating pathogen

responses. Science 326: 257–263.

22. Huang Q, Liu D, Majewski P, Schulte LC, Korn JM, et al. (2001) The plasticity
of dendritic cell responses to pathogens and their components. Science 294:

870–875.

23. Nau GJ, Richmond JF, Schlesinger A, Jennings EG, Lander ES, et al. (2002)
Human macrophage activation programs induced by bacterial pathogens. Proc

Natl Acad Sci U S A 99: 1503–1508.

24. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, et al. (1998) Defective

LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene.
Science 282: 2085–2088.

25. Qureshi ST, Medzhitov R (2003) Toll-like receptors and their role in

experimental models of microbial infection. Genes Immun 4: 87–94.

26. Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, et al. (2004) Toll-like

receptor 3 mediates West Nile virus entry into the brain causing lethal

encephalitis. Nat Med 10: 1366–1373.

27. Elkon R, Linhart C, Halperin Y, Shiloh Y, Shamir R (2007) Functional genomic

delineation of TLR-induced transcriptional networks. BMC Genomics 8: 394.

28. Jenner RG, Young RA (2005) Insights into host responses against pathogens

from transcriptional profiling. Nat Rev Microbiol 3: 281–294.

29. Ricciardi-Castagnoli P, Granucci F (2002) Opinion: Interpretation of the

complexity of innate immune responses by functional genomics. Nat Rev

Immunol 2: 881–889.

30. Blekhman R, Oshlack A, Chabot AE, Smyth GK, Gilad Y (2008) Gene

regulation in primates evolves under tissue-specific selection pressures. PLoS

Genet 4: e1000271. oi:10.1371/journal.pgen.1000271.

31. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, et al. (2009) STRING 8—

a global view on proteins and their functional interactions in 630 organisms.

Nucleic Acids Res 37: D412–416.

32. Wang ZM, Liu C, Dziarski R (2000) Chemokines are the main proinflammatory

mediators in human monocytes activated by Staphylococcus aureus, peptido-

glycan, and endotoxin. J Biol Chem 275: 20260–20267.

33. Pybus OG, Rambaut A (2009) Evolutionary analysis of the dynamics of viral

infectious disease. Nat Rev Genet 10: 540–550.

34. Hildeman D, Jorgensen T, Kappler J, Marrack P (2007) Apoptosis and the

homeostatic control of immune responses. Curr Opin Immunol 19: 516–521.

35. da Fonseca RR, Kosiol C, Vinar T, Siepel A, Nielsen R (2010) Positive selection

on apoptosis related genes. FEBS Lett 584: 469–476.

36. Beniashvili DS (1989) An overview of the world literature on spontaneous

tumors in nonhuman primates. J Med Primatol 18: 423–437.

37. McClure HM (1973) Tumors in nonhuman primates: observations during a six-

year period in the Yerkes primate center colony. Am J Phys Anthropol 38:

425–429.

38. Seibold HR, Wolf RH (1973) Neoplasms and proliferative lesions in 1065

nonhuman primate necropsies. Lab Anim Sci 23: 533–539.

39. Waters DJ, Sakr WA, Hayden DW, Lang CM, McKinney L, et al. (1998)

Workgroup 4: spontaneous prostate carcinoma in dogs and nonhuman primates.

Prostate 36: 64–67.

40. Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev

Cancer 9: 501–507.

41. Park WS, Lee JH, Shin MS, Park JY, Kim HS, et al. (2002) Inactivating

mutations of the caspase-10 gene in gastric cancer. Oncogene 21: 2919–2925.

42. Shin MS, Kim HS, Kang CS, Park WS, Kim SY, et al. (2002) Inactivating

mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 99: 4094–

4099.

43. Fong PY, Xue WC, Ngan HY, Chiu PM, Chan KY, et al. (2006) Caspase

activity is downregulated in choriocarcinoma: a cDNA array differential

expression study. J Clin Pathol 59: 179–183.

44. Xu B, Zhou ZG, Li Y, Wang L, Yang L, et al. (2008) Clinicopathological

significance of caspase-8 and caspase-10 expression in rectal cancer. Oncology

74: 229–236.

45. Sharp PM, Shaw GM, Hahn BH (2005) Simian immunodeficiency virus

infection of chimpanzees. J Virol 79: 3891–3902.

46. Novembre FJ, Saucier M, Anderson DC, Klumpp SA, O’Neil SP, et al. (1997)

Development of AIDS in a chimpanzee infected with human immunodeficiency

virus type 1. J Virol 71: 4086–4091.

47. Silvestri G (2009) Immunity in natural SIV infections. J Intern Med 265:

97–109.

48. Keele BF, Jones JH, Terio KA, Estes JD, Rudicell RS, et al. (2009) Increased

mortality and AIDS-like immunopathology in wild chimpanzees infected with

SIVcpz. Nature 460: 515–519.

Evolution of Immune Responses in Primates

PLoS Genetics | www.plosgenetics.org 12 December 2010 | Volume 6 | Issue 12 | e1001249



49. Bajtay Z, Speth C, Erdei A, Dierich MP (2004) Cutting edge: productive HIV-1

infection of dendritic cells via complement receptor type 3 (CR3, CD11b/

CD18). J Immunol 173: 4775–4778.

50. Bouhlal H, Chomont N, Requena M, Nasreddine N, Saidi H, et al. (2007)

Opsonization of HIV with complement enhances infection of dendritic cells and

viral transfer to CD4 T cells in a CR3 and DC-SIGN-dependent manner.

J Immunol 178: 1086–1095.

51. Mbisa JL, Bu W, Pathak VK (2010) APOBEC3F and APOBEC3G inhibit HIV-

1 DNA integration by different mechanisms. J Virol 84: 5250–5259.

52. Ortiz M, Guex N, Patin E, Martin O, Xenarios I, et al. (2009) Evolutionary

trajectories of primate genes involved in HIV pathogenesis. Mol Biol Evol 26:

2865–2875.

53. Feldman AL, Costouros NG, Wang E, Qian M, Marincola FM, et al. (2002)

Advantages of mRNA amplification for microarray analysis. Biotechniques 33:

906–912, 914.

54. Polacek DC, Passerini AG, Shi C, Francesco NM, Manduchi E, et al. (2003)

Fidelity and enhanced sensitivity of differential transcription profiles following

linear amplification of nanogram amounts of endothelial mRNA. Physiol

Genomics 13: 147–156.
55. Benjamini Y HY (1995) Controlling the False Discovery Rate: a Practical and

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society B

57: 189–300.
56. Backes C, Keller A, Kuentzer J, Kneissl B, Comtesse N, et al. (2007)

GeneTrail—advanced gene set enrichment analysis. Nucleic Acids Res 35:
W186–192.

57. Ulitsky I, Maron-Katz A, Shavit S, Sagir D, Linhart C, et al. (2010) Expander:

from expression microarrays to networks and functions. Nat Protoc 5: 303–322.
58. Stone EA, Ayroles JF (2009) Modulated modularity clustering as an exploratory

tool for functional genomic inference. PLoS Genet 5: e1000479. doi:10.1371/
journal.pgen.1000479.

59. Fu W, Sanders-Beer BE, Katz KS, Maglott DR, Pruitt KD, et al. (2009) Human
immunodeficiency virus type 1, human protein interaction database at NCBI.

Nucleic Acids Res 37: D417–422.

60. Dong C, Davis RJ, Flavell RA (2002) MAP kinases in the immune response.
Annu Rev Immunol 20: 55–72.

Evolution of Immune Responses in Primates

PLoS Genetics | www.plosgenetics.org 13 December 2010 | Volume 6 | Issue 12 | e1001249


