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Abstract

The mechanisms determining persistence of hepatitis B
virus (HBV) infection and long-term pathogenesis of HBV-
associated liver disease appear to be multifactorial.
Although viral replication can be efficiently suppressed by
the antiviral treatments currently available, viral clearance
is generally not achieved since HBV has developed unique
replication strategies, enabling persistence of its genome
within the infected hepatocytes. Moreover, no direct anti-
viral therapy exists for the more than 15 million people
worldwide that are also coinfected with the hepatitis delta
virus (HDV), a defective virus that needs the HBV envelope
proteins for propagation. The limited availability of robust
HBV and HDV infection systems has hindered the under-
standing of the complex network of virus-virus and virus-
host interactions that are established in the course of
infection and slowed down progress in drug development.
Since chronic HBV/HDV coinfection leads to the most
severe form of chronic viral hepatitis, elucidation of the
molecular mechanisms regulating virus-host interplay and
pathogenesis are urgently needed. This article summarizes
the current knowledge regarding the interactions among
HBV, HDV, and the infected target cell and discusses the
dependence of HDV on HBV activity and possible future
therapeutic approaches.
© 2015 The Second Affiliated Hospital of Chongqing Med-
ical University. Published by XIA & HE Publishing Ltd. All
rights reserved.

Hepatitis B virus

About 2 billion people worldwide have been in contact with the
hepatitis B virus (HBV), and according to the latest estimation
of the World Health Organization (WHO), 240 million are
chronically infected with HBV. Every year around 780,000
people die due to the consequences of HBV infection.1 HBV
belongs to the hepadnaviridae family and is a human-specific
virus with a unique genome structure and replication cycle.2

Ten HBV genotypes have been described to date. Genotype A
is prevalent in Africa and Northwestern Europe, while geno-
types B and C are mainly found in Asia, Australia, and
New Zealand. Genotype D is predominant in Mediterranean
countries, the Middle East, Central Asia, and India. Genotype
E is restricted to West Africa, genotype F and H to Mexico and
South America, and genotype G to the United States and
France. In the United States, genotypes A, B, C, D, and G
have been found.3 Moreover, another genotype (I), was iso-
lated in Vietnam4 and Laos5 in 2008, and genotype J was
identified in Japan in 2009.6 However, due to the recent
increase in the number of travelers and migrants, the original
geographic distribution of the HBV genotypes cannot be
applied as strictly anymore, and significant changes in the
distribution will likely occur.

The circular HBV genome is approximately 3,200 base
pairs (bp) long and exists in infecting virions (Dane particles)
as a relaxed circular, partially double-stranded deoxyribonu-
cleic acid (rcDNA). It is covalently linked to the terminal
protein of the viral polymerase inside the nucleocapsid, which
is formed by the hepatitis B core antigen (HBcAg).7 The viral
envelope encloses the nucleocapsid and consists of a lipid
membrane and the hepatitis B surface antigens (HBsAg),
which exist in three different forms: small, medium, and
large.8 The sodium taurocholate cotransporting polypeptide
(NTCP), a multiple transmembrane transporter localized to
the basolateral membrane of highly differentiated primary
hepatocytes, was identified as the bona fide receptor that
permitted HBV and HDV entry into the hepatocytes.9 The
entry pathway following HBV binding to the cell membrane
has not been fully elucidated, but experimental evidence indi-
cated that HBV was involved in an endocytosis process, fol-
lowed by the release of the nucleocapsid from endocytic
vesicles. Previous studies also indicated that the viral
capsids were transported via microtubules to the nuclear
periphery,10 where capsid accumulation would facilitate inter-
actions with nuclear transport receptors and adaptor proteins
of the nuclear pore complex.11 Within the nuclear baskets,
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disintegration of the capsids shall permit the release of both
core capsid subunits and of the viral DNA polymerase com-
plexes into the nucleoplasm.12 Although the mechanisms
driving the formation of the covalently closed circular form
(cccDNA) remain largely unknown, the establishment of pro-
ductive HBV infection requires the removal of the covalently
attached viral polymerase and completion of the positive-
strand by the cellular replicative machinery to form the super-
coiled cccDNA molecule. This is then incorporated into the
host chromatin and serves as the template of viral transcrip-
tion and replication.13,14 Recent studies provided evidence
that HBV used cellular DNA repair enzymes to remove the P
protein and initiate cccDNA biogenesis.13,15,16 Using the cel-
lular transcriptional machinery, the cccDNA serves as a stable
template for the transcription of all viral ribonucleic acids
(RNAs) necessary for protein production and replication of
progeny viruses, which takes place in the cytoplasm after
reverse transcription of an over-length pregenomic RNA
(pgRNA). The stability of the cccDNA in hepatocyte nuclei
plays a crucial role in the persistence of HBV infection.17

Other viral proteins, which are generated within the replica-
tion cycle of HBV, are the HBeAg and the regulatory X protein.
HBeAg is a nonstructural protein that is excreted from the
infected hepatocyte into the blood and appears to act as a
decoy for the immune system.2 The function of the HBV X
antigen (HBxAg) is not completely understood, but it has
been shown to be essential for cccDNA transcription in vivo.18

The transmission of HBV occurs parenterally through
infected blood or body fluids. In high endemic areas, HBV
infection originates from transmission of an infected mother
to her child during birth (perinatal transmission), while in low
prevalence countries HBV is mainly transmitted through
unprotected sexual contact and needle sharing among drug
users.19 After an incubation time of 1 to 6 months, 2/3 of
cases will have an acute HBV infection without symptoms
(asymptomatic course), and 1/3 of patients will develop
unspecific symptoms, such as fatigue, weight-loss, anorexia,
and nausea, and progress to disease with liver specific symp-
toms (jaundice and liver failure). Approximately 90% of acute
infections in adults resolve spontaneously with the develop-
ment of long-lasting immunity,20 while the remaining 10%
develop a chronic HBV infection that over years is frequently
associated with liver inflammation, leading to cirrhosis and
increases in the incidence of hepatocellular carcinoma
(HCC).21 Moreover, 90% of children infected before 1 year
of age develop a chronic HBV infection.22 Approved therapeu-
tic agents that decrease the morbidity and mortality of a
chronic HBV infection are pegylated interferon-a and nucleo-
side/nucleotide analogues (NUCs). Although a seroconver-
sion of HBeAg and serum HBV DNA levels below the lower
limit of detection might be achieved with current therapeu-
tics, a loss of HBsAg is rarely observed, and the complete
eradication of the infection seems to be not possible.

Interferon-a acts both by modulating the immune system
(through stimulation of interferon stimulated genes (ISGs)
and modulation of natural killer (NK) cells)23–25 and by
inducing direct antiviral effects, including epigenetic sup-
pression of cccDNA transcription.26 NUCs (e.g. lamivudine,
adefovir, and entecavir) inhibit the HBV polymerase27 but
do not influence cccDNA-driven RNA transcription. Conse-
quently, subgenomic RNAs coding for the envelope proteins,
which are mostly secreted as subviral particles, are still pro-
duced, explaining why significant HBsAg reduction and sero-
conversion are rarely achieved with NUC-based

treatments.28 Thus, novel therapies considering alternative
antiviral targets and aiming to achieve a functional HBV cure
are urgently needed. Among the new candidate drugs target-
ing steps of the viral life cycle distinct from HBV replication,
Myrcludex-B, which is a myristoylated synthetic peptide
binding NTCP and inhibiting viral attachment and entry,
was shown to block efficiently the establishment of HBV
infection and to hinder intrahepatic cccDNA accumulation in
the spreading phase of infection both in vitro and in vivo,
using humanized mice.29,30 The use of drugs efficiently pro-
tecting the hepatocytes from reinfection may represent an
interesting therapeutic approach, since it could contribute to
lower intrahepatic viral loads when used in combination with
agents that aim to reduce not only HBV replication but to
promote cccDNA destabilization and/or restoration of
immune responses.

Hepatitis Delta virus

The hepatitis delta virus (HDV) was discovered in 1977 by
Marcus Rizzetto.31 The outbreak, which started in Italy, has
been brought under control in industrialized countries during
the past 20 years.32,33 Nevertheless, still more than 15
million people worldwide are estimated to be chronically
infected with HDV,34 especially in developing continents like
Asia and Africa where HDV infections remain a major health
problem.35 Three major genotypes with highly variable
sequences, which were further subdivided into eight HDV
clades, have been reported.36 However, this classification
was lately revised to group HDV subtypes into eight geno-
types.37 With the exception of genotype 1, which is the
most frequent one and diffused worldwide, the other geno-
types appear to be restricted to certain geographical areas:
HDV-2 and 4 are mostly found in the Far East and Russia;
HDV-3, which has been associated with the most severe
form of chronic hepatitis, is mostly observed in the northern
parts of South America in the Amazonian region; while gen-
otypes 5, 6, 7, and 8 are generally found in Africa or African
migrants.38

The hepatitis delta virion is the smallest RNA pathogen
known to interact with a human host and to cause substantial
global morbidity and mortality. The inner nucleocapsid of the
virus contains a 1,679 nucleotide long, single-stranded,
circular RNA (genomic HDV RNA) and around 200 molecules
of hepatitis delta antigen (HDAg), which is the only known
protein encoded by the HDV RNA. Within the hepatocyte,
replication leads to the accumulation of three HDV RNAs: the
circular genomic RNA, the antigenomic RNA, and a smaller
linear mRNA, which is the template for the translation of
HDAg. HDV uses a so-called rolling cycle amplification mech-
anism and the host RNA polymerase II to transform the
genomic HDV RNA into its exact complementary form, the
antigenomic HDV RNA and then into new viral genomes.39,40

A unique open reading frame on the antigenomic HDV RNA
leads to the synthesis of the HDAg, which occurs in two differ-
ent forms: small HDAg and large HDAg.41 The small HDAg
(24 kDa) is important for virus replication, whereas the
large form (27 kDa) inhibits replication and leads to virion
assembly.42,43 HDV is a defective virus, whose genome is
surrounded by three HBV envelope proteins and host lipids
(Fig. 1).44 HBV plays an essential role as a helper virus for
HDV, since its envelope proteins are stringently necessary for
HDV propagation.45 Therefore, the release of hepatitis delta
virions from the infected hepatocytes can only occur if the
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cells are coinfected with HBV or when HDV super-infection
occurs in individuals already infected with HBV.

By sharing the same viral envelope (HBV viral proteins),
HDV is also transmitted parenterally through infected blood or
body fluids. Notably, HBV/HDV coinfections often cause more
severe symptoms than HBV monoinfections. An acute coin-
fection emerges after an incubation time of 3 to 7 weeks and
can either take an asymptomatic course, show several non-
specific symptoms (like fatigue, lethargy, anorexia, and
nausea), or result in acute liver failure.46 In the setting of
an HDV super-infection, up to 80% of the patients show a
chronic course of disease, which is associated with liver
inflammation, fibrosis, and decompensated liver cirrhosis. It
is known that a super-infection with HDV and high HDV
viremia levels increase the risk for a rapid progression to
cirrhosis and HCC in comparison to an infection with HBV
alone.39,47 In contrast, an HBV/HDV coinfection mostly
occurs as an acute, self-limited infection and leads in less
than 5% to a chronic manifestation.48 Since HBV vaccine is
directed against the same envelope proteins that are used by
HDV, vaccination against HBV also protects against HDV infec-
tions in individuals who are not already HBV-infected.
Unfortunately, therapy options for HDV are very limited.
There is no HDV-specific treatment, and currently the only
approved drug is pegylated interferon-a, which leads to
unsatisfactory outcomes in HDV infected individuals. Different
clinical trials revealed that sustained virological responses
were achieved only in approximately 30% of HDV infected
patients at the end of follow-up,49–51 demonstrating recru-
descence of HDV after treatment discontinuation. Due to its
simplicity in structure and lack of producing its own polymer-
ase, HDV offers much fewer targets than other viruses and
common HBV therapeutics cannot directly target HDV infec-
tion. Unfortunately, only a minority of patients treated with
interferon clear HDV infection. Since HDV does not use a
viral polymerase for replication, potent NUCs efficiently sup-
pressing HBV reverse transcription do not show beneficial
effects against HDV infection.52–54 Also ribavirin, which in
combination with interferon was successfully used in chronic
hepatitis C virus (HCV) infections and was reported to have
activity against HDV based upon in vitro studies,55 appeared
ineffective for the treatment of HDV infected patients.56 Very
few new therapeutic approaches exist. Myrcludex-B is a
promising entry inhibitor not only in HBV but also in HDV
infections.57 An alternative to interferon-a might be treat-
ment with interferon-l, which appears to cause fewer side

effects since its specific cellular receptor is restricted to cells
of epithelial origin.58 A previous study revealed that prenyla-
tion of the large HDAg is essential for virus assembly and
release and that prenylation inhibitors are able to decrease
HDV RNA levels in vivo.59 Thus, the development of efficient
therapeutic approaches, which directly target HDV replica-
tion, is urgently needed.

Interactions between HBV and HDV: in vitro, in vivo,
and clinical studies

Since HDV requires the envelope proteins of HBV (HBsAg) for
its assembly and release, a productive HDV infection, leading
to the release of progeny viruses, exclusively occurs in the
presence of HBV. It is thus plausible that both viruses have
to interact with each other at different stages of their
replication cycles. However, knowledge about the exact inter-
play between both viruses and to what extent HDV may
influence HBV life cycle remains limited.

One of the first studies to address these questions was
published in 1989, when direct inoculation of HDV genomes
into the liver of an HBV infected chimpanzee showed transient
HBV reduction during the acute phase of HDV infection.60 In
1990, Wu et al. cotransfected a human hepatoma cell line
with plasmids coding for HBV and HDV genomes and found
that HBV RNA transcriptional levels were dramatically sup-
pressed in comparison to cells that were transfected with an
HBV plasmid alone. Since a similar suppression of HBV RNAs
(9- to 17-fold) and released HBV virions (9-fold) was also
detected when these cells were cotransfected with an HBV
plasmid and a plasmid expressing only the HDAg, Wu et al.
concluded that the HBV RNA suppression must be mediated
by the HDAg.61 Interestingly, the levels of genomic and anti-
genomic HDV RNA produced in vitro were not affected by the
presence of HBV, suggesting that HBV had no influence on
HDV replication.61

Studies performed in mice harboring human livers
(urokinase-type plasminogen activator (UPA)/severe com-
bined immune deficiency (SCID)/beige mice (USB mice))
that were first stably infected with HBV and then super-
infected with HDV, demonstrated a 0.6 log reduction of HBV
viremia. In addition, the development of HBV viremia and
intrahepatic cccDNA loads in humanized mice appeared to be
delayed in the setting of HBV/HDV coinfection and in compar-
ison to virological parameters obtained in HBV monoinfected

Fig. 1. HBV as a helper virus for HDV. Hepatitis B virus (HBV) shares its small, medium, and large hepatitis B surface antigens (HBsAg) with hepatitis D virus (HDV).
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animals. Taken together, these findings indicated that HDV
may hinder HBV replication.57

The observation that HDV can suppress HBV in the setting
of a co- or super-infection was also made in several retro-
spective patient studies.62–66 In 1991, Sagnelli et al. inves-
tigated 171 patients chronically infected with HBV, who were
HDAg-positive (n=31), HDAg-negative but antiHDAg-positive
(n=54), or did not show any signs of present or past HDV
infection (n=86). Intrahepatic HBcAg was detected in 50%
of the HBV monoinfected cohort, while only 6% of the
HDAg-positive and 13% of the antiHDAg-positive patients
had HBcAg-positive hepatocytes.66 Nevertheless, Colombo
et al. described that hepatic inflammation was rather related
to HBcAg levels in the liver of HBV infected individuals. Since
such inflammation appeared to be independent of HDV super-
infection, the study suggested that the levels of HBV replica-
tion, rather than HDV activity, might play a predominant role
in causing liver damage among HBV/HDV infected indivi-
duals.63 However, controversial data exist about the ability
of HDV to suppress HCV in the setting of HBV/HCV/HDV
triple-infection. For instance, in a recent clinical study, Jardi
et al. analyzed HBV/HDV coinfected, HBV/HCV/HDV triple-
infected, as well as HBV and HCV monoinfected individuals
and found that HDV appeared to suppress both HBV and
HCV viremia, though HCV replication was reduced to a
greater extent than HBV.67 Moreover, Heidrich et al. investi-
gated virological patterns in a cohort of 258 HDV infected
patients from Central Europe and showed that HDV infection
was associated with suppression of both HBV and HCV repli-
cation.68 In contrast, HBV DNA and HCV RNA levels did not
seem to influence HDV replication in that patient cohort, and
mean HBsAg levels did not significantly differ between HBV
monoinfected and HBV/HDV coinfected patients.68 While
Eyster et al. and Mathurin et al. also supported the observa-
tion that HDV predominated HCV in triple-infected patients by
failing to detect serum HCV RNA and markers of HBV replica-
tion in most of the patients,69,70 Liaw et al. showed that HCV
is the dominant virus in triple infected patients in Asia.71

Since these studies were conducted in different patient pop-
ulations, the discrepancies suggested that patient polymor-
phisms, viral genotype varieties, as well as environmental
factors add complexity and have to be taken into account,
since all these factors may strongly influence virus-virus
interactions and the clinical outcome of the infection.
Although infection with HDV is frequently associated with a
more severe disease course compared to other hepatitis
virus infections, different HDV genotypes have been associ-
ated with different clinical manifestations. For example, HDV
genotype 3 is considered to cause a more fulminant hepatitis
than genotypes 2 and 4, while patients infected with HDV
genotype 1 can develop a wide range of severity.72 Clini-
cal73,74 and in vitro observations75 demonstrated that
various combinations with different HBV genotypes are pos-
sible and that some HBV strains seem to favor HDV assembly
and improve HDV infectivity;75 factors that might also influ-
ence clinical manifestations. In contrast, Shih et al. did not
find a positive correlation between replication and assembly
capacities of HDV in relation to distinct HBV genotypes, thus
questioning the impact of different HBV genotypes on clinical
outcomes of HDV infections.76

To investigate the interplay of HBV and HDV during the
course of coinfection, an interesting longitudinal study was
published by Schaper et al. in 2010, where HBV and HDV
replicative activities were evaluated for up to 8 years in 25

chronically HBV/HDV coinfected patients.77 Interestingly,
seven different replication profiles were observed in these
patients. 20% of the coinfected individuals showed a
persistent activity of HDV in the absence of HBV activity;
12% demonstrated a persistent activity of both viruses,
while another 12% showed persistent HBV activity in the
absence of HDV replication. The remaining 56% of patients
showed a fluctuating activity of both viruses (24%) or of one
of the two viruses (32%). HDV was dominant in most of the
patients observed (60%), but a predominance of HBV (16%)
or none of the two viruses was also determined in a remark-
able number of coinfected individuals (24%).77

What we should learn from the results obtained from these
different cross-sectional and longitudinal clinical studies is
that HDV seemed to be able to suppress HBV and HCV at
certain time points in the course of concomitant infection.
Since multiple virological and host-related events (i.e. viral
genotypes, immune state, and environmental factors) may
affect viremia levels, HDV cannot generally and necessarily
be considered the predominant virus in all HBV/HDV coin-
fected patients based on a single determination.78

Interactions between HBV and HDV: role of the HBsAg

During the replication cycle of HDV, the surface proteins of
HBV specifically interact with the HDAg at the endoplasmic
reticulum (ER) of the infected cells and, hence, are essential
for HDV assembly.79 The detection of HBsAg in serum is not
only a fundamental diagnostic marker of HBV infection, but it
may also be a promising prognostic marker during the natural
history of chronic HBV infection and antiviral therapy.80 The
natural history of chronic HBV (CHB), in general, is regarded
to consist of four phases: immune tolerant phase, HBeAg-
positive chronic hepatitis (immune clearance), immune
control (with low or nonreplicative HBV), and HBeAg negative
hepatitis (immune escape). These phases have been identi-
fied on the basis of specific biochemical, serological, and
virological characteristics, including serum alanine amino-
transferase (ALT) levels, HBeAg status, viremia, and HBsAg
levels.81 In the acute and early stages of CHB monoinfection
(immune tolerant phase), HBsAg often correlates with serum
HBV DNA levels in infected patients.82 Moreover, HBsAg levels
can vary among HBV genotypes as well as fluctuate over the
years.83,84 Jaroszewicz et al. investigated 226 HBV monoin-
fected individuals at different phases of chronic infection and
detected no or weak correlations between HBsAg and
viremia, indicating that HBsAg production and HBV DNA rep-
lication can differ at later time points of CHB (i.e. during
immune clearance and control).80 This could be due to the
accumulation of HBV DNA integrations that may provide a
separate template for HBsAg production, the emergence of
variants (where HBeAg-negative variants are the most fre-
quently found), or immune-mediated factors, including cyto-
kines, which affect cccDNA transcription.78 On the other
hand, Volz et al. found that serum HBsAg levels were signifi-
cantly lower in HBeAg-negative individuals and that lower
intrahepatic cccDNA levels correlated with lower HBsAg con-
centrations in serum.83

Cross-sectional studies showed in HBV/HDV coinfections
that HBsAg levels were usually high, despite lower levels of
HBV viremia.85 Moreover, Shih et al. found a positive correla-
tion between HDV productivity and expression levels of
HBsAg but not with HBV DNA levels or HBV genotypes.76 In
contrast, a longitudinal study performed by Schaper et al.
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demonstrated that levels of circulating HBsAg in HBV/HDV
coinfected patients showed significant fluctuating profiles,
suggesting that HDV may be directly responsible for the
HBsAg flares.77 However, contrary to the earlier cross-sec-
tional studies, this study failed to detect a positive correlation
between HBsAg levels and amounts of HDV RNA.77 It should
be noted that these clinical observations are not supported by
experimental evidence, and a complex interplay of virological
and host factors may be involved. At present, it can be only
hypothesized that HBV viremia and HBsAg fluctuations reflect
in part a specific suppression of the HBV replication pathway,
which could occur, for instance, by sequestering the envelope
proteins needed for HBV release or by differentially affecting
distinct HBV promoters. Future studies using well controlled
experimental systems will be needed to address these
hypotheses.

Infectious HDV particles can enter and replicate within a
hepatocyte in the absence of HBV, since these steps only need
the presence of host factors and enzymes.86 The coexistence
of both viruses, and in particular the HBV envelope proteins,
in the same hepatocyte is necessary for HDV packaging and
release.87 Recently, several studies have attempted to reveal
at a molecular level the role of HBsAg in HDV infection. While
the large envelope protein has been shown to bind specifically
to the cellular receptor NTCP9 and, thus, be essential for HBV
and HDV infectivity,72,88 the presence of the small envelope
protein appears to be sufficient for HDV packaging and
release.87

The HDAgs are predominant in the nucleus of the infected
hepatocyte89 but can be post-translationally modified (e.g.

acetylation, isoprenylation, and phosphorylation).90 Isopreny-
lation of the large HDAg was shown to lead to its translocation
to the ER,91 where it promoted HDV assembly by directly inter-
acting with the small HBsAg (Table 1).92,93 Changes in certain
tryptophan-rich motifs in the carboxyl terminus of the small
envelope protein of HBV79 and within other distinct HBV
envelope protein regions92 were shown to affect such protein-
protein interactions and negatively influence the assembly
capacities of HDV. Hence, the emergence of HBV and/or HDV
variants may also explain the fluctuating activities of HDV
observed in the longitudinal study by Schaper et al.77

Huang et al. suggested that accumulation in the ER of all
three HBV envelope proteins, especially of the large HBsAg,
may increase the translocation of the large HDAg from the
nucleus to the ER. This process, however, not only mediated
HDV packaging but also caused ER stress.94 Treatment of
human hepatoma cells with two different ER stress inducers,
brefeldin A and tunicamycin, was shown to promote the trans-
location of the large HDAg in the absence of HBsAg, at least in
some cells (9%). During the same in vitro experiments, the
HBsAg-induced translocation of the large HDAg was accom-
panied by an increase in nuclear nuclear factor kappa B
(NFkB) activity, while inhibition of nuclear NFkB was shown
to retain the large HDAg in the nucleus. In agreement with
these observations, NFkB activation induced by tumor
necrosis factor alpha (TNF-a) strongly promoted HDAg trans-
location in 50% of the cells, suggesting that ER stress and
NFkB play an import role in the interaction of HBV and HDV
during the stage of HDV assembly (Table 1).94

Table 1. Interaction between HBV, HDV, and the infected target cell

Interaction Effect Reference

HDV-HBV interaction

L-HDAg 4 S-HBsAg HDV assembly 92, 93

S/L-HDAg 4 HBV enhancers Enh1/2 HBV suppression 97

HDV-interaction with host factors

L-HDAg 4 DNA dependent RNA-polymerase II HBV suppression 96

L-HDAg 4 genes of SRE-dependent pathway HBV suppression 95

S/L-HDAg 4 MxA Induction innate immune responses,
HBV suppression

97

HDV 4 ISGs, signaling genes, cytokines Induction innate immune responses,
HBV suppression

107

HBV-interaction with host factors

HBsAg 4 NFkB, TNF-a, ER-stress pathway Translocation of HDV from nucleus to
ER, HDV assembly

94

HBsAg 4 TLR signaling Suppression TLR signaling 110, 111

HBeAg 4 TLR2 Impairment innate immune
responses

109

HBV 4 cellular DNA methyltransferases Epigenetic modifications 115, 116

HBx protein 4 innate signaling pathways Impairment innate immune
responses

117

HBV 4 STAT translocation Impairment IFN signaling 112, 113
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Interactions between HBV and HDV: role of the HDAg

Small and large HDAgs are not only involved in HDV repli-
cation and packaging, respectively, but they also appear to
interact with HBsAg on an indirect molecular level, whereby
they may be able to influence HBV replication.95–97

The large HDAg is known to be involved in HDV pack-
aging by directly binding HBV surface proteins through its
hydrophobic packaging signal98 and its hydrophobic farne-
sylated C-terminal domain,99 while the small HDAg binds to
the HDV RNA and promotes HDV replication. An in vitro
study by Wang et al. suggested that this HDAg-HDV RNA
ribonucleoprotein complex also enhanced efficacy of HDV
assembly, probably because the interaction between the
large HDAg and HDV RNA was increased in the presence
of the small HDAg (due to additional binding sites).43

Indirect molecular interactions between HDAg and HBV
were described by Modahl et al. in 2000, who suggested
that the suppressive effect of HDV on HBV replication
could be mediated by the large HDAg, which might inhibit
not only the replication of HDV but also the transcription of
the cccDNA by interacting with the host DNA-dependant
RNA polymerase II.96 Investigation of the interplay
between HBV and HDV in a hepatoma cell line cotransfec-
tion model suggested that both the small and large HDAg
were able to repress the two HBV enhancers, termed Enh1
and Enh2.97 Of note, the same study also indicated that the
large HDAg can activate the MxA promoter, thereby poten-
tiating the effect of interferon-a on this cellular promoter.
Moreover, the same study also suggested that HBV replica-
tion may be then inhibited by the antiviral activity of the
interferon-a inducible MxA protein.97 Goto et al. showed
that the HBxAg and the large HDAg can synergistically acti-
vate the serum response element (SRE)–dependent
pathway, which is involved in the expression of various
genes that regulate cell growth, differentiation, and trans-
formation. The synergistic induction of pathways involved in
carcinogenesis95 could in part explain the more severe
course of HDV associated liver disease and why HBV/HDV
coinfected patients developing primary HCC are usually
younger than HBV monoinfected individuals.100 Also Wei
and Ganem used an in vitro approach to show that the
large, but not the small HDAg, has the capacity to activate
heterologous gene expression by acting on a variety of pro-
moters, including the pre-S, S, and C promoters of HBV.101

In summary, several possible interactions between HBV
and HDV have been highlighted (Table 1). Many in vitro and
in vivo studies, as well as clinical observations, have indi-
cated that HDV is able to suppress the replication of HBV at
certain time points of the coinfection. In this regard, the
large HDAg seems to play a major role in mediating HBV
suppression. Moreover, the fact that HBV surface antigens
can mediate and increase HDV assembly92,93 demonstrates
the dependence of HDV on HBV as its helper virus and
underscores the necessity of HDV to maintain HBV surface
protein productivity. Although different interacting mecha-
nisms have been suggested, further studies are needed to
understand the impact of specific virus-virus interactions in
the course of chronic infection, while a better understanding
of the complex HBV/HDV interplay might even help identify
new therapeutic strategies to cure chronic HBV and HDV
infections.

Interactions between HBV/HDV and human
hepatocytes

Because there are only a few models available to study
chronic infections with HBV and HDV in human hepatocytes,
and biopsies of infected patients are rarely available, knowl-
edge about interactions between HBV and HDV and the
infected hepatocytes is scant.

While HBV is regarded as a virus that under most con-
ditions is not directly cytopathic to infected hepatocytes, data
from chimpanzees and specific clinical cases suggested direct
cytopathic effects of HDV on hepatocytes,102–104 particularly
in the acute hepatitis setting.105 In comparison to HBV, HDV
generally shows a more severe clinical course. Experimental
studies in chimpanzees,106 humanized mice,107 and recent
patient observations108 have indicated that HBV does not
induce a strong activation of the innate immune system or
interferon stimulated genes (ISGs) in the acute and chronic
status of infection.

Moreover, different lines of evidence indicated that HBV was
able to circumvent the induction of immune responses of the
host by several mechanisms.2 Both experimental studies109

and observations in chronic HBV infected patients110,111 indi-
cated that the activation of toll-like receptor signaling mole-
cules is impaired, while studies in vitro112 and in human liver
chimeric mice showed113 that HBV can limit the interferon
alpha mediated nuclear translocation of signal transducer and
activator of transcription (STAT) (Table 1). In vitro studies also
reported that HBV can interfere with STAT methylation114 and
activity of cellular DNA methyltransferases,115,116 while HBV
proteins, such as HBx protein, were shown to affect innate
immunity pathways by downregulating mitochondrial antiviral
signaling proteins (Table 1).117

In humanized mice, establishment of a stable HBV/HDV
coinfection was shown to provoke a significant and sustained
enhancement of the innate defense mechanisms in human
hepatocytes compared to HBV infected animals.107 Classic
human ISGs and broadly acting effectors of the innate anti-
viral responses, such as Rig-I as well as STAT transcription
factors, which are key signaling molecules that can be acti-
vated through direct viral actions,118 were significantly higher
in the setting of a chronic HDV infection.107 Also, the expres-
sion of genes involved in antigen presentation and in recog-
nition of infected cells by NK cells (e.g. hHLA-E, and hTAP1)
was significantly increased compared to uninfected and HBV
monoinfected mice.107 This strong antiviral state caused by
HDV observed in this study could also affect HBV replication in
coinfected livers (Table 1) and, hence, may in part explain the
lower levels of HBV infection, which were frequently found in
experimental approaches and in HBV/HDV coinfected
patients.62–66

Interactions between HBV/HDV and the immune
system of the host

HBV persistence is also associated with defective T cell
responses characterized by suppression, dysfunction, and
exhaustion of HBV-specific T cells, which appears to be
provoked by dysregulation of costimulatory pathways,
impairment of T cell receptor signaling, and enhanced T cell
apoptosis.119 However, HDV infected patients advance more
rapidly in their disease than patients infected with HBV or
HCV,34 and clinical observations indicated that the liver
damage associated with chronic HDV infection and the
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severe course of infection seemed mainly to be immune-
mediated. The small HDAg is thought to be responsible for
the direct cytopathic effect on human hepatocytes, while the
large HDAg seems to be noncytotoxic but promotes the per-
sistence of HDV and may make hepatocytes susceptible to
immune-mediated damage.39,102 Although both innate and
adaptive immune responses are believed to contribute to
the pathogenesis of an HDV infection, detailed host immune
responses in HDV infection are poorly investigated to date.39

One very early study suggested that NK cells were activated
upon interferon treatment in HDV infected individuals.120

A more recent analysis in HDV infected patients revealed ele-
vated levels of peripheral blood NK cells with a reduced func-
tional capacity in their ability to respond to interferon-a
treatment compared to healthy donors. A high frequency of
NK cells before and during interferon treatment was positively
associated with treatment outcome.121 Moreover, in vitro
experiments showed that the large HDAg might be able to
activate STAT3 and NF-kB signaling97,122 and that HDV inter-
fered with interferon-a signaling by blocking the activation
and translocation of STAT proteins, thereby contributing to
the persistence of HDV and impairing therapy outcomes.123

It was also suggested that this activation of STAT3 and NF-kB
signaling by the large HDAg not only caused ER stress and
necroinflammation but also increased the production of reac-
tive oxygen species (ROS), possibly leading to the develop-
ment of HCC.39 In this regard, HDAg-induced STAT3 seemed
to be able to activate DNA methyltransferases, which are
known to silence tumor suppressor genes and lead to the
development of HCC. Furthermore, HCC is often associated
with an overexpression of clusterin. Interestingly, the large
HDAg was shown to increase histone H3 acetylation of clus-
terin promoters and cell survival potential.39

Adaptive immune responses in HDV infections are, in
general, weak.121 In chronic HDV infected patients, responses
of helper T cells are associated with a high frequency of
secreting interleukin-10, which has immunomodulatory
effects and inhibits interferon pathways.124 In addition, per-
forin-positive cytotoxic CD4+ T cells, which are linked with
killing infected cells, accumulated in chronically infected
patients, and this might explain the more severe course of
HDV associated liver diseases.125 CD8+ T cell responses
seemed to be weaker and were only detected in patients
with past, but not active, HDV infections.126 Impaired T cell
responses observed in the setting of a chronic HBV/HDV coin-
fection occurred possibly due to the presence of HBV and its
association with defective T cells responses. Since the activa-
tion of immune cells appeared to be limited in chronically HDV
infected patients, it seems plausible that HDV exerts most of
its effects in the liver itself, where the virus can mediate intra-
cellular changes and can initiate inflammatory pathways.

Conclusions

The fluctuating virus profiles observed in HBV/HDV coinfected
patients clearly show that the course of infection can be highly
dynamic. Moreover, in vitro and in vivo experiments indicated
that HDV is able to suppress HBV and even HCV replica-
tion.57,61–70 As a consequence, HDV often appears as the pre-
dominant virus in coinfected individuals.77 In this regard,
in vitro studies indicated that both the small and large HDAg
proteins can be responsible for the reduction of HBV activity,
since interactions of these proteins with host polymerases
and HBV enhancers, as well as the induction of antiviral

ISGs and genes involved in cell growth and differentiation,
have been described.95–97 In vivo HBV/HDV coinfection of
human hepatocytes was also shown to upregulate antiviral
ISGs, signal molecules of innate immune response cascades,
and cytokines more greatly than HBV alone.107 Such
proinflammatory status may explain the more severe course
of disease in HDV infected patients. Since HBV acts as a helper
virus by supplying its envelope proteins to HDV, productive
HDV infections are strongly dependent on the expression of
HBV envelope proteins. It is thus not surprising that, at least
in certain phases of the infection, the levels of circulating
HBsAg correlate with HDV RNA levels.76,77 In vitro studies
also proposed that HBsAg promotes nuclear export of the
large HDAg and HDV assembly by inducing ER stress, nuclear
NFkB translocation, and TNF-a production; thus pointing out
the existence of complex cross-talk among HBV, HDV, and
the infected cell.72,94 Cell-mediated prenylation of the large
HDAg is also important for the efficient translocation and
assembly of HDV.91–93 Since this step appears to be crucial in
the HDV life cycle, prenylation inhibitors, such as lonafarnib,
are currently being tested in clinical studies. The use of HBsAg
inhibitors may also represent an interesting approach for tar-
geting HDV assembly, since a strong decrease of HBsAg levels
is expected to affect the amounts of circulating delta virions.

The availability of innovative experimental systems and
techniques, which allow for more sensitive molecular analy-
ses of these viruses and of the host, has begun to provide new
insight into the complex network of virus-host interactions
that are established in the course of viral hepatitis infection
and therapy. Nevertheless, because of the limitations encoun-
tered by using any experimental model, studies based on
human blood and liver biopsy samples remain indispensable
to gain insights about the pathobiology of HBV and HBV/HDV
infection and for the development of effective HBV/HDV
therapies that will permit achievement of a functional
HBV cure and HDV eradication.
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