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Abstract

We describe a supervised prediction method for diagnosis of acute myeloid leukemia (AML) from patient samples based on
flow cytometry measurements. We use a data driven approach with machine learning methods to train a computational
model that takes in flow cytometry measurements from a single patient and gives a confidence score of the patient being
AML-positive. Our solution is based on an ‘1 regularized logistic regression model that aggregates AML test statistics
calculated from individual test tubes with different cell populations and fluorescent markers. The model construction is
entirely data driven and no prior biological knowledge is used. The described solution scored a 100% classification accuracy
in the DREAM6/FlowCAP2 Molecular Classification of Acute Myeloid Leukaemia Challenge against a golden standard
consisting of 20 AML-positive and 160 healthy patients. Here we perform a more extensive validation of the prediction
model performance and further improve and simplify our original method showing that statistically equal results can be
obtained by using simple average marker intensities as features in the logistic regression model. In addition to the logistic
regression based model, we also present other classification models and compare their performance quantitatively. The key
benefit in our prediction method compared to other solutions with similar performance is that our model only uses a small
fraction of the flow cytometry measurements making our solution highly economical.
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Introduction

Leukemias are a common malignancy of blood cells emerging

from different cell types [1]. For example, acute myeloid leukemia

(AML), which is the focus of this work, emerges during myeloid

differentiation. However, the traditional classification of leukemias

relies predominantly on morphologic and cytochemical features of

the tumor cells rather than the developmental origin of the

malignancy [2].

Blood cancers are diagnosed with various techniques including

features from morphologic, cytochemic, cytogenetic, and flow

cytometry. While morphologic, cytochemic, and cytogenetic

analysis include standard pathological stainings that lead to low

dimensional data that can typically be interpreted directly under

microscope, analysis of flow cytometric data includes interpreta-

tion of more complex high dimensional data distributions and,

thus, computer assisted decision systems are needed to support

diagnosis decision making. [3].

Flow cytometry can be used to analyze a large number of

individual cells and, thus, is well suited to detect, e.g., cells that

express particular cancer related surface markers from blood

samples. In the measurement process, cells are labeled with

fluorescent dye. The dye can be delivered, e.g., by specific antigen

binding antibodies. Fluorescent labeled cells are guided through a

laser beam and the resulting fluorescence and scatter parameters,

typically forward and side scatter, are detected by photo detector.

Forward scatter is informative of the cell size and side scatter

corresponds to cell granularity. These control measures are used to

make sure the data from different experiments are comparable by

‘‘gating’’ or selecting the cells with corresponding features for

subsequent analysis. With modern instruments several lasers and

dyes with different wave lengths can be used and, thus, multiple

measurements can be done from a single cell in parallel. [3,4].

In this paper, we introduce a supervised prediction method for

diagnosis of AML from flow cytometry data. Our prediction

model is data driven in the sense that no prior biological

knowledge is used in the model construction, e.g., in feature

selection. There are two stages in the processing: First, for each

individual flow cytometry tube with a different combination of

measured fluorescence markers, a feature generation and dimen-

sion reduction steps are applied after which a probability density

model is learned from the training data for both AML-positive and

healthy patients. Second, error scores calculated between the test

patient’s distribution and the learned distributions from each tube

are aggregated by a logistic regression model that predicts the final

confidence score of the patient being AML-positive. The

parameters of the logistic regression model are estimated from

the training data using ‘1 regularization, which works as an

embedded feature selector and results in a sparse model where

only a part of the tubes are needed in making the diagnosis. The

feature selection is our key contribution: Our prediction model

requires significantly fewer measurements than the alternative

approaches.

The prediction model presented in this paper is based on our

submission to the DREAM6/FlowCAP2 Molecular Classification

of Acute Myeloid Leukaemia Challenge (DREAM6 AML

Challenge) held in conjunction with the Dialogue for Reverse

Engineering Assessments and Methods (DREAM6) conference
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organized in 2011. In the challenge evaluation, 8 of the 17

participating teams, including our solution, achieved 100%

prediction result in terms of ranking based error metrics (e.g.,

precision and recall) when tested against the hidden test data

consisting of measurements from 20 AML-positive and 160

healthy patients. Other well performing models were based, e.g.,

on Kullback-Leibler divergence based distance between histogram

estimated densities (http://www.ehu.es/biologiacomputacional/

team21_vilar) and Learning Vector Quantization (LVQ) with moment

based features by Biehl et al. [5]. Further description about the

challenge results and joint algorithm descriptions from the

participating teams is published in [6].

The fact that about half of the participating teams achieved a

perfect result suggests that the challenge test data was not

particularly difficult to classify. However, the training data contains

a couple of ‘‘difficult patients’’ that were misclassified by many

teams. This works as a motivation for this paper, where we

combine the challenge training and test sets and their golden

standards to get a larger set of 43 AML-positive and 316 healthy

patients. Moreover, due to the high accuracy of several methods,

we will concentrate on finding the simplest model that is able to reach

a comparable performance. The classifiers are compared using

cross-validation (CV) with area (AUC) under the operating

characteristics (ROC) curve and the precision-recall (PR) curve

as well as confusion matrices.

The performance of our predictor is compared against the

methods by Vilar and by Biehl et al. [5]. Both solutions achieved a

100% prediction accuracy in the DREAM6 AML Challenge.

Further, Vilar had the highest correlation between the predictor

output and the ground truth. Notice that the Pearson correlation

used in the challenge evaluation is not a very good evaluation

metric (although probably the only applicable one in the

challenge) because it depends, e.g., on the link function of the

prediction model, which is irrelevant from the classification point

of view.

Further in this paper, an improved prediction method is

proposed that simplifies our original method without decreasing its

performance. In addition, we apply a simple linear discriminant

analysis (LDA) on the average intensities of each fluorescent

marker and use it as a baseline reference method. Finally, we use

all the data for training and analyze the created model revealing

useful information from the viewpoint of medical AML diagnosis.

Especially the coefficients of the sparse logistic regression model

are inspected in order to find out, which of the flow cytometry

tubes and markers are actually needed in the diagnosis and which

can be discarded.

Materials and Methods

The following sections give a description of the flow cytometry

data that we use in the experiments. In addition, we give a brief

overview and a block diagram of the method that we use to

automatically diagnose AML followed by a detailed algorithm

description. Finally, we introduce the other models, which we use

for comparison in the experiments.

Flow Cytometry Data
We use the DREAM6 AML prediction challenge data set which

is available at the challenge website (http://www.the-dream-

project.org/challenges). The data set consists of flow cytometry

measurements taken from 43 AML-positive and 316 AML-

negative patients. The original challenge training set is a subset

of these consisting of 179 patients (23 AML-positive and 156

healthy ones).

Flow cytometry is used for quantification of expression of

different protein markers in the patient’s blood or bone marrow

sample. A limited number of protein markers can be measured for

cells in one sample tube (aliquot). The challenge data contains

seven tubes containing 6764 to 49370 events, i.e., cells. A different

combination of five different markers is measured from each tube.

These marker combinations (FL1–FL5) have been listed in

Table 1. Each marker is only present in one of the tubes except

for marker CD45, which is included in all of the tubes. In addition

to fluorescence intensities, forward and side scatter readings are

provided for each tube. Tube number eight is a control tube with

non-specific-binding antibodies. We don’t use this tube for

prediction purposes.

Both raw and preprocessed flow cytometry data are provided in

the challenge website. As the original experimental setup has been

designed by the the contest organizers for a large benchmark study

[6], we rely that the setup is meaningful and that the provided data

has been processed according to the standards of the field. For

prediction, we use the preprocessed data, which is compensated/

translated using the method described in [7]. Briefly, the

preprocessed data contains the forward scatter in linear scale,

side scatter in logarithmic scale, and the fluorescence intensities for

the five channels described in Table 1 in logarithmic scale. As an

alternative to the preprocessed data, we experimented with a

regression based preprocessing method [8] directly applied for the

raw data. However, no improvement was gained in the results.

Thus, all results presented below are for the preprocessed contest

data which is available in CSV format from the contest web site.

Prediction Model Overview
The flow cytometry data we are using consists of seven tubes

with thousands of cells each. All the cells originate from a single

patient who is either AML-positive or healthy. Instead of trying to

classify each individual cell as AML-positive or healthy, the key

strategy is to consider the cell populations as whole and, finally,

fuse together the information that each tube independently

provides.

A detailed description of the structure of our prediction model

will be given in the forthcoming sections. For an overview, see

Figure 1. As a starting point, we have a feature generation step

where the dimensionality of the tube data is increased by

generating some artificial features. This is done in order to avoid

Table 1. Fluorescence markers provided in DREAM6 AML
prediction challenge data.

FL1 FL2 FL3 FL4 FL5

Tube 1 IgG1-FITC IgG1-PE CD45-ECD IgG1-PC5 IgG1-PC7

Tube 2 Kappa-FIT Lambda-PE CD45-ECD CD19-PC5 CD20-PC7

Tube 3 CD7-FITC CD4-PE CD45-ECD CD8-PC5 CD2-PC7

Tube 4 CD15-FITC CD13-PE CD45-ECD CD16-PC5 CD56-PC7

Tube 5 CD14-FITC CD11c-PE CD45-ECD CD64-PC5 CD33-PC7

Tube 6 HLA-DR-FITC CD117-PE CD45-ECD CD34-PC5 CD38-PC7

Tube 7 CD5-FITC CD19-PE CD45-ECD CD3-PC5 CD10-PC7

Tube 8 N/A N/A N/A N/A N/A

Seven tubes (and one unspecified control tube) with different fluorescence
markers (FL1–FL5) are provided in the DREAM6 AML prediction challenge data
set. (Table from challenge web site: http://www.the-dream-project.org/
challenges/dream6flowcap2-molecular-classification- acute-myeloid-leukaemia-
challenge).
doi:10.1371/journal.pone.0072932.t001
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the limitations of the subsequent linear model, thus, improving the

class separation. Next, the resulting 84-dimensional data is

projected to 1-d by using Fisher’s linear discriminant analysis

(LDA) that maximizes the separability between the AML-positive

samples and the healthy ones. We then compare the empirical

cumulative distribution function (EDF) of the tube data with

corresponding trained EDFs of both AML-positive and healthy

populations by using a simple mean squared error metric. This

results in two EDF similarity measures per tube.

For the higher level aggregation of individual tubes we use

logistic regression. The parameters of the logistic regression model

are estimated using a method that penalizes the coefficient

magnitudes using an ‘1 penalty [9]. This results in a sparse model

where only a few tubes are needed in evaluating the predictor

output. An implementation of our predictor is available as

MATLAB source code from http://www.cs.tut.fi/˜hehu/

DREAM6-AML.html.

Feature Generation
Our prediction model uses rather simple linear operations and

distribution comparison in only one dimension. Thus, we cannot

expect the model to discover very complicated relations between

the input features. For this reason, we artificially expand the set of

features from the initial 5 fluorescence intensities and 2 scatter

features by taking all possible inverses (7 pcs) and second powers

(7 pcs) of single features and multiplications (21 pcs) and divisions

(42 pcs) of any combination of two features. Thus, the dimen-

sionality is increased from 7 to 84.

While overlearning seems not to be a problem in increasing the

dimensionality of the data, there are, however, some practical

problems. Namely, the average storage requirement of an 84-

dimensional data matrix of a single tube is between 4 and 32 Mb

depending on the number of events in the tube. When training

with all our data, this gets multiplied by 359, i.e., the number of

patients. This means that we have over 11 Gb of training data in

one of the tubes, which can be a problem depending not only on

the hardware setup but also on the type of forthcoming processing.

EDF Comparison
For each tube with a particular population of cells the next step

is to determine whether that population originates from an AML-

positive or healthy patient. This is done by using a two-sample

distribution comparison test such that we compare the estimated

distribution of the tested tube data against the distributions of both

AML-positive and healthy tubes, which have been estimated from

the training data. As a result, we get two similarity measures.

Multidimensional (in our case, 84-dimensional) density estima-

tion is known to be a difficult problem and the situation is further

complicated by the large amount of data. Our solution is to first

use LDA to map each sample x[R84 into 1-d:

x~ ŜS1zŜS0

� �{1
m̂m1{m̂m0ð Þx: ð1Þ

Here, ŜS1 and ŜS0 are the sample covariance matrices and m̂m1 and

m̂m0 are the sample means of both AML-positive and healthy

training samples, respectively.

Applying the LDA significantly reduces the amount of data and

allows us to use traditional 1-d methods for distribution

comparison. LDA allows us to use training data for finding the

linear mapping that best separates the AML-positive and healthy

populations in 1-d. Further, we do not need to have 11 Gb of free

memory in our computer, because we can easily calculate the

required mean vectors and covariance matrices iteratively one

patient at a time.

Figure 1. Block diagram of the AML predictor. First, for each tube, more features are generated from the seven dimensional flow cytometry
data by calculating all multiplications and divisions of any two basic features. Second, the data is mapped into 1-d with LDA and the EDF of the
resulting data is compared with the corresponding training EDFs of both AML-positive and healthy populations. Finally, the 14 EDF similarity scores
are combined by a logistic regression model that outputs a confidence value of the test patient being AML-positive. Similar to the reference EDFs,
LDA coefficients maximizing the separation between AML-positive and healthy populations as well as logistic regression coefficients are estimated in
a training phase.
doi:10.1371/journal.pone.0072932.g001
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For 1-d two-sample distribution comparison, we calculate two

similarity measures e
(0)
t and e

(1)
t for each of the tubes

t~1,2, . . . ,7. The measures are based on the mean squared

error (MSE) between the EDFs of the tested tube data and the

one that has been trained for either healthy or AML-positive

tubes, respectively:

e
(c)
t ~

1

K

XK{1

k~0

Ft(x0zkDx){F
(c)
t (x0zkDx)

h i2

: ð2Þ

In the above equation, Ft(:) is the EDF of the tested tube data

after LDA mapping, and F
(c)
t are the corresponding EDFs of the

trained healthy tube (c~0) and the trained AML-positive tube

(c~1).

Instead of averaging the squared error in Equation 2 over the

complete EDFs, the error is only evaluated in K discrete points

uniformly chosen between points x0 and x0z(K{1)Dx. Our

validation tests show that we can use value as low as K~128
without degrading the classification performance. Thus, the

training EDFs are parametrized with 128 parameters, which frees

us from carrying the whole training data with us in the testing

phase. We choose x0 equal to the minimum of the training

samples and Dx such that x0z(K{1)Dx equals to the maximum

of the training samples.

In addition to the EDF MSE in Equation 2, also more

established distribution comparison methods were tested including

two-sample Cramér-von Mises test [10], Kolmogorov-Smirnov test [11], and

Kullback-Leibler divergence [12]. Further, error measures like corre-

lation and MSE between the probability density functions

estimated with kernel smoothing density estimation were tested.

However, based on validation results, EDF MSE gave the best

classification performance.

Sparse Logistic Regression

Given a 14-dimensional feature vector e~(e
(0)
1 ,e

(1)
1 , . . . ,e

(0)
7 ,

e
(1)
7 )T corresponding to the EDF error measures of each tube as

defined in Equation 2, our strategy is to use the logistic regression

model

p(e)~
1

1z exp (b0zbT e)
ð3Þ

to estimate the probability p(e) of the patient being AML-positive.

Parameters b0 and b~(b1, . . . ,b14)T are estimated from the

training data by maximizing the ‘1-penalized log-likelihood

X
ei[C0

log p(ei)z
X

ei[C1

log (1{p(ei)){lDDbDD1, ð4Þ

where l§0 is the regularization parameter and C0 and C1 are the

training sets of healthy and AML-positive patients, respectively.

Similar to that in linear regression using Least Absolute Shrinkage

and Selection Operator (LASSO) [9], the ‘1 penalty in Equation 4

results in the solution vector b being sparse such that only a few of

the coefficients are non-zero. Thus, the penalization works as an

implicit feature selector and any tube irrelevant from the diagnosis

point of view gets automatically dropped out from the model.

The role of the parameter l in Equation 4 is to control the

amount of regularization: the larger the value of l, the heavier the

regularization. For small values of l, the solution is close to the

maximum likelihood solution, while large values of l allow

restricted solutions only and push the coefficients towards zero. In

our case he value of l is automatically determined by cross-

validation.

Regularized generalized linear models including logistic regres-

sion models can be efficiently fit using a coordinate descent

algorithm proposed by Friedman et al. [13]. There is also a

MATLAB implementation available at http://www-stat.stanford.

edu/˜tibs/glmnet-matlab.

Reference Methods
In the forthcoming experiments section, we compare our

prediction model with the method by Vilar (http://www.ehu.es/

biologiacomputacional/team21_vilar) and the method by Biehl

et al. [5] (http://www.the-dream-project.org/story/code). In ad-

dition to these, we test two simple approaches as a reference: an ‘1

regularized logistic regression classifier and an LDA classifier with

plain mean values of the marker intensities (or scatter values) as

features.

The basic idea in Vilar’s predictor is similar to our method.

First, the distributions of data from AML-positive and healthy

training patients are compared against that of the tested patient for

each tube. Second, the resulting distribution similarity scores are

aggregated in a logistic regression model to derive an AML

confidence score between 0 and 1.

Vilar’s method doesn’t apply explicit dimension reduction for

the data to alleviate the problem of multidimensional density

estimation. Instead, the probability density of the 7-dimensional

tube data is approximated by using multiple lower dimensional

densities. These densities are constructed such that only one of the

fluorescence markers FL1, FL2, FL4, or FL5 is taken into account

in each density estimate while fluorescence marker FL3 (which is

always CD45 regardless of the tube) and forward and side scatters

are present in all of the low dimensional densities. This results in 4

different 4-dimensional distributions instead of one 7-dimensional.

In practice, these densities are approximated by histograms with

9 bins per dimension uniformly spaced in logarithmic scale

between 100:01 and 100:91 for all but the side scatter for which

the corresponding range is between 102:01 and 102:91. An

important feature, found out by our validation tests, is that any

sample outside the range of the histogram is considered an outlier

and discarded.

The comparison of the distributions in Vilars’s method is done

by using Kullback-Leibler divergence, i.e., relative entropy. Finally,

the entropies from each tube are combined by simply summing

together the relative entropies with the AML-positive population

and subtracting the entropies with healthy population. This total

entropy is then mapped with the logistic function to get the final

AML confidence score. In terms of the notation in Equation 3 this

means that e(c)
t equals to the relative entropy against class c in tube

t and that the model coefficients are not estimated from training

data but fixed to b0~0 and b~({1,1,{1,1, . . . )T .

Biehl’s method differs from our and Vilar’s by not trying to

estimate the full densities of the data. Instead, six quantities, mean,

standard deviation, skewness, kurtosis, median, and interquantile

range, are calculated for each marker and used as features. For

classification, Biehl uses Generalized Matrix Relevance Learning Vector

Quantization (GMLVQ). See [5] for details.

Results

This section presents the experimental results. First, we run a

CV test to assess and compare the performance of the previously

described five different methods: our original, Vilar’s, and Biehl’s

AML Prediction Using Sparse Logistic Regression
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methods, and ‘1 regularized logistic regression and LDA with

plain mean values of the marker intensities as features. In the result

tables and figures, these five methods are referred as EDF-MSE/

LR-LASSO, Vilar, Biehl et al., Mean/LR-LASSO, and Mean/LDA,

respectively. Second, we use all the available data to train the two

sparse logistic regression predictors and analyze the resulting

models.

Performance Assessment
We use the combined DREAM6 AML Challenge training and

test data consisting of 43 AML-positive and 316 healthy patients

and stratified 10-fold CV to benchmark the prediction models.

Thus, the validation result estimates the generalized model

performance when using about 90% of the data, i.e., 39 AML-

positive and 284 healthy patients, for training.

The ROC and PR curves resulting from the 10-fold CV are

shown in Figure 2 together with the AUC values for each

predictor. According to the AUC analysis tool StAR [14], only

LDA with mean features (AUC = 0.88) differs from the other

methods (AUC & 0.98) with statistical significance. The StAR tool

is based on a two-sided Mann-Whitney test with a null hypothesis

that two AUC values are the same. A confidence level of a~0:05
was used in the significance test. Exact p-values are given in

Table 2.

Figure 3 shows how the test samples of the CV procedure

distribute into the predictors’ output space shown on the x-axis.

For visualization purposes, the output of Biehl’s method has been

rescaled by taking the power of 0:3. The y-axis shows the

histogram count. The title in each plot shows the corresponding

prediction method and a score value, which has been calculated as

a p-value that the AUCs of the ROC and PR curves have been

achieved by random chance. The p-value is given in negative log-

10 scale, i.e., the higher the better. See [15] for more details on

how the score has been derived.

Figure 4 shows the confusion matrices after thresholding the

predictor output. For logistic regression models, the threshold is

0:5. Biehl et al. don’t give a specific threshold for the output of the

GMLVQ classifier. In this case, we have chosen the threshold such

that the classification error in the training data is minimized.

Final Model
In this section, we use all the available 359 patients for training

the logistic regression classifier with ‘1 regularization. In the case

of the EDF MSE features the trained classifier can be written as

p(e)~
1

1z exp {4:5037z1:7980e
(0)
4 {1:0845e

(1)
4 {0:8694e

(1)
5 z0:0753e

(0)
6

� � :ð5Þ

The remarkable notion is that the ‘1 regularization only selects

4 of the available 14 features. Further, only tubes 4, 5, and 6 are

included in the final model making tubes 1, 2, 3, and 7 non

informative from the diagnosis point of view.

Based on the absolute values of the logistic regression

coefficients in Equation 5, tube number 4 (see corresponding

markers from table 1) seems to be the most important one. Also

tube 5 has a substantial effect on the predictor output but only

when comparing against AML-positive (c~1) patients. Tube

number 6 has a similar effect on the healthy patients. However,

relatively small absolute coefficient value makes tube 6’s contri-

bution rather insignificant. Notice that comparing absolute

coefficient values makes sense because the similarity scores e(c)
i

are normalized.

The full regularization path of the above case is shown in

Figure 5. The final model indicated by the black dashed line is

chosen by minimizing 10-fold CV error. The EDF distance

features from tube 4 are the first ones taken into the model when

the regularization is gradually decreased (i.e., DDbDD1 increases). This

further emphasizes the importance of tube 4. Interestingly, e
f0g
6 is

removed from the model right after the point of minimum CV

error suggesting that similar performance could be attained by

using only tubes 4 and 5. Notice, how the features from tube 1

approximately differ only by their sign. Further, the signs seem to

be the wrong way around: smaller distance to the healthy

population contributes towards classifying the patient as AML

positive and the vice versa. This is probably due to overlearning.

A similar analysis was run on the simpler model where the ‘1

regularized logistic regression was applied on the mean values of

each marker intensity or scatter reading. In this case, 17 of the 49
variables are automatically selected according to the CV error.

Figure 2. ROC and PR curves of 10 times repeated 10-fold CV test. The left panel shows the ROC and the right one the PR curves. The legend
shows the AUC values for different predictors. Except for LDA (green line), the differences in AUC values are statistically insignificant.
doi:10.1371/journal.pone.0072932.g002

(5)

AML Prediction Using Sparse Logistic Regression
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Table 2. P-values of the significance test testing the difference of the AUC ROC values between each pair of prediction methods.

Method Biehl et al. Vilar Mean/LR-LASSO EDF-MSE/LR-LASSO Mean/LDA

Biehl et al. – – – – –

Vilar 0.1598 – – – –

Mean/LR-LASSO 0.1537 0.6809 – – –

EDF-MSE/LR-LASSO 0.2509 0.3486 0.6509 – –

Mean/LDA 0.0003 0.0004 0.0019 0.0040 –

The null hypothesis is that the AUC ROC values between two methods are the same. Given p-values are provided by the online ROC analysis tool StAR [14].
doi:10.1371/journal.pone.0072932.t002

Figure 3. Distribution of the test samples in predictor output space. Colors of the histogram bars indicate the true class label (gray color
denotes the overlapping parts). Titles in each plot tell the corresponding prediction method and a score value calculated as the negative log10 p-
value that the class separation has been attained by chance.
doi:10.1371/journal.pone.0072932.g003

AML Prediction Using Sparse Logistic Regression
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Figure 6 shows the coefficient values of the logistic regression

model. About half of the contribution in terms of ‘1 norm of the

coefficient vector comes from the four most significant markers,

which are CD34-PC5 from tube 6, side scatter from tube 5, and

CD16-PC5 and CD13-PE from tube 4.

More detailed information about the whole regularization path

of the above model is shown in Table 3. Here, we have picked the

best feature sets with given size along the regularization path. Set

sizes span from zero (bias term only) to 17, which is the model with

lowest CV error also shown in Figure 6. The markers in the list

have been sorted according to the absolute value of their

corresponding coefficient such that the most important feature is

always on top. The tube number of each marker is shown in the

subscript. Especially CD34-PC5, side scatter (SS), and CD16-PC5

seem to be included in the model from very early stage of the

regularization path.

The above analysis of the most important features supports the

discussion of [5], where seven markers were recognized as the key

features: forward scatter, side scatter, CD15-FITC, CD117-PE,

CD16-PC5, CD34-PC5, and CD10-PC7. All of these appear in

our final model (Figure 6) or on the regularization path (Table 3)

except the forward scatter measure. Missing forward scatter makes

sense because in [5] they show that the predictive power of the

forward scatter on linear scale relies on it’s higher moments,

especially standard deviation and skew, rather than on the

distribution average, which we use in our model.

In the model with marker means as features, scatters and CD45

intensities were not combined over the different tubes but the

mean values from each tube were taken as individual features.

Similar to that in Biehl’s method [5], also pooling of these

variables was tested. However, this decreased the validation

performance. To our knowledge, the intensity values of each

Figure 4. Confusion matrices. Distribution of the 359 test patients into false/true positives/negatives in a 10-fold CV test. Summary statistics are
given in the last rows/columns.
doi:10.1371/journal.pone.0072932.g004

Figure 5. Regularization path of the ‘1 regularized logistic
regression model with EDF MSE features. Coefficient values have
been plotted with respect to the ‘1 norm of the coefficient vector. The
black dashed line shows the final model chosen by cross-validation.
doi:10.1371/journal.pone.0072932.g005
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marker should be independent of the tube they are measured

from. One explanation for the above phenomenon is that there is

some kind of overlearning occurring when not combining the

corresponding markers from separate tubes.

Discussion

In this paper, we have described an automated method for

AML diagnosis from flow cytometry data. Our method uses the

combined DREAM6 AML Challenge training and test data for

which we run a cross-validation test in order to assess our

predictor. In addition, we compare our predictor against

predictors by Vilar and Biehl et al. [5], which were among the

best performing methods in the DREAM6 AML Challenge.

Experimental results show that there are no statistically significant

differences between the best performing prediction methods when

cross-validating them against the challenge data set of 43 AML-

positive and 316 AML-negative patients. Cross-validated classifi-

cation performances reach 99 %.

The key benefit in our predictor model is that, in the training

phase, the ‘1 regularized logistic regression model automatically

estimates the relevance of each flow cytometry tube or marker.

Only a subset of the available features (3 of the 7 tubes with the

EDF MSE features or 17 of the 49 markers with the mean

intensity features) are selected still reaching a performance

equivalent to the alternative methods. Thus, in a testing phase,

only a fraction of the usual flow cytometry measurements are

needed. Another beneficial feature in our model is that it has

virtually no parameters that would need manual tuning. Instead,

the regularization parameter l is automatically chosen by cross-

validation and the number of EDF bins K is, by construction,

robust against changes in the data. This is in contrast, e.g., with

Vilar’s algorithm where even a small change in the dimensions of

the density histogram was noticed to result in deterioration of the

cross-validation performance by several percentage units.

The proposed framework contains two alternatives for feature

extraction: The simple version with mean intensity features

(termed Mean/LR-LASSO in the experiments) and the complex

version using the mean squared errors between the EDFs (termed

EDF-MSE/LR-LASSO). Experiments show that there is no

significant difference in performance between the two alternatives.

In fact, all the studied methods are almost perfect in terms of

accuracy, so the only reasonable conclusion is to favor the simplest

solution. Many studies emphasize that simplicity should be the

guiding principle in the design of classifiers; see for example

[16,17]. In [17], the author describes this reasoning as follows:

‘‘…simple methods typically yield performance almost as good as

more sophisticated methods, to the extent that the difference in

performance may be swamped by other sources of uncertainty…’’.

Along these lines, we believe that the proposed use of regularized

logistic regression also has the best generalization for future

samples, due to its simplicity. In particular, according to the

experiments of this paper, the method of choice should use simple

mean intensity features (Mean/LR-LASSO) instead of the

complex EDF-MSE features.

However, we do believe that the more complex EDF-MSE

features has potential to simplify the classifier structure even

Figure 6. Logistic regression model coeffients with average normalized scatter/intensity values as features. Only 17 of the 49
coefficients get a non-zero value due to ‘1 regularization. Numbers in the subscript indicate the tube number.
doi:10.1371/journal.pone.0072932.g006
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Table 3. Best subsets of certain size along the regularization path of the logistic regression classifier with average marker
intensities as features.

Set size 0 1 2 3 4 5

Markers CD34-PC56 CD34-PC56 CD34-PC56 CD16-PC54 SS6

SS6 SS6 CD34-PC56 CD16-PC54

CD15-FITC4 SS6 CD34-PC56

CD15-FITC4 CD38-PC76

CD56-PC74

DDbDD1 0.00 0.05 0.16 0.29 0.92 1.74

CV err. 0.120 0.120 0.120 0.120 0.092 0.053

Set size 6 7 8 9 10 11

Markers SS6 SS6 SS6 SS6 SS6 SS6

CD16-PC54 CD16-PC54 CD16-PC54 CD16-PC54 CD16-PC54 CD16-PC54

CD34-PC56 CD34-PC56 CD34-PC56 CD34-PC56 CD34-PC56 CD34-PC56

CD38-PC76 CD38-PC76 CD38-PC76 CD38-PC76 CD38-PC76 CD38-PC76

CD56-PC74 CD56-PC74 CD56-PC74 CD56-PC74 CD56-PC74 CD56-PC74

CD117-PE6 CD117-PE6 CD13-PE4 CD13-PE4 CD13-PE4 CD13-PE4

CD13-PE4 CD117-PE6 CD33-PC76 CD33-PC75 CD33-PC75

CD33-PC75 CD117-PE6 CD15-FITC4 CD15-FITC4

CD15-FITC4 CD10-PC77 CD10-PC77

CD117-PE6 CD117-PE6

CD19-PE7

DDbDD1 2.40 2.50 3.11 3.57 4.31 4.41

CV err. 0.033 0.033 0.025 0.022 0.019 0.019

Set size 12 13 14 15 16 17

Markers SS6 SS6 CD34-PC56 CD34-PC56 CD34-PC56 CD34-PC56

CD16-PC54 CD34-PC56 SS6 SS6 SS6 SS6

CD34-PC56 CD16-PC54 CD16-PC54 CD16-PC54 CD16-PC54 CD16-PC54

CD56-PC74 CD56-PC74 CD13-PE4 CD13-PE4 CD13-PE4 CD13-PE4

CD38-PC76 CD13-PE4 CD56-PC74 CD56-PC74 CD56-PC74 CD15-FITC4

CD13-PE4 CD38-PC76 CD38-PC76 CD38-PC76 CD15-FITC4 IgG1-PC71

CD33-PC75 CD33-PC75 CD33-PC75 CD33-PC75 CD33-PC75 CD33-PC75

CD10-PC77 CD10-PC77 CD15-FITC4 CD15-FITC4 IgG1-PC71 CD56-PC74

CD15-FITC4 CD15-FITC4 IgG1-PC71 IgG1-PC71 CD38-PC76 IgG1-PE1

CD19-PE7 CD19-PE7 CD10-PC77 CD10-PC77 CD10-PC77 CD38-PC76

CD117-PE6 CD117-PE6 CD19-PE7 CD19-PE7 IgG1-PE1 CD117-PE6

CD5-FITC7 CD5-FITC7 CD117-PE6 CD117-PE6 CD117-PE6 CD10-PC77

IgG1-PC71 CD5-FITC7 CD5-FITC7 CD5-FITC7 CD5-FITC7

SS5 SS5 CD19-PC52 Lambda-PE2

IgG1-PE1 CD8-PC53 CD8-PC53

Lambda-PE2 IgG1-PC51

CD19-PC52

DDbDD1 4.66 4.87 5.95 6.02 7.21 8.49

CV err. 0.019 0.019 0.019 0.017 0.014 0.011

Markers in the list have been sorted according to the absolute value of their corresponding coefficient such that the most important feature is always on top. CV err.
indicates the 10-fold CV classification error when using regularization parameter l corresponding to the ‘1 norm of the coefficient vector as given in DDbDD1 . The lowest CV
error (0:011) is attained with the 17 markers shown in Figure 6.
doi:10.1371/journal.pone.0072932.t003
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further, allowing even better generalization performance for future

samples. In the experiments, the complex feature extraction model

trained with all data uses slightly more features than the simple

feature extraction (21 versus 17), but when trained with the subset

defined as training data in the DREAM6 challenge, the resulting

model uses only two tubes, i.e., 14 features. One reason for the

fluctuation in the selected features is seen in the model of Eq. (5),

where only one of the two similarity measures e
(0)
t and e

(1)
t is used

for tubes t~5 and t~6. The obvious choice would be to exploit

them both, which happens when trained with the training subset of

DREAM6. We plan to investigate this further by generalizing the

method to use Group LASSO for logistic regression [18], which

allows the feature selection in groups.

In comparison to the binary diagnosis task studied in this paper,

a more clinically relevant and computationally more challenging

question is how to accurately predict the specific subtype of AML.

For example, the World Health Organization has issued a

classification of AML subtypes that aims to be more clinically

relevant by containing prognostic value and provides guidelines for

treatment [2]. Data driven methods could provide accurate and

objective classification to existing subgroups, by solving a multi

class classification problem, and class discovery methods could be

used to uncover new homogeneous subtypes from data. However,

to address these questions, more extensive data collections need to

be generated. By using multi class logistic regression classifier, our

methods could directly be extended to multi class classification

problem and it would be of interest to see whether the tubes and

features that were deemed uninformative in context of AML

classification would in fact contain information about differences

between AML subtypes and, further, which tubes give information

about specific AML subtypes. This type of approach has

previously provided good results, e.g., in studying human brain

activity created by different types of visual stimuli [19].
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