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A B S T R A C T

This study investigates a fractional-order time derivative model of non-Newtonian magnetic blood flow in the presence of thermal radiation 
and body acceleration through an inclined artery. The blood flow is formulated using the Casson fluid model under the control of a uniformly 
distributed magnetic field and an oscillating pressure gradient. Caputo-Fabrizio’s fractional derivative mathematical model was used, along with 
Laplace transform and the finite Hankel transform technique. Analytical expressions were obtained for the velocity of blood flow, magnetic particle 
distribution, and temperature profile. These distributions are presented graphically using Mathcad software. The results show that the velocity 
increases with the time, Reynolds number and Casson fluid parameters, and diminishes when Hartmann number increases. Moreover, fractional 
parameters, radiation values, and metabolic heat source play an essential role in controlling the blood temperature. More precisely, these results 
are beneficial for the diagnosis and treatment of certain medical issues.

1. Introduction

The research of biofluid flow in the presence of magnetic field known as biomagnetic fluid dynamics (BFD) is a crucial topic 
of investigation into how fluid flow behaves when influenced by magnetic fields. Numerous researchers have been involved to this 
branch of fluid dynamics [1], [2], [3], [4] due to the wide range of applications that bioengineering and medical science have 
proposed, including studies on magnetic tracers, selective drug delivery utilising magnetic particles as drug carriers. Furthermore, 
magnetic hyperthermia also could be used to treat cancer. [5] proposed the concept of investigating the magnetic and electrical 
properties of blood under a single mathematical model. [6] examined a theoretical formulation for the flow of blood through the 
inclined artery with the presence of magnetic field. [7] examined the effects of body acceleration on Herschel-Bulkley model of 
pulsatile blood flow via an inclined stenotic artery with the effects of slip velocity.

For the past three decades fractional-order derivatives have been limited to the work by mathematicians. Recently, fractional 
calculus has been applied in other domains as well due to the vast applications to many real-world problems. [8] introduced another 
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derivative technique followed by theoretical and applied studies in a lot of practical applications. [9] carried out blood flow analysis 
in cylindrical tube with the presence of transverse magnetic, magnetic particles and oscillatory pressure gradient. [10] performed an 
analysis of electro-magneto blood flow along with magnetic particles through a circular channel subject to an electric and a uniform 
external magnetic field. [11] provided a comparative study of non-steady flows of a second-degree fluid with Newtonian heating and 
time-fractional derivatives, namely Caputo and Caputo-Fabrizio. Given the growing interest for modelling using fractional derivatives, 
multiple fractional derivatives models have been developed based on existing fluid models [12], [13], [14], [15] and [16].

While blood flow with heat transfer is primarily an essential use in biomedical area, many researchers [17], [18], [19], [20]

and [21] have successfully applied their concepts to explore a variety of knowledge about how heat transfer occurs. Heat transport 
requires many complex processes in tissues such as tissue heat conduction, heat convection due to tissue pores blood supply, and 
radiation between surface and environment [22]. Numbers of mathematical models have been constructed and applied to laser 
surgery, cryosurgery and cryopreservation. These models have found beneficial uses in variety of modern physiotherapy treatment, 
such as applying heat to the affected body part [23]. [24] measured the non-Newtonian fluid flow characteristics in micro-vessels 
with the effects of a magnetic field intending to obtain a high drug concentration in the target location. [25] studied numerically 
the impact of magnetic intensity on blood velocity at various temperatures viscosity. They found that the use of magnetic fields to 
control blood supply can be implemented during operations. Additionally, they considered heat transfer research in blood flow and 
showed that the heat transfer rate could be controlled significantly by magnetic field.

Many scientists, engineers, mathematicians, and researchers have analyzed Casson’s fluid flow analysis based on different circum-

stances. [26] examined analytically the pulsatile blood flow via Casson fluid model in inclined artery under stenotic condition due 
to magnetic field. [27] investigated the blood flow problem under the effects of stenosis and particle concentration. The circulating 
blood is known to be Casson fluid model, and the arterial wall is considered as axisymmetrical, with an outline of the stenosis 
obtained by casting a slightly stenosed artery. The periodic external body acceleration effect was treated to investigate the problem 
of pulsatile blood flow. [28] modelled the blood as a Casson fluid to examine the blood flow in constricted narrow arteries. [29]

developed a mathematical model to examine blood supply in small arteries with slight bell-shaped stenosis at low shear concen-

trations. Blood is viewed as a Casson fluid model. [30] considered the blood flow problem through porous arteries as Casson fluid 
model by utilising a fractional-order time derivative with the effects of heat transfer, thermal radiation, body acceleration and blood 
concentration under the effect of magnetic field.

Caputo-Fabrizio fractional derivative with a parameter memory has the advantage that the definition is not singular. Significant 
transforms (such as Laplace, finite Hankel, and Bessel transforms) are combined with Robotnov-Hartley functions to create a single 
closed-form solution for both local and non-local cases. The most crucial benefit of modelling with fractional-order derivatives is that 
it is non-local, which makes it different from the local model. Non-integer order derivatives, like half-order derivatives, are used to 
show this, with integer-order derivatives like first-order derivatives, second-order derivatives, and so on. The local model represents 
the system’s current stage, while the non-local model describes the system’s history stage. According to [32] fractional differential 
equations stand out from other models because of their non-local property. Other models predict a system’s future stage based on its 
historical context and do not depend on the system’s current state. According to [33] and [34], in applied mathematics, fractional 
calculus is a topic about derivatives or integrals of arbitrary orders (real or complex numbers). It has recently acquired prominence 
and appeal, and become part of well-established method of solution in science and engineering. This encompasses fluid flow issue 
modelling, reaction-diffusion, relaxation and dynamical processes, chemical physics, electrochemistry, electric networks, seismic 
wave propagation, rheology, oscillation, anomaly and turbulence, polymer and many other complex physical systems. Some works 
utilising fractional derivatives are conducted by [35], [36] and [37]. The effect of slip on electroosmotic flow between two plates 
was investigated by [35] and [37] in a second grade fluid and Oldroyd-B fluid, respectively. While, [36] examined the convective 
flows of a linearly viscous fluid near a plate with constantly heated and vertically located. [38] analyzed the blood flow through a 
stenosed permeable artery then later extended by [39] with the inclusion of hybrid nanoparticle with the effect of electroosmotic 
parameter. Recently, [40] and [41] studied analytically the non-Newtonian fluid flow through an elliptical duct and multi-stenosed 
elliptical artery, respectively. [40] concluded that the flow velocity of pseudoplastic fluid is more prominent than dilatant fluid in 
the vicinity of the centerline. While, [41] found that the shape of various stenosis affects the shape of contours of streamlines.

Experimental, theoretical and analytical studies of thermal radiation effects in the vascular system are scarce in the published 
literature. Reliable thermal radiation and Caputo-Fabrizio fractional derivative in an inclined artery have not been explored. There 
is an immediate need to apply with the application of fractional differential equations to the literature on thermal radiation. The 
goal of the current study is to extend the work of [30] by focusing on the thermal radiation effects for the Casson blood flow with 
the influence of magnetic particle in inclined artery. The fractional-time derivative is employed in this research to represent the 
Casson fluid model. The radial direction is considered in the 𝑟-axis normal outward from the center of the artery. While, the axial 
direction is taken into account in the 𝑧-axis along the blood flow. The body’s acceleration in the 𝑧-axis, the pressure gradient, and the 
external magnetic force result the blood flow in the artery. The first-order derivatives for blood flows, the magnetic particle velocity, 
and the energy equations are converted to Caputo-Fabrizio approach in the fractional derivative models. The analytical solutions 
are obtained with the aid of the Laplace transformations and the finite Hankel transformation. The graphical results from the for 
numerical computations are obtained using Mathcad for various values of some physical parameters via Bessel functions of order 
2

zeros.
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Fig. 1. Geometry configuration of an inclined artery with thermal radiation effect.

2. Formulation of the problem

In the present study, the unstable blood flow occurs in an inclined artery with a radius of 𝑅0, where the axial direction is in the 𝑧-
axis and the radial direction is in the 𝑟-axis (Fig. 1). Blood is considered to be an incompressible non-Newtonian Casson fluid. External 
magnetic forces, thermal radiation, and body acceleration influence the blood movement in the artery. The induced magnetic effect 
is believed to be negligibly weak.

The governing flow equations in cylindrical coordinate system (under the above assumptions) with the aid of the Maxwell 
equation, which describes the magnetic field, the Navier-Stokes’ equation, which describe the motion of the blood, and the Newton’s 
second law, which describes motion of the particle, are given as follows:

Firstly, the magnetic field in the form of Maxwell relations are [9]

∇ ⋅ ⃖⃖⃗𝐵 = 0, ∇× ⃖⃖⃗𝐸 = − 𝜕
⃖⃖⃗𝐵

𝜕𝑡
, ∇× ⃖⃖⃗𝐵 = 𝜇0⃖⃖⃗𝐽 ,

where, the current density ⃖⃖⃗𝐽 is given by [31]

⃖⃖⃗𝐽 = 𝜎
(
⃖⃖⃗𝐸 + ⃖⃖⃗𝑉 × ⃖⃖⃗𝐵

)
.

Here, ⃖⃖⃗𝐸 is the electric field intensity, 𝜇0 is the magnetic permeability, ⃖⃖⃗𝑉 is the velocity vector, ⃖⃖⃗𝐵 is the magnetic flux intensity and 
𝜎 is the electrical conductivity. The electromagnetic force ⃖⃖⃗𝐹 𝑒𝑚 to be considered in the momentum equations is defined as [42]

⃖⃖⃗𝐹 𝑒𝑚 = ⃖⃖⃗𝐽 × ⃖⃖⃗𝐵 = −𝜎 𝐵2
0 𝑢(𝑟, 𝑡) ⃖⃗𝑘,

where 𝑢 is the blood axial velocity, 𝐵0 is the magnetic field strength with an inclination 𝜃, and ⃖⃗𝑘 is the corresponding unit vector.
The associated body acceleration is given by [44]

𝐹 (𝑡) =𝐴𝑔 cos (𝜑+𝜔𝑔𝑡),

where 𝐴𝑔 is the amplitude generated by the body acceleration, 𝜑 is the phase angle and 𝜔𝑔 is the frequency.
The pulsatile pressure gradient due to the heart’s pumping motion is given in the form [43]

− 𝜕𝑝
𝜕𝑧

=𝐴0 +𝐴1 𝑐𝑜𝑠(𝜔𝑝𝑡),

where 𝐴0 and 𝐴1 are the constant amplitude of pressure gradient of heart and the amplitude of pulsatile component, respectively 
which gives rise to systolic and diastolic pressures and 𝜔𝑝 is the pulsation frequency.

Secondly, the momentum equation can be written as [9], [30], [45], [46]

𝜕𝑢

𝜕𝑡
= −1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝐹 (𝑡) + 𝜈

[
1 + 1

𝛽

](
𝜕2𝑢

𝜕𝑟2
+ 1
𝑟

𝜕𝑢

𝜕𝑟

)
+ 𝐾𝑁

𝜌
(𝑣− 𝑢) −

𝜎𝐵2
0 sin𝜃 𝑢
𝜌

+
𝑔 𝛽𝑇

(
𝑇 − 𝑇∞

)
sin𝜙

𝜌
, (1)

where 𝑢(𝑟, 𝑡) is the blood distribution, 𝜌 is the fluid density, 𝜈 is the fluid kinematic viscosity, 𝛽 is the Casson parameter associated to 
the viscosity of Casson fluid, 𝐾𝑁

𝜌
(𝑣− 𝑢) is the generated force subject to the relative movement of magnetic particles and the fluid 

itself. In this term, 𝑁 is the number of magnetic particles per unit volume and 𝐾 is the Stokes constant, 𝑣(𝑟, 𝑡) is the magnetic particle 
velocity in 𝑧-direction, 𝑇 (𝑟, 𝑡) is the temperature of blood, 𝜙 is the inclination angle, 𝑔 is the acceleration due to gravity, and 𝛽𝑇 is the 
coefficient of thermal expansion. Now, the force between the magnetic particles is proportional to the relative velocity if the relative 
3

velocity has a low Reynolds number.
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Finally, the Newton’s second law to describe the dynamic of magnetic particle is given by [48]

𝑚
𝜕𝑣

𝜕𝑡
=𝐾 (𝑢− 𝑣), (2)

where 𝑚 denotes the magnetic particle’s average mass.
The thermal radiation impacts on the energy equation can now be written as [30]

𝜕𝑇

𝜕𝑟
= 𝑘

𝜌𝑐𝑝

[
𝜕2𝑇

𝜕𝑟2
+ 1
𝑟

𝜕𝑇

𝜕𝑟

]
− 1
𝜌𝑐𝑝

𝜕𝑞

𝜕𝑟
+
𝑄𝑚 + 𝜃𝑚
𝜌𝑐𝑝

, (3)

where 𝑘 is the thermal conductivity, 𝑐𝑝 is the specific heat, 𝑄𝑚 is the metabolic heat source and 𝜃𝑚 is the heat absorption. In the 
current study, the non-Newtonian Casson blood is assumed as an optically thin fluid with low relative density and heat absorption 
coefficient 𝛼1≪ 1. Thus, the heat flux can be formulated as [30]

−
𝜕𝑞𝑟
𝜕𝑟

= 4𝛼21
(
𝑇 − 𝑇∞

)
,

where 𝛼21 = ∫ ∞
0 𝜂𝜒

𝜕𝛽

𝜕𝑇
, where 𝜂, 𝜒 and 𝛽 are the radiation absorption coefficient, the frequency and the Planck’s constant.

The initial and boundary conditions are as follows,

𝑢(𝑟,0) = 𝑣(𝑟,0) = 0, 𝑇 (𝑟,0) = 0, at 𝑡 = 0, 𝑟 ∈ [0,𝑅0],

𝑢(𝑅0, 𝑡) = 𝑣(𝑅0, 𝑡) = 0, 𝑇 (𝑅0, 𝑡) = 𝑇𝑤, 𝑡 > 0. (4)

Introducing the non-dimensional parameters

𝑟∗ = 𝑟

𝑅0
, 𝑡 =

𝑢0 𝑡

𝑅0
, 𝑢∗ = 𝑢

𝑢0
, 𝑣∗ = 𝑣

𝑢0
, 𝑝∗ = 𝑝

𝜌𝑢20

, 𝑧∗ = 𝑧

𝑅0
,𝐴∗
𝑔 =

𝑅0𝐴𝑔

𝑢20

,

𝑇 ∗ =
𝑇 − 𝑇𝑤
𝑇𝑤 − 𝑇∞

,𝑄∗
𝑚 =

𝑅0𝑄𝑚
𝑢0 𝜌𝑐𝑝 (𝑇𝑤 − 𝑇∞)

, 𝜃∗𝑚 =
𝑅0 𝜃𝑚

𝑢0 𝜌𝑐𝑝 (𝑇𝑤 − 𝑇∞)
, (5)

where 𝑅0 is the radius of artery and considered constant, 𝑢0 is the average velocity of blood, and 𝑇𝑤 is the wall temperature.
By using the above non-dimensional variables, the governing equations (1)-(3) (after dropped the *) becomes

𝜕𝑢

𝜕𝑡
=𝐴0 +𝐴1 cos(𝜔𝑝 𝑡) +𝐴𝑔 cos(𝜔𝑔 𝑡+𝜑) +

1
𝑅𝑒

[
1 + 1

𝛽

][
𝜕2𝑢

𝜕𝑟2
+ 1
𝑟

𝜕𝑢

𝜕𝑟

]
−𝐻𝑎2 𝑢+𝑅(𝑣− 𝑢) +𝐺𝑟𝑇 sin𝜙, (6)

𝐺
𝜕𝑣

𝜕𝑡
= 𝑢− 𝑣, (7)

𝑃𝑒
𝜕𝑇

𝜕𝑡
=
(
𝜕2𝑇

𝜕𝑟2
+ 1
𝑟

𝜕𝑇

𝜕𝑟

)
+𝑅𝑝 𝑇 + 𝑃𝑒

(
𝑄𝑚 + 𝜃𝑚

)
, (8)

where the Prandtl number 𝑃𝑟 = 𝜇 𝑐𝑝

𝑘
, Reynolds number 𝑅𝑒 = 𝑅0 𝑢0

𝜈
, particle concentration parameter, 𝑅 = 𝑅0𝐾𝑁

𝑢0 𝜌
Hartmann number 

𝐻𝑎2 =
𝜎 𝐵2

0 sin𝜃𝑅0
𝜌𝑢0

, Grashof number 𝐺𝑟 = 𝑔 𝛽𝑇
(
𝑇𝑤−𝑇∞

)
𝑅0

𝑢20
, Peclet number 𝑃𝑒 =𝑅𝑒 ⋅ 𝑃𝑟 and the radiation parameter 𝑅𝑝 =

4𝛼21 𝑅
2
0

𝑘
.

Substituting equation (5) into equation (4) results the non-dimensional boundary conditions as follows

𝑢(𝑟,0) = 𝑣(𝑟,0) = 0, 𝑇 (𝑟,0) = 0, 𝑟 ∈ [0,1],

𝑢(1, 𝑡) = 𝑣(1, 𝑡) = 0, 𝑇 (1, 𝑡) = 0, 𝑡 > 0.

The ordinary time derivative to Caputo-Fabrizio fractional derivative from the equations (6)-(8) are as follows,

𝐷𝛼𝑡 𝑢 =𝐴0 +𝐴1 cos(𝜔𝑝 𝑡) +𝐴𝑔 cos(𝜔𝑔 𝑡+𝜑) +
[
1 + 1

𝛽

]
1
𝑅𝑒

[
𝜕2𝑢

𝜕𝑟2
+ 1
𝑟

𝜕𝑢

𝜕𝑟

]
−𝐻𝑎2 𝑢+𝑅(𝑣− 𝑢) +𝐺𝑟𝑇 sin𝜙,

𝐺𝐷𝛼𝑡 𝑣 = 𝑢− 𝑣,

𝑃 𝑒𝐷𝛼𝑡 𝑇 =
(
𝜕2𝑇

𝜕𝑟2
+ 1
𝑟

𝜕𝑇

𝜕𝑟

)
+𝑅𝑝 𝑇 + 𝑃𝑒

(
𝑄𝑚 + 𝜃𝑚

)
,

where the Caputo-Fabrizio fractional time derivative [8] is given by

𝐷𝛼𝑡 𝑓 (𝑟, 𝑡) =
1

(1 − 𝛼)

𝜏

∫
0

𝑒𝑥𝑝

(
−𝛼(𝜏 − 𝑡)
1 − 𝛼

)
𝑓 ′(𝜏)𝑑𝑡, (9)

where 𝛼 is the fractional order parameter, (0 < 𝛼 < 1). It is known that fractional-order model is a generalisation of the integer-
order model. The irregular dynamics of flow behaviour in the diffusion phenomenon have a better physical explanation due to 
the fractional-order model analysis. Thus, fractional model is able to provide additional information on flow phenomena that an 
4

integer-order model cannot provide. Taking the Laplace transform equation (9) results
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𝐿{𝐷𝛼𝑡 𝑓 (𝑟, 𝑡)} =
𝑠𝐿{𝑢(𝑟, 𝑡)} − 𝑢(𝑟,0)

(1 − 𝛼)𝑠+ 𝛼
.

3. Solution procedure

The Laplace transformation works well when the blood flow model uses the temporal variable 𝑡. Based on Laplace transformation 
on the governing equations together with the initial conditions, the following equation can be formulated as

𝑠 𝑢(𝑟, 𝑠)
𝑠+ (1 − 𝑠)𝛼

=𝐴0 +𝐴1 cos(𝜔𝑝 𝑡) +𝐴𝑔 cos(𝜔𝑔 𝑡+𝜑) +
1
𝑅𝑒

[
1 + 1

𝛽

][
𝜕2𝑢(𝑟, 𝑠)
𝜕𝑟2

+ 1
𝑟

𝜕𝑢(𝑟, 𝑠)
𝜕𝑟

]

−𝐻𝑎2 𝑢(𝑟, 𝑠) +𝑅(𝑣(𝑟, 𝑠) − 𝑢(𝑟, 𝑠) +𝐺𝑟𝑇 (𝑟, 𝑠) sin𝜙, (10)

𝐺
𝑠𝑣(𝑟, 𝑠)

𝑠+ (1 − 𝑠)𝛼
= 𝑢(𝑟, 𝑠) − 𝑣(𝑟, 𝑠), (11)

𝑠𝑃 𝑒

𝑠+ (1 − 𝑠)𝛼
𝑇 (𝑟, 𝑠) =

(
𝜕2𝑇

𝜕𝑟2
+ 1
𝑟

𝜕𝑇

𝜕𝑟

)
+𝑅𝑝 𝑇 + 𝑃𝑒

(
𝑄𝑚 + 𝜃𝑚

)
,

𝑢(1, 𝑠) = 𝑣(1, 𝑠) = 0, 𝑇 (1, 𝑠) = 0. (12)

From equation (11), results

𝑣(𝑟, 𝑠) = 𝑠+ (1 − 𝑠)𝛼
(1 +𝐺)𝑠+ (1 − 𝑠)𝛼

𝑢(𝑟, 𝑠). (13)

Substituting 𝑣(𝑟, 𝑠) from equation (13) into equation (10) can be formulated[
𝑠

𝑠+ (1 − 𝑠)𝛼
−𝑅

(
𝑠+ (1 − 𝑠)𝛼

(1 +𝐺)𝑠+ (1 − 𝑠)𝛼

)
+𝐻𝑎2 +𝑅

]
𝑢(𝑟, 𝑠) =

𝐴0
𝑠

+
𝐴1 𝑠

𝑠2 +𝜔2
𝑝

+
𝐴𝑔

(
𝑠 cos𝜑+𝜔𝑔 sin𝜑

)
𝜔2
𝑔 +𝜑2 + 1

𝑅𝑒

(
1 + 1

𝛽

)(
𝜕2𝑢

𝜕𝑟2
+ 1
𝑟

𝜕2𝑢

𝜕𝑟

)
+𝐺𝑟𝑇 (𝑟, 𝑠) sin𝜙, (14)

Further, applying the finite Hankel transform zeroth-order subject to boundary conditions (12) in equation (14), obtain[
𝑠

𝑠+ (1 − 𝑠)𝛼
−𝑅

(
𝑠+ (1 − 𝑠)𝛼

𝑠+𝐺𝑠+ (1 − 𝑠)𝛼

)
+𝐻𝑎2 +𝑅

]
𝑢𝐻 (𝑟𝑛, 𝑠)

=

[
𝐴0
𝑠

+
𝐴1 𝑠

𝑠2 +𝜔2
𝑝

+
𝐴𝑔

(
𝑠 cos𝜑+𝜔𝑔 sin𝜑

)
𝜔2
𝑔 +𝜑2

]
𝐽1(𝑟𝑛)
𝑟𝑛

− 1
𝑅𝑒
𝑟𝑛 𝑢𝐻 (𝑟𝑛, 𝑠) +𝐺𝑟𝑇 (𝑟𝑛, 𝑠) sin𝜙, (15)

𝑃𝑒𝑠

𝑠+ 𝛼(1 − 𝑠)
𝑇𝐻 (𝑟𝑛, 𝑠) = −𝑟2𝑛 𝑇𝐻 (𝑟𝑛, 𝑠) +𝑅𝑝 𝑇𝐻 (𝑟𝑛, 𝑠) +

𝑃𝑒
(
𝑄𝑚 + 𝜃𝑚

)
𝑠

𝐽1(𝑟𝑛)
𝑟𝑛

. (16)

Here 𝑢𝐻 (𝑟𝑛, 𝑠) = ∫ 1
0 𝑟 𝑢(𝑟, 𝑠) 𝐽0(𝑟𝑛, 𝑟) 𝑑𝑟 is the finite Hankel transform of the velocity 𝑢(𝑟, 𝑠) =𝐿𝑇 [𝑢(𝑟, 𝑡)] and 𝑟𝑛, 𝑛 = 1, 2, ... are the positive 

roots of the equation 𝐽0(𝑥) = 0, where 𝐽0 represents the Bessel function of zeroth-order. By reducing the coefficient of 𝑢𝐻 (𝑟𝑛, 𝑠) and 
𝑇𝐻 (𝑟𝑛, 𝑠) in equations (15) and (16), the following equations can be obtained

𝑢𝐻 (𝑟𝑛, 𝑠) =
[
𝑠2 𝑥5𝑛 + 𝑠𝑥6𝑛 + 𝛼2

𝑠2 𝑥2𝑛 + 𝑠𝑥3𝑛 + 𝑥4𝑛

][(
𝐴0
𝑠

+
𝐴1 𝑠

𝑠2 +𝜔2
𝑝

+
𝐴𝑔

(
𝑠 cos𝜑+𝜔𝑔 sin𝜑

)
𝜔2
𝑔 +𝜑2

)
𝐽1(𝑟𝑛)
𝑟𝑛

+𝐺𝑟𝑇𝐻 (𝑟𝑛, 𝑠) sin𝜙

]
, (17)

𝑇𝐻 (𝑟𝑛, 𝑠) =
[(
𝑃𝑒 (𝑄𝑚 − 𝜃𝑚)

𝑥12𝑛

)(
(1 − 𝛼)
𝑠+ 𝑥13𝑛

+ 𝛼 𝑠−1

𝑠+ 𝑥13𝑛

)]
𝐽1(𝑟𝑛)
𝑟𝑛

. (18)

From equations (17) and (18), we get

𝑢𝐻 (𝑟𝑛, 𝑠) =
[
𝑥5𝑛
𝑥2𝑛

+
𝑥9𝑛
𝑠− 𝑥7𝑛

+
𝑥10𝑛
𝑠− 𝑥8𝑛

][(
𝐴0
𝑠

+
𝐴1 𝑠

𝑠2 +𝜔2
𝑝

+
𝐴𝑔

(
𝑠 cos𝜑+𝜔𝑔 sin𝜑

)
𝜔2
𝑔 +𝜑2

)

+
𝐺𝑟𝑃𝑒 (𝑄𝑚 − 𝜃𝑚) sin𝜙

𝑥12𝑛

(
(1 − 𝛼) 1

𝑠+ 𝑥13𝑛
+ 𝛼 𝑠−1

𝑠+ 𝑥13𝑛

)]
𝐽1(𝑟𝑛)
𝑟𝑛

, (19)

and rearrange equation (19) as

𝑢𝐻 (𝑟𝑛, 𝑠) =
𝐽1(𝑟𝑛)
𝑟𝑛

[
𝑥5𝑛
𝑥2𝑛

(
𝐴0
𝑠

+
𝐴1 𝑠

𝑠2 +𝜔2
𝑝

+
𝐴𝑔

(
𝑠 cos𝜑+𝜔𝑔 sin𝜑

)
𝜔2
𝑔 +𝜑2

)

+ 𝑠−1

𝑠− 𝑥7𝑛
𝐴0 𝑥9𝑛 +

𝑠−1

𝑠− 𝑥8𝑛
𝐴0 𝑥10𝑛

(
1

)(
𝑠

) (
1

)(
𝑠

)

5

+
𝑠− 𝑥7𝑛 𝑠2 +𝜔2

𝑝

𝐴1 𝑥9𝑛 + 𝑠− 𝑥8𝑛 𝑠2 +𝜔2
𝑝

𝐴1 𝑥10𝑛
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+
(

1
𝑠− 𝑥7𝑛

)(
𝑠

𝑠2 +𝜔2
𝑔

)
𝐴𝑔 cos𝜑𝑥9𝑛 −

(
1

𝑠− 𝑥7𝑛

)(
𝜔𝑔

𝑠2 +𝜔2
𝑔

)
𝐴𝑔 sin𝜑𝑥9𝑛

+
(

1
𝑠− 𝑥8𝑛

)(
𝑠

𝑠2 +𝜔2
𝑔

)
𝐴𝑔 cos𝜑𝑥10𝑛 −

(
1

𝑠− 𝑥7𝑛

)(
𝜔𝑔

𝑠2 +𝜔2
𝑔

)
𝐴𝑔 sin𝜑𝑥10𝑛

+𝐺𝑟
𝑃𝑒(𝑄𝑚 − 𝜃𝑚) sin𝜙

𝑥12𝑛

[
1

𝑠− 𝑥7𝑛
1

𝑠+ 𝑥13𝑛
(1 − 𝛼)𝑥9𝑛

]
+ 1
𝑠− 𝑥7𝑛

𝑠−1

𝑠+ 𝑥13𝑛
𝛼𝑥9𝑛

+ 1
𝑠− 𝑥8𝑛

1
𝑠+ 𝑥13𝑛

(1 − 𝛼)𝑥10𝑛 +
1

𝑠− 𝑥8𝑛
𝑠−1

𝑠+ 𝑥13𝑛
𝛼𝑥10𝑛

]
, (20)

where

𝑥1𝑛 =𝐻𝑎2 +𝑅+
𝑟2𝑛(1 +

1
𝛽
)

𝑅𝑒
,

𝑥2𝑛 = 1 +𝐺 − 𝛼 −𝑅−𝑅𝛼2 + 2𝑅𝛼 + 𝑥1𝑛 + 𝛼2𝑥1𝑛 − 2𝛼𝑥1𝑛 +𝐺𝑥1𝑛 −𝐺𝛼𝑥1𝑛,

𝑥3𝑛 = 𝛼 + 2𝑅𝛼2 − 2𝑅𝛼 − 2𝑥1𝑛𝛼2 + 2𝛼𝑥1𝑛 +𝐺𝛼,𝑥1𝑛, 𝑥4𝑛 = 𝛼2 𝑥1𝑛 −𝑅𝛼2,

𝑥5𝑛 = 1 + 𝛼2 − 2𝛼 +𝐺 −𝐺𝛼, 𝑥6𝑛 = −2𝛼2 + 2𝛼 +𝐺𝛼,

𝑥7𝑛 =
−𝑥3𝑛 +

√
𝑥23𝑛 − 4𝑥2𝑛𝑥4𝑛
2𝑥2𝑛

, 𝑥8𝑛 =
−𝑥3𝑛 −

√
𝑥23𝑛 − 4𝑥2𝑛𝑥4𝑛
2𝑥2𝑛

,

𝑥9𝑛 =
𝑥7𝑛

(
𝑥6𝑛 −

𝑥3𝑛 𝑥5𝑛
𝑥2𝑛

)
+ 𝑥4𝑛 𝑥5𝑛

𝑥2𝑛
+ 𝛼2

𝑥7𝑛 − 𝑥8𝑛
, 𝑥10𝑛 =

𝑥8𝑛

(
𝑥6𝑛 −

𝑥3𝑛 𝑥5𝑛
𝑥2𝑛

)
+ 𝑥4𝑛 𝑥5𝑛

𝑥2𝑛
+ 𝛼2

𝑥8𝑛 − 𝑥7𝑛
,

𝑥11𝑛 = 𝑟2𝑛 −𝑅𝑝, 𝑥12𝑛 = 𝑃𝑒+ 𝑥11𝑛 + 𝛼 𝑥11𝑛, 𝑥13𝑛 =
𝛼 𝑥𝑚11𝑛
𝑥12𝑛

.

Inverse Laplace transform of function 𝑢𝐻 (𝑟𝑛, 𝑠) in equation (20) is formulated by applying the Hartley’s and Robotnov functions

−1
[

1
𝑠𝑤 + 𝑦

]
= 𝐹𝑤(−𝑦, 𝑡) =

∞∑
𝑛=0

(−𝑦)𝑛𝑡(1+𝑛)𝑤−1

Γ[(1 + 𝑛)𝑤]
,𝑤 > 0,

−1
[

𝑠𝑧

𝑠𝑤 + 𝑦

]
=𝑅𝑤,𝑧(−𝑦, 𝑡) =

∞∑
𝑛=0

(−𝑦)𝑛𝑡(1+𝑛)𝑤−1−𝑧

Γ[(1 + 𝑛)𝑤− 𝑧]
, 𝑅𝑒(𝑤− 𝑧) > 0.

By using inverse Laplace transform on equation (20), we obtain

𝑢𝐻 (𝑟𝑛, 𝑡) =
𝐽1(𝑟𝑛)
𝑟𝑛

[
𝑦1𝑛𝑡+ 𝑦2𝑛𝑡+ 𝑦3𝑛𝑡+ 𝑦4𝑛𝑡+ 𝑦5𝑛𝑡+ 𝑦6𝑛𝑡

]
, (21)

where

𝑦1𝑛𝑡 =
𝑥5𝑛
𝑥2𝑛

(
𝐴0 𝛿(𝑡) +𝐴1 cos𝜔𝑝 𝑡+𝐴𝑔 cos𝜑 cos𝜔𝑔 𝑡−𝐴𝑔 sin𝜑 sin𝜔𝑔 𝑡

)
,

𝑦2𝑛𝑡 =
𝐴0𝑥9𝑛
𝑥7𝑛

(
𝑒𝑥7𝑛𝑡 − 1

)
+
𝐴0𝑥10𝑛
𝑥8𝑛

(
𝑒𝑥8𝑛𝑡 − 1

)
,

𝑦3𝑛𝑡 =𝐴1 𝑥9𝑛 𝑒
𝑥7𝑛𝑡 ∗ cos𝜔𝑝 𝑡+𝐴1 𝑥10𝑛 𝑒

𝑥8𝑛𝑡 ∗ cos𝜔𝑝 𝑡,

𝑦4𝑛𝑡 =𝐴𝑔 cos𝜑𝑥9𝑛𝑒𝑥7𝑛𝑡 ∗ cos𝜔𝑔 𝑡−𝐴𝑔 sin𝜑𝑥10𝑛𝑒𝑥8𝑛𝑡 ∗ sin𝜔𝑔 𝑡,

𝑦5𝑛𝑡 =𝐴𝑔 cos𝜑𝑥10𝑛𝑒𝑥8𝑛𝑡 ∗ cos𝜔𝑔 𝑡−𝐴𝑔 sin𝜑𝑥10𝑛𝑒𝑥8𝑛𝑡 ∗ sin𝜔𝑔 𝑡,

𝑦6𝑛𝑡 =
𝐺𝑟𝑃𝑒(𝑄𝑚 − 𝜃𝑚) sin𝜙

𝑥12𝑛

[
(1 − 𝛼)𝑥9𝑛 𝑒𝑥7𝑛𝑡 ∗ 𝑒−𝑥13𝑛𝑡 + (1 − 𝛼)𝑥10𝑛 𝑒𝑥8𝑛𝑡 ∗ 𝑒−𝑥13𝑛𝑡

+(1 − 𝑒−𝑥13𝑛𝑡)
(
𝛼 𝑥9𝑛 𝑒

𝑥7𝑛𝑡

𝑥13𝑛
+
𝛼 𝑥10𝑛 𝑒

𝑥8𝑛𝑡

𝑥13𝑛

)]
.

From equation (18), we obtain

𝑇𝐻 (𝑟𝑛, 𝑡) =
𝐽1(𝑟𝑛)
𝑟𝑛

𝑦7𝑛𝑡, (22)

where

𝑦7𝑛 =
𝑃𝑒 (𝑄𝑚 − 𝜃𝑚)
𝑥12𝑛𝑥13𝑛

[
𝑥3𝑛(1 − 𝛼)𝑒−𝑥13𝑛𝑡 − 𝛼(𝑒−𝑥13𝑛𝑡 − 1)

]
.

6

By inverting the finite Hankel transform in equations (21) and (22) we obtain
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Fig. 2. Comparison of axial velocity 𝑢(𝑟, 𝑡) between Maiti et al. (2020) and present study.

𝑢(𝑟, 𝑡) = 2
∞∑
𝑛=1

𝐽0(𝑟𝑟𝑛)
𝑟𝑛 𝐽1(𝑟𝑛)

[
𝑦1𝑛𝑡+ 𝑦2𝑛𝑡+ 𝑦3𝑛𝑡+ 𝑦4𝑛𝑡+ 𝑦5𝑛𝑡+ 𝑦6𝑛𝑡

]
, (23)

𝑇 (𝑟, 𝑡) = 2
∞∑
𝑛=1

𝐽0(𝑟𝑟𝑛)
𝑟𝑛 𝐽1(𝑟𝑛)

𝑦7𝑛𝑡. (24)

Equation (13) results the magnetic particle velocity as follows

𝑣(𝑟, 𝑠) = 𝑠+ (1 − 𝑠)𝛼
(1 +𝐺)𝑠+ (1 − 𝑠)𝛼

𝑢(𝑟, 𝑠),

𝑣(𝑟, 𝑡) = 𝑥14𝑛 [𝑢(𝑟, 𝑡)] , 0 < 𝛼 < 1, (25)

where

𝑥14𝑛 =
𝐺𝛼

(1 +𝐺 − 𝛼2) + 𝛼
.

In equation (21), 𝑓 ∗ 𝑔 is the convolution product of 𝑓 and 𝑔, and is given as

(𝑓 ∗ 𝑔)(𝑡) =

𝑡

∫
0

𝑓 (𝜏)𝑔(𝑡− 𝜏)𝑑𝜏.

4. Results and discussions

This analysis investigated the consequences of unstable Casson blood flow through an inclined artery with magnetic particles and 
thermal radiation. Using numerical simulations and solutions, the data related to the fractional-order parameter, x, and the other 
flow parameters on fluid velocity, temperature profiles, and magnetic particle distributions are presented (23), (24) and (25) with 
the aid of Mathcad software. The implications of fractional parameters for blood flow, magnetic particle velocity and temperature 
distribution have been graphically demonstrated. The effects on velocity and temperature profiles of numerous non-dimensional 
parameters are observed, including fractional parameters 𝛼, time 𝑡, Reynolds number 𝑅𝑒, Hartmann number 𝐻𝑎, Casson fluid 
parameter 𝛽, radiation parameter 𝑅𝑎 and metabolic heat supply 𝑄𝑚.

For numerical computation, the values of the following parameters are fixed 𝐴0 = 0.05, 𝐴1 = 0.05, 𝐺 = 1, 𝐵0 = 0.005, 𝑅 = 0.5, 
𝑅𝑒 = 10, 𝜔 = 𝜋

4 , 𝜙 = 𝜋

4 , 𝑡 = 0.3, 𝐻𝑎 = 2, 𝛽 = 0.8, 𝑃𝑒 = 1.5 and 𝑄𝑚 = 0.1 as studied by [30][47]. All velocity and temperature profiles have 
been plotted for various fractional parameters and 𝑟 values. It is obvious that the fractional parameter is important for regulating body 
temperature and blood pressure. The range of values of the fractional parameters is set as 𝛼 ∈ [0, 1]. In current study, the behaviour
of Casson fluids with magnetic particles that flow through an inclined artery with thermal radiation effect is considered. The current 
results have been compared with the results of [30] for both velocity and temperature profile having same fluid properties and 
thermal radiation effects as shown in Figs. 2 and 3. For the purpose of comparison, 𝐴0 = 0.05, 𝐴1 = 0.05, 𝐺 = 1, 𝐵0 = 0.005, 𝑅 = 0.5, 
𝑅𝑒 = 10, 𝜔 = 𝜋

4 , 𝜙 = 𝜋

4 , 𝑡 = 0.3, 𝐻𝑎 = 2, 𝛽 = 0.8, 𝑃𝑒 = 1.5 and 𝑄𝑚 = 0.1 so that both problems are in the identical configurations.
Fig. 4 shows the velocity profile of blood flow for different fractional parameter values, 𝛼. It shows that velocity increases as 

parameter 𝛼 increased. It is notable that the fractional parameter, 𝛼, would completely affect the velocity profiles. In this case the 
ordinary fluid could be obtained by setting 𝛼 = 1. Fig. 5 indicates the difference in blood flow with Reynolds number. The figure 
shows that the velocity of blood flow steadily increases as the Reynolds number increases and becomes more flattened for the 
ordinary fluid. The Reynolds number shows increased blood velocity, which indicates that the strength of inertial forces within the 
fluid due to the apparent number of viscous forces that have been removed and resisted the flow at a limited number of Reynolds.

Fig. 6 displays the variation of Hartmann number 𝐻𝑎, over the blood particle motion. It can be seen from the figure that by 
7

increasing the strength of the applied magnetic field, the velocity of the magnetic particle diminished. It is clear that when the 
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Fig. 3. Comparison of temperature profile 𝑇 (𝑟, 𝑡) between Maiti et al. (2020) and present study.

Fig. 4. Variation of axial velocities 𝑢(𝑟, 𝑡) and 𝑣(𝑟, 𝑡) for different values of fractional parameter, 𝛼.

variation of Hartman number devoted to the flow field leads to divergence of Lorentz force. It tends to produce more resistance to 
transport phenomena resulting in reduce axial velocity values. Casson effect is more relevant for narrow arteries where red blood 
cells could accumulate near the artery’s axis due to rotation, forming a cell-depicted area. Fig. 7 has been plotted to clarify the effects 
of the Casson fluid parameter of the magnetic particle velocity. From this figure, it is evident that with an increase in the Casson 
parameter 𝛽, the fluid’s speed increased. An increase in the Casson fluid parameter reduces the yield’s tension and thus decreases the 
thickness of the boundary layer. Fig. 8 shows the influence of different inclination angle on velocities. Both velocities are increases 
with the increase of 𝜙. Due to the resistive force, it is important to note that magnetic particles speed is slower than blood velocity.

Figs. 9-11 display the impact of temperature profiles for various values of the fractional parameter, radiation parameter, and 
metabolic heat source. The temperature distribution is significantly affected by the multiple values of the fractional parameter 𝛼, 
as shown in Fig. 9. It shows that the temperature decreases with an increase in the fractional parameter. This indicates that the 
8

fractional-order fluid model’s temperature distribution would be much higher than the ordinary one. In Fig. 10, the temperature 
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Fig. 5. Variation of axial velocities 𝑢(𝑟, 𝑡) and 𝑣(𝑟, 𝑡) for different values of Reynolds number, 𝑅𝑒.
9

Fig. 6. Variation of axial velocities 𝑢(𝑟, 𝑡) and 𝑣(𝑟, 𝑡) for different values of Hartmann number, 𝐻𝑎.
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Fig. 7. Variation of axial velocities 𝑢(𝑟, 𝑡) and 𝑣(𝑟, 𝑡) for different values of Casson parameter 𝛽.

profiles for various radiation parameters are presented. Temperature amplitude changes as the thermal radiation increases. The 
central line has enhanced temperature. During hyperthermia, this temperature spread is particularly essential; the inner blood 
temperature rises without impacting the underlying blood vessel tissue. Fig. 11 shows the results for small variation values of 
metabolic heat sources 𝑄𝑚 to the temperature profile. With the help of metabolic heat parameters within the bloodstream, additional 
heat is produced to regulate internal body temperature. When the metabolic heat sources increases, the temperature in the blood 
vessel increases as well. This finding confirms the results obtained in [30].

5. Conclusions

A mathematical model has been developed to analyse the fractional-order blood flow model on the non-Newtonian Casson fluid 
flow through an inclined artery under the influence of an external magnetic field and thermal radiation. Using the Laplace and 
finite Hankel transform of order zero, the mathematical model’s solution is obtained. Usually, the extraction of the ordinary model 
involves an additional mathematical solution; however, the ordinary model for the velocity equation can be obtained directly using 
the present technique, since the equation is fully compatible. The fractional parameter order significantly impacts the distributions 
of velocity, magnetic particles, and temperature. Blood flow motion increases as the fractional parameter, time, Reynolds number 
and the parameter of Casson fluid increases, and decreases as the Hartmann value increases. Additionally, fractional parameters, 
radiation, and metabolic heat source all play an essential role in regulating blood temperature. The findings obtained in this analysis 
are technically important and thus interesting to understand the drug particle concentration phenomenon for drug distribution 
applications.
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Fig. 8. Variation of axial velocities 𝑢(𝑟, 𝑡) and 𝑣(𝑟, 𝑡) for different values of inclination angle, 𝜙.

Fig. 9. Variation of temperature profile 𝑇 (𝑟, 𝑡) for different values of fractional parameter, 𝛼.
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Fig. 10. Variation of temperature profile 𝑇 (𝑟, 𝑡) for different values of radiation parameter, 𝑅𝑎.

Fig. 11. Variation of temperature profile 𝑇 (𝑟, 𝑡) for different values of metabolic heat source, 𝑄𝑚 .
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