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Sarcopenia represents an increasing public health risk due to the rapid aging of the world’s population. It is characterized by both
low muscle mass and function and is associated with mobility disorders, increased risk of falls and fractures, loss of independence,
disabilities, and increased risk of death. Despite the urgency of the problem, the development of treatments for sarcopenia has
lagged. Increased reactive oxygen species (ROS) production and decreased antioxidant (AO) defences seem to be important
factors contributing to muscle impairment. Studies have been conducted to verify whether physical exercise and/or AOs could
prevent and/or delay sarcopenia through a normalization of the etiologically relevant ROS imbalance. Despite the strong
rationale, the results obtained were contradictory, particularly with regard to the effects of the tested AOs. A possible
explanation might be that not all the agents included in the general heading of “AOs” could fulfill the requisites to counteract
the complex series of events causing/accelerating sarcopenia: the combination of the muscle-directed antioxidants creatine
and coenzyme Q10 with physical exercise as a biomedical rationale for pleiotropic prevention and/or treatment of
sarcopenia is discussed.

1. Introduction

Sarcopenia, that is, age-associated muscle weakness and
reducedmuscle mass, is characterized by a decrease inmuscle
fiber number and size, slower contraction speed, shift in fiber
type composition, and changes in various metabolic parame-
ters. These features link to muscular dysfunction [1], namely,
the lossof strengthandperformance,witha riskofadverseout-
comes such as falls and fractures, impaired ability to perform
activities of daily living, and increased risk of death [2].

Sarcopenia is not a disease but a syndrome caused bymultiple
factors [3]: among these, oxidative stress and mitochondrial
dysfunction have long been reported. Although the oxidative
stress theory of aging is under continuous reappraisal [4] tak-
ing into account, for example, the hormetic nature of reactive
oxygen species (ROS) along with themerging of different the-
ories in a newone, there is accumulating evidence that the bio-
logical process of aging is characterized by oxidative stress and
mitochondrial dysfunction [5], which in turn result in a signif-
icant decline of aerobic capacity in the senescent muscle [6].
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Although the reasons for the increased ROS production
in aged subjects are still not entirely clear, the analysis of
the literature shows that age-related defects in the mitochon-
drial respiratory chain (MRC) are considered a crucial factor
[7]. In particular, the production of superoxide by complex I
(NADH-ubiquinone oxidoreductase) is strongly dependent
on the plasticity of the supramolecular organization of the
MRC [8], which may modulate the conformational state of
this multisubunit enzyme complex, the stability of its ROS-
generating domain, and the consequent leak of electrons
[9], despite the absence of manifested genetic defects.
Furthermore, the arrangement of active sites within the
supercomplex architecture may help to limit ROS production
by complex III (ubiquinol-cytochrome c oxidoreductase)
[10]. In our hypothesis, the dissociation of respiratory super-
complexes may therefore link to age-associated oxidative
stress and energy failure in a vicious circle also including
membrane lipid peroxidation and mtDNA damage as possi-
ble concurring factors [11].

Such a situation may lead to a profound imbalance of
ROS physiological signalling [12], which plays a pivotal
and positive role in muscle homeostasis and function, par-
ticularly in the adaptive response to physical exercise [13].
In fact, a relatively mild action of ROS produced during
exercise leads to ergogenic and adaptive stimuli. Other-
wise, if the cell is overwhelmed by the action of ROS, then
subcellular damage, signalling dysregulation, and aging will
take place.

The dual nature of ROS (i.e., as a general feature of detri-
mental damage to cellular structures in aging and as second-
ary messengers) is also highlighted by recent results [14]
illustrating that increasing ROS production specifically from
over-reduced coenzyme Q (CoQ) pool and through respira-
tory complex I reverse electron transport generates a ROS
signal necessary for cell homeostasis, which extends Dro-
sophila lifespan despite reducing mitochondrial respiration.
Scialo et al. [14] conclude that, if such mechanism is
conserved in mammals, manipulation of the redox state of
CoQ may be a strategy for the extension of both mean and
maximum lifespan and the road to new therapeutic interven-
tions for aging and age-related diseases.

The age-related imbalance between ROS and antioxidant
(AO) defences is also reputed as a primary cause of detrimen-
tal chronic inflammatory reactions in human skeletal muscle
[15, 16]. Another emerging line of reasoning considers the
contribution of epigenetic pathways both at nuclear and at
mitochondrial levels. The epigenetic mechanisms involved
in the aging process include alterations of the DNA methyla-
tion status, modifications of the histone tails (mainly acetyla-
tion and methylation), and changes in the expression of
noncoding RNAs [17]. These modifications are strictly
dependent on the cellular energy status and can be influenced
by nutritional habits and cellular stress conditions, including
excessive mitochondrial ROS levels [18].

There is currently no optimal treatment for sarcopenia.
Potential intervention strategies for relieving the symptoms
of the syndrome include physical activity, hormone adminis-
tration, caloric restriction, and nutritional interventions
including intake of supplementary AOs [19].

As to physical activity, it is increasingly considered as a
promising strategy to limit age-related sarcopenia due to
the potent associated adaptive response [20]. In fact, exercise
interventions improve the quality of life in older adults and,
in particular, resistance exercise effectively modulates muscle
mass and function [21, 22]. From a molecular point of view,
for example, exercise training has been shown to ameliorate
systemic AO capacity [23] and to delay the age-related
decrease of DNA repair capacity [24] and of mitochondrial
biogenesis [25].

At the same time, since increased muscle contraction in
elderly people may lead to unmatched ROS production, it
has been suggested to adopt supplementation regimens with
dietary AOs. However, this assumption is controversial due
to the lack of strong evidence indicating adverse and/or
positive effects of combining exercise training with dietary
supplementation with generic AOs [26].

Considering this last notion, that is, the hormetic nature
of ROS and the complexity of the diverging responses they
elicit, the combination of exercise training with rationally
selected, muscle-directed AOs, namely, creatine (Cr) and
coenzyme Q10 (CoQ10), is discussed in this review.

2. The Multifactorial Link between Sarcopenia
and Oxidative Stress

Sarcopenia has been defined as the presence of both low
muscle mass and low muscle function that occurs with
advancing age [1]. Age-associated muscle weakness and
reduced muscle mass are characterized by a decrease in
muscle fiber number and size, slower contraction speed, shift
in fiber type composition, and changes in various metabolic
parameters. These alterations are associated with an age-
related decline in several whole-body physiological variables,
such as maximal oxygen uptake, endurance performance,
insulin sensitivity, muscle power, and strength [27–29].

Here, we focus on the relationships between age-
associated oxidative imbalance/stress and sarcopenia. Since
oxidative stress is not the only cause of muscle aging, for a
more comprehensive review on the etiopathological factors
and mechanisms involved in sarcopenia, see [30].

Sarcopenia is caused by both intrinsic and extrinsic
factors [3]. Among these factors [30], oxidative stress
and mitochondrial dysfunction are known to participate in
the aging process of the skeletal muscle and other organs
[31, 32]. Muscle mitochondrial dysfunction may cause both
loss of mitochondrial density and impairment of oxidative
phosphorylation due to lower respiratory capacity resulting
in reduced ATP production [6]: this evidence led to the
proposal of the “mitochondrial theory of sarcopenia” [33].

The age-associated increase of ROS causes damage to
macromolecules, in particular, to MRC components, which
further increases the production of free-radicals resulting in
the accumulation of mitochondrial damage and ineffective
mitochondria quality control [31, 33].

Defective operation of the enzyme complexes of the MRC
constitutes a key mechanism involved in the age-associated
loss of bioenergetic reserve capacity and enhanced electron
leakage from complexes I, II, and III. However, it is worth
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noting that the primary event responsible for aging may be
the structural damage of both lipids and proteins, as induced
by ROS directly and indirectly via the alteration of the signal-
ling pathways modulating the mitochondrial activity [11].
Peroxidation of bioactive lipids and phospholipids of the
inner mitochondrial membrane can perpetuate a vicious
circle by hampering the supramolecular organization of the
respiratory supercomplex I1III2 (SC) [34] thus favouring fur-
ther generation of the superoxide anion radical by complex I,
which eventually leads to catastrophic metabolic deficiency
of mitochondria. One of the first signals in mitochondria is
oxidized cardiolipin (CL) [35]. Bound CL molecules are seen
in the crystal structures of the respiratory complexes and
have been recently shown to stabilize, indeed, the respiratory
supercomplexes. Selective peroxidation of CL, which in the
animal variant carries polyunsaturated fatty acid chains,
was demonstrated in response to mitochondrial oxidative
stress in various experimental models, and among others, a
consequence of CL peroxidation is the alteration of the
supercomplex assembly with impaired MRC function; see
[36] for review. Indeed, disaggregation of SC and the conse-
quent loss of CoQ buried in its interface still allow electron
transfer through a free CoQ pool in the membrane lipid
bilayer, but in a less efficient way because the CoQ content
in mitochondria is not saturating for maximal respiratory
activity. In fact, Lenaz et al. [36] demonstrated that electron
transfer between complex I and complex III (i.e., NADH-
cytochrome c oxidoreductase activity) in isolated bovine
heart mitochondria can take place at a high rate as long as
the SC organization is not destroyed by in vitro treatment
with high-dose n-dodecyl-β-D-maltoside. These data can
be interpreted as maintenance of facilitated CoQ channeling
within the respiratory SC as long as the SC itself is preserved,
whereas NADH-cytochrome c oxidoreductase activity signif-
icantly decreases when electron transfer in the CoQ region
occurs under conditions of less efficient collision-based pool
behaviour (see also Section 6). As a consequence, the alter-
ation of electron transfer may elicit strong enhancement of
ROS generation. Several additional observations in cellular
and animal models link together SC dissociation and
enhanced ROS production [37–39].

Muscle cell aging is also characterized by a build-up of
oxidatively modified proteins. The steady-state level of
oxidized proteins depends on the balance between the rate
of protein oxidative damage and the rates of protein degrada-
tion and repair. The proteasomal system is the major intra-
cellular proteolytic pathway implicated in the degradation
of oxidized proteins, and its function declines progressively
with age. Therefore, the accumulation of oxidized proteins
can be due to increased protein damage, decreased oxidized
protein degradation and repair, or the combination of both
mechanisms [40].

The complex scenario described so far also implies
derangement in ROS-mediated cell signalling [41]. Redox
signalling refers to a unique signal transduction pattern
wherein some ROS serve as signalling molecules to modulate
specific residues of the targets that cause changes in enzyme
activity, transcription factor/cofactor association/dissocia-
tion, DNA binding, and gene expression [42, 43].

Alteration of the signalling network involving ROS has
received increasing recognition over the past two decades
[12]. Such alteration/dysregulation phenomena caused by
excessive ROS also play an important role in sarcopenia. To
this regard, however, it is important drawing some consider-
ations. Firstly, ROS are not only detrimental: indeed, physio-
logical ROS levels promote the activation of signalling
cascades contributing to muscle homeostasis; secondly, the
concept of “excessive” is not absolute, depending on the
balance with cellular AO defences and cellular conditions
[44]; and thirdly, even the lack of ROSmay cause a detrimen-
tal cessation of signalling cascades important for muscle
physiology [5, 44]. Given this premise, the most relevant
redox-sensitive signalling pathways which may be imbal-
anced by excessive ROS are NF-κB [45], MAPKs [46] and
PGC-1α [47], and Akt/mTOR [48]. Indeed, all these paths
are activated by exercise and one of the major mechanisms
of their activation relies on the increase of H2O2 levels [5]
within a physiologically compatible range.

For example, NF-κB responsive elements are present in
the promoter regions of genes encoding catalase, glutathione
peroxidases, andMn- and Cu-Zn-superoxide dismutase [49].
PGC-1α is an inducible transcriptional coactivator partici-
pating in almost all aspects of mitochondrial functions rang-
ing from energy fuel selection, muscle fiber differentiation
and transformation, AO gene expression, and mitochondrial
biogenesis to fusion and fission dynamics [50, 51]. PGC-1α
has been implicated as a major regulator of the mitochondrial
biogenesis through the interaction with NRF-1 that stimu-
lates the transcription of many mitochondrial genes as well
as TFAM, a direct regulator of mitochondrial DNA replica-
tion and transcription [52]. PGC-1α has a direct role in
preserving muscle plasticity [47], and its age-related down-
regulation may play an important role in the decline of
mitochondrial biogenesis and turnover contributing to the
aetiology of sarcopenia [53, 54].

Mitochondrial function also depends on the coordination
of nuclear and mitochondrial genomes, and therefore, the
transcription and translation of both are coregulated. In fact,
on one hand, the nucleus controls the mitochondrial func-
tion by promoting biogenesis and regulating mitochondrial
activity to meet the cellular needs (“anterograde-regulation”);
on the other, mitochondria can control the expression of
nuclear genes modifying cellular function by reprogramming
its metabolism (“retrograde response”). The study of mito-
nuclear communication has received great interest since it
constitutes a robust network maintaining cellular homeosta-
sis, regulating the adaptation to a variety of stressors, and
promoting longevity [18].

With regard to mTOR signalling, its interplay with ROS
is very complex, since ROS play both activating and inhibi-
tory roles. Increasing evidence suggests that mTORC1 is a
critical ROS mediator [55]. Recently, the effect of excessive
ROS accumulation on the PI3K/AKT/mTOR signalling
axis was evidenced by the near complete inhibition of
mTORC1 activity as reflected by a decrease of the phos-
phorylated forms of proteins that are immediately down-
stream of the mTORC1 complex, namely, 4EBP1, p70S6K,
and rpS6 [56, 57].
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It is worth noting that the events described in this section
are not limited to free radicals participating in signalling
cascades themselves but may also be related to changes in
the redox potential of different cellular compartments
involved in redox-sensitive cascades according to their
intrinsic susceptibility [58].

Oxidative stress does not only act as a direct effector of
inflammation but also appears to be a primary causal factor
in producing a chronic state of low-grade inflammation
through activation of redox-sensitive transcription factor
NF-κB [59]. Age-associated mitochondrial overproduction
of ROS not only deregulates intracellular signalling but also
affects intercellular communication. In particular, oxidative
damage promotes senescence of cells, which in turn acquire
a senescence-associated secretory phenotype characterized
by the release of proinflammatory cytokines and several
miRNAs [60] that alter the intercellularmilieu and finally lead
to inflammaging. Moreover, low-grade inflammation alters
cellular protein metabolism to favour proteolysis over syn-
thesis, thereby accelerating muscle atrophy [61] probably
through the accumulation of TNFα and proinflammatory
cytokines that in turn leads to protein degradation via protea-
someactivation and reduced skeletalmuscle protein synthesis.

Recent studies support the idea that aging impacts on
muscle stem cell function in terms of their capacity to self-
renew, thus altering the composition of muscle niche. More-
over, a growing body of evidences points towards crosstalk
between intrinsic (ROS, mitochondrial dysfunction, etc.)
and extrinsic (circulatory factors and altered muscle niche)
factors that on the whole contribute to poor efficiency of
the muscle repair capacity at a geriatric age [3]. Muscle niche
is regulated by growth and trophic factors, cytokines, and
extracellular miRNAs carried by exosomes [62]. Extracellular
miRNAs are modulated by exercise, immobilization, and
muscular diseases. In addition, the expression of several
miRNAs is also altered during aging [63].

Counteracting muscle mass loss during aging is a strong
predictor for longevity in humans [64]. However, there is
currently no optimal treatment for sarcopenia: potential
intervention strategies include, among others, physical activ-
ity and nutritional supplementation (e.g., AOs) [19].

3. The Hormetic Nature of Exercise Training in
the Elderly

Physical exercise has been shown to activate various redox-
sensitive signalling pathways that control mitochondrial
biogenesis, AO defence, inflammation, protein turnover,
apoptosis, and autophagy [5, 65]. Although these stimulatory
effects of exercise decline with aging, they are not completely
abolished. As a consequence, the stimulation of these residual
capacities through exercise training represents an effective
countermeasure against aging-associated transcriptional
remodelling. In line with this evidence, it has been shown
that the magnitude of increase in aerobic capacity following
endurance training in older individuals is similar to that in
younger subjects [66]. Thus, aged people can still benefit
from regular physical activity in the appropriate forms and
at proper intensity to preserve muscle function.

Indeed, there is a growing body of evidence showing
that exercise interventions improve the quality of life in
older adults [21] and particularly resistance exercise
effectively modulates muscle mass and function in elderly
people [22, 67].

Exercise training impacts muscle function through epige-
netic mechanisms including histone deacetylation and loss of
promoter methylation that modify exercise-responsive gene
expression (i.e., PGC-1α, TFAM, and MEF2A), even after
an acute bout of exercise, triggering structural and metabolic
adaptations in skeletal muscle [68].

Physical exercise-mediated muscle health and longevity
also involve sirtuin-1-regulated pathways promoting mito-
chondrial function and reduces the production of ROS
through regulation of PGC-1α, the master controller of mito-
chondrial biogenesis [69], along with increased NRF-1 and
TFAM levels. This results in increased mitochondrial oxida-
tive capacity and ATP production, enhanced expression of
tricarboxylic acid cycle and MRC enzymes, higher fatty acid
oxidation, and mitochondrial morphological changes [47].

In particular, increased expression of PGC-1α in muscle
not only promotes mitochondrial biogenesis, enhances
aerobic metabolism, and mimics the benefits of endurance
training but also augments AO defences [53]. In addition,
increased muscle PGC-1α activity delays several age-related
metabolic defects, such as chronic inflammation and
reduction in insulin sensitivity, thus causing important
consequences at systemic level. These effects of PGC-1α
activity in muscles presumably result from several PGC-1α-
regulated processes, including resistance to oxidative stress
[53], inhibition of atrophy [70], regulation of muscle metab-
olism, and release of myokines [71].

Moreover, using animal models, it has been demon-
strated that endurance exercise rescues mitochondrial
defects and premature aging of mice with defective proof-
reading exonuclease activity of mitochondrial DNA
polymerase γ [72]; exercise protects animals from neuro-
degeneration [73, 74] and can extend lifespan in rats
[75], and it has been hypothesized that it could improve
life expectancy in humans [76].

In older humans, beyond muscle mass, resistance
training could modify the balance between oxidants/AOs
by improving AO defences. According to this view, it has
been reported that resistance training reduces the 8-OHdG/
creatinine ratio in urine, an effect that Parise et al. [77]
hypothesized to depend on an upregulation of glutathione
peroxidase activity [77]. However, recent literature suggests
that improvements are closely related to the intensity of
training protocols that must contain sufficient volume for
each muscle group (3–5 sets, 10 repetitions) and intensities
between 50 and 80% of 1 repetition maximum [41].

Increased muscle loading induces adaptive responses
through a myriad of intracellular signalling events such as
activation of the Akt/mTOR [48, 78, 79] and myostatin path-
ways [80]. In addition to myostatin, contracting muscle
produces other myokines including insulin-like growth
factor-1 (IGF-1) [81]. Although muscle-derived IGF-1 is not
detected in the circulation [82], it inducesmuscle hypertrophy
in an autocrine/paracrine fashion following exercise [83].
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Besides stimulating muscular anabolism, exercise inhibits
protein degradation. Indeed, PI-3K/Akt inhibits the forkhead
box transcription factor O (Fox-O), a potent inducer of the
ubiquitin-proteasome system, and mTOR decreases caspases
activity. Furthermore, physical inactivity stimulates Fox-O,
which can also inhibit the mTOR pathway [84]. Further-
more, recent evidence shows that physical exercise, in the
form of both endurance and resistance training, induces
autophagy with metabolic beneficial effects [85, 86].
Although the function of exercise-induced autophagy is still
unclear, it is widely accepted that autophagy may be particu-
larly important in a sarcopenic muscle by promoting the
turnover of cellular components through the removal of
damaged proteins and organelles.

Since satellite cells are critical players in skeletal muscle
plasticity and repair, they have been suggested to be involved
in the development of sarcopenia. Even if there is controversy
as to whether satellite cells actually decrease in number with
aging [87–89], their proliferative response and regenerative
capacity are reduced in the aged muscle [90, 91]. Evidence
indicates that reduced regenerative function is more likely
the result of a less optimal cellular environment than the cells
being deficient due to age [3]. Exercise can enhance the
activity of stem cells, including muscle satellite cells. Recent
studies show that the increase in muscle mass and myonuc-
lear content in response to exercise is accompanied by an
increase in the number and activation status of satellite cells
[92]. On the whole, it has been shown that regular exercise
has a significant effect on the prevention of these age-
associated losses [93]. Chronic exercise could be considered
as an effective measure against age-induced oxidative stress
by improving pleiotropic responses able to scavenge ROS
and repair damaged molecules/organelles [94].

Nevertheless, the available information shows that acute
exercise increases ROS production and oxidative stress dam-
age in older adults; this paradoxical effect is due to the ability
of the exercise itself to increase the formation of ROS to a
level that may induce significant yet tolerable damage, which
can, in turn, promote beneficial adaptations [95].

In general, exercise at high intensity or for a long dura-
tion can enhance ROS and free radical production, induce
damage in various tissues [96], and decrease circulating
AOs (uric acid, SH-groups, alpha-tocopherol, beta-carotene,
and retinol) [97]. However, exercise at moderate intensity
and duration can generally be regarded as an upregulator of
AO defences and a downregulator of ROS/free radical pro-
duction under basal conditions and during exercise [98]. A
recent study by Bouzid et al. [41] compared the effects of
regular physical activity at high and moderate intensities on
oxidative stress in older adults. The same authors concluded
that both low and high physical exercise levels help to
maintain better AO defences, namely, SOD, glutathione
peroxidase, and glutathione reductase in older adults.

4. Nutritional Antioxidant Intervention in the
Elderly Subjected to Physical Exercise

The intake of supplemental AOs in training elderly people
should in principle abrogate the ROS-related negative

effects elicited by muscle contraction without affecting
the positive ones.

Despite this rationale, the effects of supplementation with
AOs in training elderly people on physical performance and
muscle conditions are controversial: for example, some
studies using resveratrol, vitamin C, and vitamin E showed
protective actions resulting in the reduction of muscle dam-
age [99–101], and supplementation with an AO mixture
(vitamins E and A, rutin, zinc, and selenium) plus leucine
induced an anabolic response in an old muscle [102]. Con-
versely, other preclinical trials using vitamins C and E
demonstrated that AO supplementation may abrogate the
benefits of exercise, probably by silencing ROS signalling
[103]. Ristow et al. [104] and Gomez-Cabrera et al. [105]
have recently reported that AO supplementation can
decrease training efficiency and prevent exercise-induced
mitochondrial biogenesis in healthy humans. Furthermore,
a recent study showed no effects of vitamins C and E supple-
mentation on muscle function in response to exercise-
induced adaptation [106].

Another study dealt with N-acetyl-cysteine administra-
tion aimed at fostering reduced glutathione availability dur-
ing an 8-day period after eccentric exercise-induced muscle
damage. In this study, it has been shown that, although redox
status alterations attenuate oxidative damage and inflamma-
tion, they may delay muscle long-term recovery by interfer-
ing with intracellular signalling pathways [107].

Moreover, protein supplementation (e.g., whey and soy
proteins and isoflavone-enriched soy proteins) has been
proposed as a new AO strategy primarily because of its capac-
ity to enhance the availability of reduced glutathione and the
activity of the corresponding AO enzyme system. However,
there is still a lack of information about the anabolic potential
of dietary protein intake and protein supplementation in
elderly people with increased systemic inflammation [108].

On the whole, AO supplements may optimize the
training effects by protecting against exercise-induced ROS
overproduction, but on the other hand, overdosed supple-
mentation may blunt training beneficial adaptive effects.

However, it is important to note that these studies have
been conducted using mainly vitamins C and E and results
have been generally extended to the broader category of
AOs. This term represents a rough simplification that can
be misleading, since individual AOs differ in their mecha-
nisms of action, redox affinity, bioavailability, tissue kinetic,
intracellular distribution, dose dependence, and additional
properties. Moreover, conclusions referring to a young and
healthy human population should not be directly applied to
the elderly population characterized by a significant impair-
ment of redox balance underlying age-related muscle modifi-
cations and impaired adaptive response to exercise training.

In the same direction, Jackson competently and thought-
fully commented: “the combination of physiological and
pathological roles of ROS imply that interventions based on
a simple suppression of ROS activities through use of non-
specific AOs are unlikely to retard or improve the age-
related declines in muscle mass and function” [109].
Hence, the equation “more AOs – less muscle aging” is
not an automatic truth and indeed, with respect to the
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prevention of sarcopenia, the question of whether supple-
mentation with AOs is positive should be better addressed,
with a particular focus on the possible broader biological
properties of selected AOs.

5. Creatine, New Perspectives from the Past

Cr is among the most studied and long known molecules in
modern and contemporary biology. Since its discovery, more
than 150 years ago by Michel Chevreul, thousands of studies
dissected and identified its central role in cellular energetics
as the substrate for creatine kinases. According to its ergo-
genic function, the bulk of body Cr and Cr phosphate
(CrP) is concentrated in skeletal muscles; body stores of Cr
are maintained physiologically by nutritional intake through
meat and fish consumption and endogenous biosynthesis
[110]; and oral Cr supplementation further increases plasma
Cr levels and intramuscular Cr/CrP content in young, adult
[110], and elderly people [111].

Today, Cr has a strong reputation as a safe nutritional
supplement promoting a number of health benefits not
limited to sport practitioners [112]. This notion has been
recently strengthened by the official Position of the Interna-
tional Society of Sports Nutrition [113], which also ruled
out the concerns on its possible renal toxicity.

In particular, Cr, along with positively affecting muscle
mass and performance [114–116], has been shown to favour
myogenesis in normal and adverse conditions [117], to
increase the expression level of specific muscle regulatory
factors [118–121], to exert a trophic action on muscle cells
[114], and to exert mild AO [122, 123] and anti-
inflammatory [124, 125] activity. Thus, a new concept of a
Cr biochemical and physiological role has emerged pointing
to its multiple, not only ergogenic, effects [112, 116, 126].
In this light, Cr can be regarded as a nutritional supplement
fulfilling a number of requisites which might be important
in delaying the onset and the progression of sarcopenia
[127, 128]. In this section, a summary of the multiple effects
caused by Cr will be discussed.

The first evidence for an “AO-like” activity of Cr was
reported by Matthews et al. [129] showing that oral Cr, in
analogy with established AOs such as N-acetylcysteine,
attenuated the hydroxyl radical and peroxynitrite generation
in nitropropionic acid-intoxicated rats (an animal model of
Huntington’s disease) and prevented brain damages. The
first report of the direct AO activity of Cr was provided by
Lawler et al. [122] in an acellular setting (where Cr showed
its ability to scavenge ABTS+, O2•

−, and OONO−) and by
Sestili et al. [123] in different mammalian cell lines chal-
lenged with a panel of oxidative stressors (H2O2, t-butyl-
hydroperoxide, and peroxynitrite). In this study, intracellu-
lar, but not extracellular, Cr at nutritionally attainable con-
centrations was mildly but significantly cytoprotective
towards the three toxic species [123].

Since then, many authors reported that Cr exerts direct
and indirect AO effects in different in vitro and in vivo
experimental settings/conditions in which oxidative stress
takes place. For example, in vitro settings showed protection
from the exposure to H2O2, t-butyl-hydroperoxide, and

peroxinitrite [122, 123, 130], from oxidative damage to
mtDNA [130–132] and RNA [133], from H2O2-induced
arrest of myogenesis [117, 121], from UV rays damage
[131, 132], and from glutamate-induced nitrosative and
oxidative stress [134]. Animal studies showed that supple-
mental Cr protects from the toxicity of nitropropionate
[129], of the mitochondrial electron transport inhibitor rote-
none via direct AO activity [135], and of the proconvulsant
drug pentylenetetrazole [136] and also demonstrated that
Cr ameliorates the AO reservation against oxidative stress
in exercise-trained ovariectomized hamsters [137], decreases
ROS content with no changes in expression and activity of
AO enzymes in rat skeletal muscle after 6 days supplementa-
tion [138], and reduces lipid peroxidation markers in
exercising rats fed for 26 days with a Cr-enriched diet
[139]. Human studies showed significantly lower accumu-
lation of urinary 8-OHdG and plasma malondialdehyde in
trained adults after 1 week of Cr supplementation [140, 141],
limited short-term oxidative insults after the Wingate test (1
week Cr supplementation) [142], and reduced oxidative
stress in a steady-state test at 75% VO2(max) after 5 days
supplementation [143].

The mechanisms responsible for the AO activity of Cr
are complex and have been extensively reviewed elsewhere
[116, 144]. These mechanisms do include not only direct but
also indirect interactions. With regard to the latter, for exam-
ple, Cr induces peroxiredoxin-4 and thioredoxin-dependent
peroxide reductases, two important AO enzymes located in
the cytoplasm and mitochondria, respectively [145], and in
addition, the same thioredoxin and peroxiredoxin system
could benefit from the increased NADPH resynthesis due to
the Cr-induced higher ATP availability [114, 116, 126, 146];
Cr has been shown to activate AMPK which in turn might
promote cellular adaptive responses aimed at overcoming
oxidative stress [117, 147, 148]; supplemental Cr may
increase intracellular levels of arginine, which also can act as
an AO [149]. Thus, the mild AO activity of Cr is likely to
result from the superposition of multiple mechanisms.

Interestingly, the protective activity of Cr against acute
oxidative stress, in spite of a scavenging potency lower than
that of established AOs [122], proved to be better as
compared to the latter in specific conditions [117, 121]. For
instance, with regard to cultured muscle cell settings
(C2C12 cells), a comparative study between the protective
activity of Cr versus the reference AOs Trolox [150] or N-
acetyl-cysteine [146] toward the cytotoxicity and the
myogenic arrest caused by H2O2 showed that while Cr signif-
icantly attenuated both the toxic responses, the two reference
AOs were not capable to prevent the latter. Such findings
imply that in order to counteract specific adverse situations
caused or exacerbated by oxidative stress, the “generic”
capacity of acting as an AO might not be sufficient. Indeed,
Cr, beyond acting as a mild AO, has other peculiar features
which concur to muscle cell rescue as discussed below.

A prominent and qualifying feature of Cr is its particular
tropism for skeletal muscle, where the bulk of body Cr is
actively stored up to 30mM [3]: this very high, tissue-
specific concentration might selectively enhance its AO
activity in the muscle compartment.
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Furthermore, Cr shuttles energy from the site of produc-
tion (mitochondria) to the site of consumption (cytoplasm)
[116]. As a consequence, the particularly high gradient of
Cr inmitochondria and across themitochondrial membranes
is likely to focus its activities in this critical subcellular com-
partment (see also above). Indeed, according to the mito-
chondrial theory of aging, a vicious circle (see Section 1)
entailing the overgeneration of ROS by the MRC and damage
to both mitochondrial and cellular structures leads to
defective mitochondrial respiration and further increase in
mitochondrial ROS production and oxidative damage [109].
ROS damage tomitochondria deteriorates their functionality,
integrity, and networking, which represent fundamental
requisites for muscle differentiation [117, 151–161] whose
imbalance is associated with muscle decline conditions such
as sarcopenia [162]. As stated above and in line with this
mitochondrially oriented activity, Cr increases the content
of mitochondrial thioredoxin reductase, an important AO
enzyme, in myotube cultures [145].

According to this peculiar mitochondrial tropism, we
recently demonstrated that the addition ofCr toH2O2-injured
differentiating C2C12 cells prevented the collapse of their
mitochondria, attenuated the level of CL peroxidation,
restored the respiration capacity, and prevented the fragmen-
tation of themitochondrial networks [117]. Cr was also found
to increase mitochondrial mass and, accordingly, to stimulate
the transcription level of PGC-1α, [163, 164], in both control
and H2O2-injured differentiating C2C12 cells. Finally, in the
same cells and conditions and according to previous reports
[148], Cr per se caused an increased phosphorylation of
AMPK which, along with the increased CrP and ATP levels
found in supplemented cells, concurs to a better handling of
cellular energy to overcome critical situations [117, 121].

With regard to this last concept, it is worth considering
that the most authentic, unique feature differentiating Cr
from generic AOs is obviously its role in cellular energetics.
Cr improves cellular energy state (CrP/ATP ratio), facilitates
intracellular energy transport through the CrP circuit, and
enhances the overall CrP pool [116]. Increased CrP levels
can be utilized by Cr kinase to transphosphorylate ADP to
ATP for various ATP-dependent processes, including those
required for muscle contraction [116]. In addition, better
CrP/ATP ratios improve the cellular calcium handling and
homeostasis and maintain an adequate MRC activity thus
preventing ROS leakage [116]. Indeed, the ATP highly con-
suming calcium pump of sarcoplasmic reticulum works effi-
ciently as long as a high local ATP/ADP ratio is maintained
by the action of Cr kinase [116]. In the H2O2 cytotoxicity
setting described above, for example, this might ameliorate
the handling of intracellular calcium [165] and help the
preserving of the mitochondrial calcium signals, thus
favouring myoblast differentiation even in the course of
oxidative stress [117].

Cr protects mtDNA from the oxidative damage caused by
H2O2 in HUVECs [130] or repeated UV irradiation in
human fibroblasts [131], through mechanisms involving
both AO effects and normalization of cells’ energy status.
These effects might be responsible for the Cr-associated pre-
vention of mtDNA loss caused by H2O2 in differentiating

myoblasts [117]. Notably, the accumulation of mtDNA
mutations is among the causative factors of sarcopenia [166].

Moreover, Cr stabilizes and prevents the opening of the
mitochondrial permeability transition pore complex caused
by a variety of adverse conditions, thus decreasing mitochon-
drial apoptotic susceptibility and cell death [167].

Hence, Cr ameliorates cellular energy status and at the
same time protects the sites of energy production, that is,
mitochondria, from ROS which would otherwise cause
severe energy failure and cell death [167].

The last but not secondary distinctive feature of Cr as
compared to generic AOs is its anabolic activity on skeletal
muscle. This property has been documented since the ‘70s
of the past century and has been demonstrated in a variety
of in vitro [120, 168, 169] as well as ex vivo animal studies
[168] or human studies [170–173]. Human studies involved
training healthy adults [171], rehabilitating adults [170] or
sedentary adults [172], and training [173] elderly. There is
a general consensus on the fact that Cr-induced muscle anab-
olism depends mainly on its capacity to stimulate the mRNA
expression of muscle regulatory factors, namely, Myo-D,
Myf-5, MRF-4, and myogenin, and of IGF-1 [120] and to
repress that of myostatin [169]. Other authors [174–177]
reported positive effects of Cr supplementation on muscle
mass and strength of exercising elderly and focused on the
importance of the timing of Cr intakes, namely, pre- versus
postexercise, to achieve better outcomes, postexercise intake
being the most effective.

Given these premises, Cr could then represent a valu-
able dietary supplement to prevent muscle aging and
sarcopenia. Interestingly, some of the effects elicited by
supplementary Cr overlap with, and may reinforce, the
positive ones induced by physical exercise (i.e., higher
expression of PGC-1α and of muscle regulatory factors),
and others (i.e., the ergogenic ones) do support physical
training: on the whole, these peculiar traits are likely to
give rise to a positive loop that, with regard to sarcopenia,
suggests that supplementary Cr may positively interact
with physical exercise. Indeed, recent studies on older
adults and elderly people actually support this notion.
Two distinct trials on community-dwelling older Canadian
adults [178, 179] showed overall greater improvements in
strength and higher gains in fat-free mass in Cr-
supplemented participants, when compared with the
placebo groups. A meta-analysis [180] of data from 357
older adults found enhanced benefits (in terms of lean
mass, strength, and bone mass) of exercise training when
combined with Cr supplementation. Another study showed
that the addition of Cr enhances isometric strength and body
composition improvements following strength exercise
training in older adults [178]. A well-designed and more
recent trial on 32 healthy, nonathletic men and women aged
60–80 years showed that three months of low-dose Cr
supplementation associated with resistance training resulted
in significant increases in lean mass [181]. In particular,
unlike the placebo/resistance training group, the Cr/resis-
tance training group (initial body, lean, android, and gynoid
fat masses of 68.1, 38.3, 39.6, and 45.1 kg, resp.) showed a
significant increase in muscle mass (+1.79 kg), a significant
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decrease in android and gynoid fat (−1.02 kg and −1.56 kg
resp.), and a tendency to decrease body fat (−1.22 kg).

On the whole, the recognition of its pleiotropic nature,
along with the encouraging outcomes of the trials on elderly
people [127, 128, 173, 176, 178, 180–183], provides a strong
rationale for considering and reappraising Cr as a valuable
and safe supplement to counteract sarcopenia. As a final clue
in support of this idea, it is worth noting that a study on mice
demonstrated that Cr exerts a fair antiaging effect, since its
chronic supplementation increases lifespan, improves health,
and attenuates changes in biochemical and genetic markers
associated with aging [184].

6. Coenzyme Q10 as Ergogenic and AO
Mitochondrial Nutrient

CoQ is an endogenous isoprenylated quinone isolated for the
first time in 1957 by Crane et al. from beef heart mitochon-
dria [185]. Isoprenylation is responsible for the high
lipophilic nature of this molecule that is ubiquitous in
biological membranes, and therefore, it is also known as
ubiquinone. The analysis of the literature shows that ubiqui-
none homologs are highly represented in various organisms
from monera to vertebrates although they may differ in the
number of isoprenoid units, in particular, ubiquinone in
humans is present in the form of CoQ10, the homolog with
ten isoprenoid units [186]. From a chemical point of view,
CoQ10 is able to act as an electron and proton shuttle follow-
ing two-electron redox reaction and reversible conversion
from the oxidized form (ubiquinone) to the reduced form
(ubiquinol). The redox properties of ubiquinone underlie
its major biological functions, namely, to act both as an elec-
tron carrier intermediate in the mitochondrial respiratory
chain and as a phenolic AO in the lipid environment. These
two characteristics strongly link CoQ10 biochemistry to
mitochondrial bioenergetics [187] and differentiate its role
from other low molecular weight AOs. In fact, while CoQ is
ubiquitous in all biological membranes (e.g., cellular organ-
elles and plasma membrane) and in lipoproteins, it is of
particular relevance to the inner mitochondrial membrane
where the oxidative phosphorylation occurs and, conse-
quently, to tissues characterized by high respiratory demand
and energy turnover such as cardiac and skeletal muscle
tissues [188].

Ubiquinol is a potent reducing agent that can interrupt
the initiation of lipid peroxidation or also break the chain
reactions by reacting with lipid peroxide radicals [189].

Ubiquinol acts mainly as a chain-breaking antioxidant in
the membrane, reacting with carbon- and oxygen-centered
radicals while its reactivity toward hydroperoxyl radicals is
limited and much slower than that of tocopherol [190] one
of the most potent exogenous antioxidants. Nonetheless, ubi-
quinol is more efficient against peroxidation of LDL (low-
density lipoproteins) than α-tocopherol [191] that on amolar
basis represents by far the major antioxidant in lipoproteins.

Ubiquinol and tocopherol interplay synergistically with
important consequences in relation to the antioxidant activ-
ities of both molecules: ubiquinol regenerates tocopherol
from oxidized tocopheryl radical, thus protecting the lipid

environment from oxidation [188]; moreover, ubiquinol
when compared with α-tocopherol has a higher reactivity
toward both galvinoxyl and peroxyl radicals, since ubiquinol
has two active hydrogens that react with oxygen radicals
whereas α-tocopherol has only one. The reaction leads to
the production of semiquinone radical which subsequently
reacts with another radical X to give ubiquinone. In the case
of peroxyl radicals, the steady state concentration of these
radicals is usually low. Under these conditions, the life of
semiquinone radical is longer and it has more chance to react
with oxygen to give ubiquinone and hydroperoxyl radical. In
this condition, hydroperoxyl radical may react with lipid to
induce a lipid peroxidation, which results in the reduction
of induction period or increase in the rate of lipid peroxida-
tion. Under these conditions, ubiquinol does not act as an
antioxidant [192].

However, in physiological conditions, tocopherol abun-
dance in membranes scavenges hydroperoxyl radical and
suppresses autoxidation of ubiquinol exerting a potent com-
bined antioxidant effect [193, 194]. It is worth noting that, in
mitochondria, the reduced form of CoQ is regenerated by the
respiratory chain. In fact, both ubiquinol and the ubisemiqui-
none radicals can react with complex III and be suitably
oxidized/reduced at the Qo and Qi sites of the enzyme. In
addition, ubiquinone can be fully reduced by complex I,
complex II, and other dehydrogenases of the inner
mitochondrial membrane.

In the MRC, electrons donated from NAD- and FAD-
dependent dehydrogenases funnel into CoQ as a common
acceptor that in turn feeds into the cytochrome system
[195, 196]. Growing evidence describes in detail the structure
and function of the “core” respiratory complexes (i.e., com-
plexes I, II, III, and IV) while several auxiliary enzymes have
been also described to reduce ubiquinone [197] or to deliver
electrons directly to oxygen (i.e., alternative ubiquinol
oxidase) by bypassing complexes III and IV (see [198, 199])
of the respiratory enzymes [198]. Most certainly, ubiqui-
none/ubiquinol molecules bound to respiratory complexes
coexist with a mobile pool of molecules in the lipid bilayer
of the inner mitochondrial membrane. Notably, their physi-
ological concentration is close to the Km (concentration
yielding half-maximal velocity) of the respiratory enzyme
CoQ [198]. This fact implies that even slight variations in
the concentration of mitochondrial CoQ result in dramatic
changes in the respiratory rate, further stressing the biologi-
cal relevance of subliminal deficit in the biosynthesis and
providing a rationale for the use of exogenous CoQ as an
ergogenic supplement (see below for further discussion).

CoQ10 synthesis in eukaryotes comprises at least ten
enzymatic reactions in large part along the mevalonate path-
way where isoprenoid units are formed [200]. Although in
physiological conditions the organism produces sufficient
amount of CoQ10, a small proportion (3–5mg/day) is also
introduced through the diet, in particular, through meat
and fish consumption [201]. Dietary CoQ10 is absorbed in
the plasma, where it is vehiculated by lipoproteins and deliv-
ered to tissues. In pathological conditions, primary and
secondary deficits in CoQ10 synthesis lead to severe mito-
chondrial impairment and are associated with different
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neurologic and muscular degenerative disorders [202–204];
moreover, pathological conditions associated with enhanced
oxidative stress might result in an altered CoQ10 status [205].
Also, within physiological conditions, the CoQ10 status
might be influenced in terms both of concentration and
oxidative state by different factors including nutrition
[201], physical activity [206], drug use [207–209], and aging
[210–212]. In particular, in relation to the topic of this
review, physical exercise is associated with a decreased
CoQ10 plasma level, suggesting a higher tissue demand
during training [206]. Moreover, CoQ10 synthesis in
humans progressively declines after 20 years of age [210] as
well as the activities of the reductases responsible for CoQ
activation to its AO form, ubiquinol.

Accordingly, the abovementioned CoQ10 deprivation
conditions are known to promote susceptibility of mitochon-
dria to oxidative damage, as in the case of muscle toxicity
caused by statins [207–209] commonly prescribed to elderly
people. Notably, the entity of statins’ adverse effects depends
on multiple factors including genetic background [213, 214]
and physical activity [215, 216] stressing the fact that even
subliminal deficit in CoQ endogenous synthesis could signif-
icantly influence individual tolerance threshold. Taking into
account that CoQ10 endogenous biosynthesis is also influ-
enced by the mentioned extrinsic and intrinsic factors,
notably, age and physical exercise, it is clear that muscle
CoQ10 status deserves particular attention in the frame of
age-related sarcopenia development.

According to the figures discussed so far, CoQ10 has been
used over the last three decades as a nutritional supplement
with ergogenic and AO activities to support mitochondrial
bioenergetics and counteract oxidative stress in a wide range
of clinical conditions [217–221].

However, the proven existence of respiratory SCs poses
the question whether their role is compatible with the inter-
pretation on bioenergetic grounds of the beneficial effect of
orally administered exogenous CoQ10. In theory, by consid-
ering CoQ channeling within the SC, we might expect that
ubiquinone content can be imposed by the amount of SC
itself and therefore very much lower than the physiological
CoQ10 concentration in the membrane. On the contrary, a
careful reasoning based on the notion that bound CoQ
within the SC is in chemical equilibrium with CoQ in the
membrane pool supports the idea that even a slight decrease
of endogenous ubiquinone content is sufficient to dissociate
part of the quinone molecules from the SC. This consider-
ation is also in line with the recently unveiled architecture
of SC showing that the CoQ-binding sites of complex I and
complex III are 10 nm apart and face a lipid microdomain
that is open to the membrane [10]. In such a situation, it is
likely that the function of the large amount of CoQ in natural
mitochondrial membranes is to maintain the proper quinone
compartmentation within the SC unit when it is formed:
therefore, CoQ10 supplementation might also ameliorate a
deficient respiratory activity.

Both bioenergetic and AO activities concur to optimize
mitochondrial functionality and prevent oxidative damage
that could fuel, through a vicious circle, mitochondrial ROS
formation. Moreover, newly investigated action mechanisms

of CoQ10, besides its free radical scavenging property, include
the following: (1) adirectmodulationofmitochondrial perme-
ability transition pore (PTP); (2) anti-inflammatory activity;
and (3) regulation of gene transcription. These mechanisms
will bediscussed in relation to their relevance to thephysiology
and biochemistry of the agingmuscle and the potential role of
CoQ10 in the prevention of sarcopenia.

PTP is a high-conductance protein channel located in the
inner mitochondrial membrane [222]. In response to stress
signals, mitochondrial depolarization causes the opening of
the pore thus leading to increased permeability of the mito-
chondrial membranes to small molecules (<1500 daltons)
in the intermembrane space, such as cytochrome c. The
release of these factors in the cytoplasm is able to activate
the process of cell death (apoptosis). PTP transition might
be the result of acute injuries, such as hypoxia, insult in heart
attack, or stroke, or might be the consequence of mitochon-
drial dysfunction leading to alterations of mitochondrial
membrane potential and mobilization of Ca2+ stores.

While apoptotic pathways are required for normal cell
turnover and tissue homeostasis, misregulation of pro-
grammed cell death is increasingly implicated in aging and
aging-related diseases [223]. Indeed, in the aging muscle,
apoptosis is known to be involved in muscle fiber atrophy
and loss of myofibers, two common features of sarcopenia
[224]. The onset of this degenerative process seems to stem
from the accumulation of senescence-related mutations in
mtDNA [130, 225–227], the concomitant development of
MRC abnormalities triggering apoptotic and, ultimately,
necrotic events. Moreover, sporadic denervation occurring
in the elderly may also exacerbate these deleterious events
[228]. Quinones have been shown to exert a direct effect on
PTP [229] through a common binding site rather than
through redox reactions. Occupancy of this site can modulate
the PTP open-closed transitions, possibly through secondary
changes of the Ca2+-binding affinity for the pore [230].
Evidences that CoQ10 inhibits the opening of the pore besides
reducing the concentrationof superoxide anionwere obtained
usingamodelof amyloid/oxygenglucosedeprivation-induced
neuronal excitotoxicity [231], in amitriptyline toxicity [232]
and in ischemia and reperfusion in the heart [233]. These
reports do not provide an evidence of a direct modulation of
the pore by CoQ10: thus, this effect could be simply mediated
by its AO capacity.

Concerning the CoQ10 anti-inflammatory effect, the
recent literature suggests that it acts through the inhibition
of NF-κB nuclear translocation, preventing low-grade
inflammation characteristic of inflammaging [60, 234].

The aging cell is characterized by a chronic proinflamma-
tory state where NF-κB acts as a key regulator of genes that
encode cytokines, cytokine receptors, and cell-adhesion
molecules [235–239]. Interestingly, CoQ10 supplementation
has been shown to influence the expression of proinflamma-
tory NF-κB and stress-related gene activation, by modulating
the expression of miR-146a both in LPS-stimulated mono-
cyte [239, 240] and in young and senescent endothelial cells.

Finally, CoQ10 has been shown to influence the
expression of a wide set of genes [240–244]. Modulation of
inflammation described above represents a clear example

9Oxidative Medicine and Cellular Longevity



where CoQ10 is able to influence the nuclear translocation of
NF-κB. This is probably achieved through the direct AO
effect of ubiquinol similarly to other AOs [245], although a
direct modulation of regulatory miRNAs cannot be ruled
out. Moreover, differently from other AOs, a controlled pro-
oxidant activity at the level of the MRC might contribute to
the release of potent inducers of gene expression, such as
H2O2. In particular, Linnane et al. [243] hypothesized that
global gene expression regulation induced by CoQ10 in skel-
etal muscle is indeed achieved via superoxide formation with
H2O2 as a second messenger to the nucleus. In a randomized
controlled clinical study, human test subjects about to
undergo hip replacement were given 300mg CoQ10/die or
placebo for 25–30 days before surgery: microarray gene
expression patterns and muscle fiber type profiles from
vastus lateralis samples showed a consistent CoQ10-
dependent regulation of 115 genes with 47 genes upregulated
and 68 downregulated in the CoQ10-treated subjects [246].
Moreover, a significant difference in the number of
mitochondria-rich type I fibers was observed between pla-
cebo and CoQ10 patients. CoQ10-treated samples were also
characterized by a higher proportion of type II fibers. These
fibers have fewer mitochondria per cell and are more glyco-
lytic with respect to energy requirements; they are involved
in fast contractions and their proportion decreases with age
[22]. The same authors concluded that the patients receiving
CoQ10 have an altered fiber type compositionmore reflective
of younger muscle than the group receiving the placebo.

Coenzyme Q10, in light of the abovementioned proper-
ties and biological effects and besides its long standing use

in different clinical fields, has attracted considerable interest
as a safe food supplement in human nutrition as well as
specialised sport nutrition. Clinical trials supporting this
application include animal studies [247] where senescence-
accelerated mice supplemented up to 10 months with ubiqui-
nol showed improved exercise capacity, measured as time of
run on a treadmill until exhaustion; moreover, CoQ10
supplementation was shown to lower exhaustive exercise-
induced muscular injury in rats by enhancing stabilization
of muscle cell membrane [248]. In humans, trials have been
conducted both with the use of ubiquinone and more
recently with ubiquinol. In general, data have shown that
supplementation in healthy trained individuals produces an
increase in oxygen uptake, improvement in cardiac parame-
ters, and enhanced resistance, as validated also by means of
randomized crossover studies [249–251]. CoQ supplementa-
tion was also shown to be effective in reducing exercise-
induced oxidative damage [221] and muscular injury in
humans [221, 252].

7. Conclusions

The significant socioeconomic costs of musculoskeletal aging,
in an expanding elderly population, have emphasized the need
to develop effective, safe, and costless interventions to prevent
and/or delay the progression of sarcopenia: to this aim, a likely
candidate is the association of exercise training with AOs.

However, as we have extensively discussed, a profound
reappraisal of the role of AOs in preventing sarcopenia is
needed. Indeed, the agents categorized under the generic
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Figure 1: The role of ROS in the pathogenesis of sarcopenia and the multiple positive and converging effects promoted by Cr, CoQ10, or
physical training. The sequences of relevant ROS-related pathogenetic events leading to sarcopenia are summarized in the flow chart,
where the effects promoted by Cr, CoQ10, or physical exercise (corresponding to the labels “Cr,” “Q10,” and “EX” in the figure, resp.) are
also illustrated. The types of the modulations caused by Cr, CoQ10, and EX are symbolized according to the following scheme: labels with
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rightmost of the figure emphasizes the high accumulation of Cr and CoQ10 in skeletal muscles.
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heading of “AO,” that is, capable of broadly and simply
blocking ROS, have not provided until now clear evidence
for their benefits. On the contrary, dietary AOs characterized
by additive features, such as positive muscle tropism and
multiple converging actions, might reveal a much more ther-
apeutically profitable effect.

In this light, we believe that both Cr and CoQ10 can be
considered as “muscle-specific pleiotropic AOs” capable of
positively, if not synergistically, interacting with physical
training to delay the onset and progression of sarcopenia
(Figure 1). This topic requires further investigation, but it
could pave the way for a better understanding of the mecha-
nisms of skeletal muscle adaptation and plasticity and pro-
vide novel therapeutic targets to “reset” age-associated
muscle loss.
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