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Brain decoding with multivariate classification and regression has provided a powerful

framework for characterizing information encoded in population neural activity.

Classification and regression models are respectively used to predict discrete and

continuous variables of interest. However, cognitive and behavioral parameters that

we wish to decode are often ordinal variables whose values are discrete but ordered,

such as subjective ratings. To date, there is no established method of predicting ordinal

variables in brain decoding. In this study, we present a new algorithm, sparse ordinal

logistic regression (SOLR), that combines ordinal logistic regression with Bayesian sparse

weight estimation. We found that, in both simulation and analyses using real functional

magnetic resonance imaging (fMRI) data, SOLR outperformed ordinal logistic regression

with non-sparse regularization, indicating that sparseness leads to better decoding

performance. SOLR also outperformed classification and linear regression models with

the same type of sparseness, indicating the advantage of the modeling tailored to ordinal

outputs. Our results suggest that SOLR provides a principled and effective method of

decoding ordinal variables.

Keywords: decoding, functional magnetic resonance imaging, ordinal logistic regression, bayesian estimation,

sparseness

INTRODUCTION

Application of multivariate classification and regression models to functional magnetic resonance
imaging (fMRI) signals has allowed the extraction of information encoded in population neural
activity. Classification models are used to predict categorical variables, such as discrete stimuli and
task conditions (Haynes and Rees, 2006; Norman et al., 2006; Pereira et al., 2009), while regression
models are used to predict continuous parameters of interest (Cohen et al., 2011). These two types
of prediction model are employed depending on the type of variable we wish to decode.

However, variables we attempt to decode are often ordinal—discrete variables whose values
(classes) are ordered. For example, behavioral ratings that quantify subjective states such as the
emotional feeling, impression, and preference (e.g., Chu et al., 2011; Valente et al., 2011; Baucom
et al., 2012; Smith et al., 2014; Chang et al., 2015) are discrete and ordered. The intervals between
classes are not defined in many cases. Furthermore, parameters of stimuli used in experiments have
often been restricted to take discrete values (e.g., Kamitani and Tong, 2005, 2006; Miyawaki et al.,
2008; Staeren et al., 2009; Nishio et al., 2012). Even when a parameter is defined in a metric space,
the distributions of the voxel patterns are not necessarily proportionally spaced between the discrete
values. Thus, discretized parameters could be better treated as ordinal variables.
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Such variables have been predicted with classification and
regression models in previous decoding studies. In studies using
classification models, the given discrete levels were treated as
nominal classes and classification models were trained to classify
input brain activity patterns into one of those classes (e.g.,
Miyawaki et al., 2008). In studies using regressionmodels, models
were trained by treating a given ordinal variable as a continuous
variable, and continuous outputs from themodels were then used
as the prediction results (e.g., Chu et al., 2011; Valente et al., 2011;
Nishio et al., 2012; Chang et al., 2015).

Owing to the nature of ordinal variables, classification and
regression models are not considered appropriate for ordinal
variable prediction. An ordinal variable is a discrete variable
whose classes are ordered. By definition, the distances between
different classes are not given, and only the relative ordering
between classes is important. In handling rating scores, for
example, level 2 is placed between level 1 and level 3, but
the magnitudes of the differences between levels are undefined.
When a regression model is fitted using class numbers as
labels, the distances between consecutive classes are treated
as equal. Hence, the resultant fitness of the model depends
on those deceptive distances. Meanwhile, classification models
assume classes to be nominal categories and ignore given relative
similarities between classes that provide helpful information for
constructing a model with better prediction performance.

We here present an approach using ordinal regression, a
type of generalized linear modeling whose output variable is
assumed to be ordinal (Winship and Mare, 1984). In ordinal
regression, similar to linear regression, a linear combination of
input variables is used to predict the target variable (Figure 1A).
Differently from linear regression, however, the value of the linear
combination for a given input sample is not directly used as the
prediction. In ordinal regression, a set of thresholds is introduced
to divide the real number line into disjoint segments. These
segments correspond to the discrete classes of the target variable.
The class corresponding to the segment where the value of the
linear combination lies is then selected as the prediction. This
treats the class number as a discrete variable without using the
metric in the space of the output variable. By tuning both linear
weights and thresholds, ordinal regression models can be better
fitted to given ordinal data than linear regression models.

Compared with classification models, ordinal regression
models are expected to be efficient in learning, leading to
better prediction performance. Classification models learn
decision boundaries that are used to classify input samples into
classes in the feature space (Figure 1B, left). Their degree of
freedom increases as the number of classes increases, which
makes parameter estimation sensitive to noise. In contrast,
all decision boundaries of an ordinal regression model are
restricted to be orthogonal to a single line in the feature
space, and the degree of freedom is smaller than that for
classification models (Figure 1B, right). This lower complexity
of ordinal regression models reduces the chance of overfitting
and leads to better generalization performance than classification
models.

To introduce a multivariate prediction model into fMRI
decoding analysis, it is generally important to choose an

appropriate set of input voxels because the presence of many
irrelevant voxels can lead to poor generalization performance
due to overfitting. In standard decoding analysis, only tens or
hundreds of fMRI samples are obtained to train the prediction
model, while the input feature vector consists of thousands of
voxels. Thus, overfitting readily occurs if all available voxels are
used as input features. To solve this problem, our previous study
proposed a classification algorithm that simultaneously performs
voxel selection and parameter estimation, and demonstrated that
the method successfully prevents overfitting in the presence of
many irrelevant voxels (Yamashita et al., 2008). In that study,
a Bayesian extension of logistic regression was proposed where
the automatic relevance determination (ARD; MacKay, 1992;
Neal, 1996) prior was used as the prior distribution of the
weight vector. This resulted in selecting a small number of
voxels as important by estimating the corresponding weight
parameters to be nonzero, and ignoring the other voxels by
estimating their weight parameters to be zero. This sparse
parameter estimation provided a method of voxel selection by
virtually eliminating voxels associated with zero-valued weight
parameters.

In the present study, we combine ordinal regression with
the sparse estimation (Figure 1C) to build an ordinal prediction
model suited to fMRI decoding. As our model is based on
ordinal logistic regression (OLR; McCullagh, 1980), a standard
ordinal regression model, we refer to our proposed method
as sparse ordinal logistic regression (SOLR). We evaluate the
performance of SOLR using both simulation and real fMRI
data. In these analyses, the prediction performance of SOLR
is compared with that of an OLR model without a sparseness
constraint to examine the utility of the sparseness. Likewise,
the prediction performance is compared with that of regression
and classification models having the same type of sparseness,
sparse linear regression (SLiR; Tipping, 2001; Bishop, 2006)
and sparse multinomial logistic regression (SMLR; Yamashita
et al., 2008), to examine the superiority of SOLR in ordinal
variable prediction. To examine whether SOLR works well in
practical situations, we compare the decoding performances for
different numbers of training samples and input dimensions in
the simulation analysis. In the analysis using real fMRI data, we
tested the four previously mentioned algorithms on a dataset
taken from Miyawaki et al. (2008). In this previous study,
stimulus images were reconstructed from fMRI responses by
training decoders on 440 samples using about 1,000 voxels from
the primary visual cortex (V1) in both hemispheres as input.
Using this dataset, we demonstrate that SOLR better predicts
ordinal variables in a practical situation of fMRI decoding
analysis.

MATERIALS AND METHODS

Algorithm
This section first describes OLR, which is a generalized
linear model for ordinal dependent variables (McCullagh,
1980; Winship and Mare, 1984), and then explains SOLR by
introducing a Bayesian framework to estimate parameters. OLR
with L2-regularization (L2OLR) is also explained in this section.
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FIGURE 1 | Prediction models for an ordinal dependent variable. (A) Comparison between linear regression and ordinal regression. In linear regression, the prediction

is calculated as a linear combination of input features. Here, y is assumed to be an ordinal variable and it takes one of five levels. The regression line on a single input

dimension (xd ) is shown (left). In ordinal regression, a linear combination is used for prediction, but not directly treated as its prediction. Thresholds that divide the real

number line into five disjoint segments are introduced as parameters. Each segment corresponds to one of the five levels, and the prediction is obtained as the level

corresponding to the segment that the linear combination value belongs to (right). (B) Comparison between multiclass classification and ordinal regression. In

prediction with a multiclass classification model, classification boundaries that separate different classes are learned in the feature space (left). In ordinal regression,

classification boundaries are restricted to be orthogonal to one single vector, which reduces the degree of freedom compared with typical classification models (right).

(C) Sparse ordinal logistic regression (SOLR). A standard ordinal regression model, the ordinal logistic regression model, is combined with a Bayesian sparse

parameter estimation method, and is introduced into fMRI decoding analysis in the present study. By estimating a subset of weight parameters to be nonzero and the

other weight parameters to be zero, this method simultaneously selects important input features (voxels) and estimates the weight parameters. In prediction, it linearly

combines voxel values with the estimated sparse weight vector, then outputs one of the given levels by comparing the resultant value with thresholds.

OurMATLAB and Python implementations of SOLR and L2OLR
are available at our Github respository1

OLR is one of the generalized linear models whose dependent
variable (or target variable to be predicted) is assumed to be an
ordinal variable. In OLR, the dependent variable y ∈ {1, · · · ,C}

is assumed to follow the underlying process given by

z = wTx+ ε, (1)

y =































1 (z < µ1)

...
...

c (µc−1 ≤ z < µc)

...
...

C (µc−1 ≤ z)

, (2)

1https://github.com/KamitaniLab/SOLR

where x = (x1, · · · , xD)
T ∈ R

D is the vector of D
independent variables (input features, or voxel values), is
the linear weight vector, ε is a random variable representing
the noise, z is a latent variable assumed to link the
dependent and independent variables in the model, and
µ1,µ2, · · · ,µC−1 (µ1 ≤ µ2 ≤ · · · ≤ µC−1) are threshold
parameters. In OLR, ε is assumed to follow the logistic
distribution with a mean of zero and a variance of 1. The
threshold parameters are collectively denoted by a single vector
µ.

In OLR, w and µ are estimated by maximizing the log
likelihood function with a gradient method. The log likelihood
with respect to w and µ is given by

log p (Y|w,µ,X) =

N
∑

n=1

C
∑

c=1

ync log
[

F
(

µc − wTxn

)

−F
(

µc−1 − wTxn

)]

, (3)
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where, ync is a binary variable indicating whether the value of the
dependent variable for the n-th sample is c. ync is set to 1 if the
value of the dependent variable for the n-th sample is c and ync
is set to zero otherwise (1-of-k representation). xn is the vector
of feature values for the n-th sample. N samples are used for
estimation, and are collectively denoted by the N × C matrix
Y and theN × DmatrixX. The function F is the logistic sigmoid
function defined by

F(z) =
1

(

1+ e−z
) . (4)

In the above log likelihood function, the first and last threshold
parameters µ0 and µC are respectively set to −∞ and +∞ by
convention.

We next introduce a Bayesian framework to estimate the
above parameters sparsely. We introduce prior distributions for
parameters to be estimated in OLR. For the parameter w, we
assume that

w|α ∼ N
(

0, diag
(

α1
−1, · · · ,αD

−1
))

, (5)

where α1, · · · ,αD are hyperparameters that determine the
importance of voxels and are called relevance parameters.
They are collectively denoted by the single vector α. N (m,6)
represents the multidimensional Gaussian distribution with
mean m and covariance 6. 0 represents the zero vector,
while diag

(

α1
−1, · · · ,αD

−1
)

represents the diagonal matrix
whose diagonal elements are α1

−1, · · · ,αD
−1 and non-diagonal

elements are zero. If αd
−1 is small, the distribution function ofwd

has a sharp peak around zero and the corresponding voxel thus
tends to be virtually ignored in prediction. If αd

−1 is large,wd can
take a large value. For αd, we further assume the non-informative
prior whose distribution is given by

p (αd) = αd
−1, (6)

as often adopted in previous studies (Yamashita et al., 2008).
Additionally, for the parameter µ, we assume the non-
informative prior, which is expressed as

p (µ) = lim
σ 2→∞

N
(

0, σ 2I
)

. (7)

We then obtain the log of the posterior distribution as

log p (w,µ,α|X,Y)

∝ log p (w,µ,α,Y|X)

= log p (Y|w,µ,X)+ log p (w|α)+ log p (α)+ log p (µ) . (8)

In the present study, the values of w, µ, and α that maximize the
above function—the maximum a posteriori (MAP) solution—
were estimated with training data, and the values ofw andµwere
then used in prediction on test data. Because the MAP solution
for the above cannot be derived in a closed form, we used the
mean-field variational Bayesian approximation and the Laplace
approximation (Attias, 1999, Bishop, 2006; see Appendix). Once
we obtain the MAP solution, we can calculate the predictive

probability of each class for a given new input vector. The
class with the highest predictive probability was chosen as the
prediction outcome.

To examine the effect of voxel selection by ARD, we
compared the performance of SOLR with that of OLR having
L2-regularization (L2OLR). In L2OLR, we assume that the prior
distribution ofw is the Gaussian distribution with zero mean and
isotropic covariance, as expressed by

w|α ∼ N
(

0,α−1I
)

. (9)

α is a hyperparameter that controls the degree of regularization.
In a similar manner to SOLR, we assume non-informative priors
for α and µ. We estimated the MAP solution with the same
approximation techniques, and then made a prediction using the
estimated parameters.

Simulation Analysis
We compared the prediction performance across SOLR, L2OLR,
SLiR, and SMLR using simulation data. For data generation,
five D-dimensional Gaussian distributions were prepared, and
samples for class c were generated from the c-th Gaussian
distribution. The means of the Gaussian distributions were given
by

µ1 = (0, · · · , 0)T, (10)

µc = µc−1 +
(

hc,1, · · · , hc,d, · · · , hc,10, 0, · · · , 0
)T
, (11)

where hc,d (c = 2, · · · , 5; d = 1, · · · , 10) are parameters that
specify the intervals between the means, and each was sampled
from an exponential distribution with a mean of 1.0. Only the
first 10 dimensions have information on classes, and the other
dimensions are irrelevant. In each of the first 10 dimensions,
the mean of the input feature monotonically increases against
the class label, which leads to an ordinal structure in the feature
space. We also conducted the same simulation analysis in the
case that the means of the Gaussian distributions are equally
spaced by setting all hc,d to 1.0, and observed qualitatively similar
comparison results. The covariance matrices of the Gaussian
distributions were set as diagonal matrices regardless of the class
label. The standard deviation in each dimension was set to 3.0.
D was set to 25, 50, 100, 250, 500, 1,000, 1,500, and 2,000 to
characterize the prediction performance as a function of the
number of input dimensions.

To evaluate the prediction performance, a prediction model
was trained and tested on independent sets of samples.N samples
and 1,000 samples were respectively generated from the same
Gaussian distributions as training and test data. N was set to 10,
25, 50, 100, 250, 500, 1,000, 1,500, and 2,000 to characterize the
prediction performance as a function of the number of training
samples. Equal numbers of samples were generated for the five
classes. To quantify the prediction performance, we calculated
the Spearman rank correlation between true and predicted
labels using test data. The same simulation procedure was
repeated 100 times, and the prediction performance measured
by the Spearman rank correlation was averaged across those 100
repetitions.
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fMRI Data Analysis
We compared the prediction performance across the four
algorithms using real fMRI data from Miyawaki et al. (2008).
The dataset can be downloaded from public databases2 (Poldrack
et al., 2013; Takemiya et al., 2016). It contains fMRI signals when
the subject was viewing visual images consisting of contrast-
defined 10 × 10 checkerboard patches. Each patch was either a
flickering checkerboard or a homogeneous gray area. The dataset
consists of two independent sessions. One is a random image
session, in which a spatially random pattern was presented for
6 s and there was a subsequent 6-s rest period. A total of 440
different random patterns were presented to the subject. The
other is a figure image session, where a letter of the alphabet or
a simple geometric shape was presented for 12 s and there was a
subsequent 12-s rest period. Five letters of the alphabet and five
geometric shapes were presented eight times.

Miyawaki et al. (2008) successfully reconstructed presented
images from fMRI responses by combining multiple classifiers.
To reconstruct arbitrary visual images, a set of local regions that
cover the entire stimulus image area was predefined, the mean
contrast in each local regionwas then predicted by a classifier, and
the outputs from the classifiers for those local regions were then
optimally combined to produce a single reconstructed image.
In the previous study, SMLR was used to construct classifiers.
Here, we used SOLR, L2OLR, SLiR, and SMLR for contrast
prediction, and compared the prediction performance among
them. In this analysis, the amplitudes of the 996 voxels in the
primary visual cortex (V1) in both hemispheres were used as
inputs. The V1 voxels were identified by the standard retinotopy
mapping analysis (see Miyawaki et al., 2008).

RESULTS

Simulation Analysis
In the simulation analysis, samples from the five classes were
generated from five multidimensional Gaussian distributions,
and a prediction model using each algorithm was trained
and tested on independent sets of data samples (see section
Materials and Methods). We set only the first 10 dimensions
to have information on the classes while keeping the other
dimensions irrelevant. In each of the first 10 dimensions, the
centers of the five Gaussian distributions were placed so that
the mean of the input feature monotonically increases against
the class number to assume an ordinal structure in the feature
space.

To characterize prediction performance when the number
of input dimensions is large, performance was calculated as
a function of the number of input dimensions (Figure 2A).
Prediction performance was evaluated using the Spearman rank
correlation between true and predicted labels. The number
of training samples was fixed to 100, which is a typical size
in real fMRI decoding analysis. While all algorithms had
similar performance when the number of input dimensions was

2https://openfmri.org/

http://brainliner.jp/data/brainliner/Visual_Image_Reconstruction

small, SOLR outperformed the other algorithms as the number
increased.

Furthermore, the prediction performance was calculated as
a function of the number of training samples to characterize
the performance when the number of training data is small
(Figure 2B). Here, the number of input dimensions was fixed
to 1,000, which is a typical input size in decoding analysis. As a
result, SOLR had higher performance than the other algorithms
when the number of training data was small. As we increased
the number of training samples, all algorithms reached similar
accuracies.

fMRI Data Analysis
We also evaluated the prediction performance using the real
fMRI dataset from Miyawaki et al. (2008). The cited study
measured fMRI responses as the subject viewed 10 × 10 binary
images and successfully reconstructed arbitrary visual images
from the fMRI responses (Figures 3A, B). In the reconstruction
procedure, it was assumed that a stimulus image can be
represented by a linear combination of local image bases of
multiple scales (1 × 1, 1 × 2, 2 × 1, and 2 × 2; Figure 3A).
There are a few possible stimulus states (contrast patterns) in the
region specified by a single image basis, and the stimulus states
can be classified according to the mean contrasts (Figure 3C).
The mean contrast for the 1 × 1 image basis is binary, but the
mean contrast for 1 × 2 and 2 × 1 image bases takes one out
of three discrete values, and that for the 2 × 2 image basis takes
one out of five discrete values. While the intervals between the
successivemean contrasts can be regarded as equal in the contrast
space, the distributions of voxel patterns for the discrete values
are not necessarily equally spaced. In fact, the amplitude of the
most responsive voxel in V1 for each image basis monotonically
increases against but is not proportional to the mean contrast
level (Figure 3D). Miyawaki et al. (2008) predicted the mean
contrasts for the image bases using binary or multiclass classifiers
based on sparse logistic regression (sparse [multinomial] logistic
regression, SMLR), disregarding the order of contrasts. Here,
we used SOLR, L2OLR, SLiR, and SMLR to predict the mean
contrasts for 1 × 2, 2 × 1, and 2 × 2 image bases, and compared
the prediction performance among them.

We evaluated the prediction performance of each algorithm
by five-fold cross-validation using the random session data
(Figure 4A). The prediction performance for each image basis
was quantified by the Spearman rank correlation between true
and predicted contrasts across test samples. The continuous
outputs of SLiR were assigned to the nearest discrete labels. For
all basis shapes, SOLR outperformed the other algorithms. The
median performances of SOLR were significantly higher than
those of L2OLR (p < 0.001, signed-rank test), SLiR (p < 0.001),
and SMLR (p< 0.005) for all basis shapes.

Additionally, we tested ordinal logistic regression with elastic
net regularization (elastic net-OLR; Zou and Hastie, 2005).
The elastic net involves regularization using a sum of the L1-
norm and the L2-norm of the weight vector as a penalty term,
while having two hyperparameters to be manually adjusted.
Because the solution of elastic net-OLR cannot be obtained in an
analytic form, we minimized the cost function by the iteratively
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A B

FIGURE 2 | Simulation analysis. (A) Decoding accuracy as a function of the number of input dimensions. SOLR, L2OLR, SLiR, and SMLR are trained with 100

samples and tested with 1,000 samples using simulation data. The prediction performance is evaluated by the Spearman rank correlation between true and predicted

labels. In this simulation, only 10 input dimensions include information on labels, and the number of irrelevant dimensions is changed to characterize the performance.

The mean performance across 100 simulation repetitions is plotted as a function of the total number of input dimensions (*p < 0.01, signrank test; error bar: SD

across 100 simulation repetitions). (B) Decoding accuracy as a function of the number of training data. The mean prediction performance is plotted as a function of

the number of training samples (*p < 0.01, signrank test; error bar: SD across 100 simulation repetitions). The total number of dimensions is fixed to 1,000.

A B

C D

FIGURE 3 | Ordinal regression task with visual image reconstruction data. (A) Reconstruction procedure of Miyawaki et al. (2008). A presented image was

reconstructed by first predicting the contrasts of image bases from brain activity and then optimally combining the image bases multiplied by the predicted contrasts.

Image bases were 1 × 1-, 1 × 2-, 2 × 1-, and 2 × 2-shaped regions covering a 10 × 10-pixel image with overlaps (a total of 361 regions; 1 × 1, 100; 1 × 2, 90; 2 ×

1, 90; 2 × 2, 81). (B) Examples of stimulus images. Random binary images (upper) and simple geometric shapes (lower) were respectively presented in the random

image session and the figure image session of the experiment. In reconstruction analysis, data in the random image session were used to train decoders and data in

the figure image session were used as test data. (C) Contrast patterns and mean contrast in image bases. 1 × 2- and 2 × 1-shaped regions took one of the four

contrast patterns, and the mean contrast within the region took one of the three values (left, middle). 2 × 2-shaped regions took one of the 16 contrast patterns, and

the mean contrast took one of the five values. (D) Relationship between the voxel amplitude and mean contrast. Voxels responsive to each local region were selected

in a univariate analysis of the random image session data. The voxel amplitudes were then averaged across trials for each mean contrast. Error bars show the 95%

confidence intervals across local regions.

reweighted shrinkage method (Chartrand and Yin, 2008). This
minimization was performed with the same stopping criterion
as in SOLR with a step tolerance of 0.001. An elastic net-OLR

training with a particular hyperparameter set took about half
the time of an SOLR training. Whereas a careful tuning of the
hyperparameters with many repetitions could lead to a slightly

Frontiers in Neuroinformatics | www.frontiersin.org 6 August 2018 | Volume 12 | Article 51

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Satake et al. Sparse Ordinal Logistic Regression

A

B

FIGURE 4 | Performance on visual image reconstruction data. (A) Prediction

of mean contrasts of image bases. For each basis, the mean contrast was

predicted by SOLR, L2OLR, SLiR, and SMLR. Performance was evaluated

using the Spearman rank correlation between true and predicted mean

contrast values across test samples. The mean performance averaged across

basis locations is shown. Error bars show the 95% confidence intervals across

basis locations. (B) Reconstructed images. Presented images and images

reconstructed with the four algorithms are shown.

superior or comparable performance to SOLR, the performance
of elastic net-OLR fell below that of SOLR in most ranges of
hyperparameters. Note that SOLR has no hyperparameters, and
does not require a time-consuming tuning.

To confirm that the sparseness introduced in SOLR, SLiR,
and SMLR automatically selects a subset of voxels, we counted
the number of the voxels with non-zero weights in each local
decoder. While SOLR, SLiR, and SMLR selected 88 ± 15, 180 ±
7.7, and 56 ± 17 (mean ± SD) voxels out of the 996 V1 voxels,
respectively, all the weights estimated by L2OLR were nonzero.
We also confirmed that the majority of voxels selected by SOLR
were located in the hemisphere contralateral to the image basis
location, consistent with the known retinotopic mapping.

To examine whether the sparseness in SOLR efficiently
prevents overfitting, we conducted an additional analysis where
the number of training samples was randomly reduced to 50
samples from all the 352 samples. As the size of the training
data becomes smaller, the risk of overfitting increases. In this
condition, SOLR outperformed L2OLR with a larger difference
(r = 0.25±0.17 for SOLR, 0.15 ± 0.13 for L2OLR; mean ± SD
across randomly selected 50 local image bases) than when all
training samples were used (r = 0.46 ± 0.19 for SOLR, 0.41 ±

0.19 for L2OLR).
We finally reconstructed visual images according to the

predictions of the models with the same procedure as adopted
by Miyawaki et al. (2008), and compared reconstructed images
between the four algorithms (Figure 4B). The image bases were

multiplied by the predicted mean contrasts and then linearly
combined with optimized weights to produce a single image (see
Miyawaki et al., 2008 for details). Although the differences are not
remarkable in visual inspection, the spatial correlations between
presented images and images reconstructed with SOLR were
higher than those of the other algorithms (p < 0.05, signed-rank
test).

DISCUSSION

We developed a new algorithm for ordinal variable decoding
by combining OLR with Bayesian sparse weight estimation.
The proposed algorithm, SOLR, was compared with three
other methods: (1) ordinal logistic regression without a sparse
constraint, L2OLR; (2) a regression model with the same
Bayesian sparse constraint, SLiR; and (3) a classification
model with the same Bayesian sparse constraint, SMLR.
In analyses using simulation and real fMRI data, SOLR
had better prediction performance than the other three
methods. These results suggest that SOLR is a useful tool in
decoding analyses where the target variable can be regarded as
ordinal.

Ordinal variables naturally emerge in decoding analysis;
however, they have been predicted using classification models
(Miyawaki et al., 2008; Staeren et al., 2009; Baucom et al., 2012;
Cortese et al., 2016, 2017) or regression models (Chu et al., 2011;
Valente et al., 2011; Nishio et al., 2012; Chang et al., 2015). By
the nature of the ordinal variable, the levels an ordinal variable
takes have a relative order but the distances between levels are
not given. Because regression models use a metric in the label
space and their predictions depend on it (Figure 1A), regression
models are not appropriate for ordinal variable prediction.
Meanwhile, classification models do not need the distances
between classes. However, the complexity of classificationmodels
rapidly grows as the number of classes becomes large, which
increases the chance of overfitting (Figure 1B). Here, to predict
ordinal variables in decoding analysis, we introduced OLR
(McCullagh, 1980), one of the known generalized linear models
whose output variable is assumed to be an ordinal variable. To
prevent overfitting in decoding analysis where a large number
of voxels are used as input, we proposed a new method, SOLR,
by combining OLR with a Bayesian sparse weight estimation
method (MacKay, 1992; Neal, 1996; Yamashita et al., 2008).

In the analysis using simulation data, SOLR outperformed
L2OLR, SLiR, and SMLR as the number of input dimensions
increased or the number of training data decreased (Figure 2).
The comparison between SOLR and L2OLR suggests that the
sparseness introduced into SOLR prevents overfitting efficiently
and improves the decoding performance, which is consistent
with the results of previous studies analyzing the utility of the
sparseness using classification models (Yamashita et al., 2008;
Ryali et al., 2010). A comparison among SOLR, SLiR, and SMLR
showed that the appropriate treatment of a given relative order
by OLR also leads to better decoding performance.

In analysis using real fMRI data, the same four methods were
compared and SOLR had better prediction performance than
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L2OLR, SLiR, and SMLR (Figure 4A). While the same contrast
prediction task was conducted with SMLR in the previous
study (Miyawaki et al., 2008), we found that the prediction
can be improved by introducing SOLR. Although the resultant
reconstructed images of SOLR and SMLR appear similar
(Figure 4B), SOLR had a slightly higher spatial correlation than
SMLR. Note also that SOLR does not require to manually tune
hyperparameters as in elastic net regularization. These results
suggest that SOLR would work well in a practical situation of
fMRI decoding analysis.

Additional analyses showed that SOLR outperformed L2OLR
even better when the amount of training data was reduced,
and that voxels to which large weights were assigned by
SOLR are mainly distributed in the contralateral hemisphere
to the image basis locations. These results suggest that SOLR
prevents overfitting by selecting physiologically relevant voxels
for prediction.

Taken together, SOLR is expected to provide a principled and
effective method of decoding ordinal variables. While ordinal
variables have been predicted using classification models or
regression models in previous decoding studies, we found that
SOLR outperformed linear classification and regression models
with the same type of sparseness. The results suggest that
SOLR would be helpful in decoding analysis where an ordinal
variable is used as the target variable and would allow us to

better characterize the neural representations of subjective states

that are quantified by subjective ratings, such as impressions,
emotional feelings, and confidence.
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APPENDIX

We estimated the MAP solution of the weight and threshold
parameters in SOLR using the mean-field variational Bayesian
approximation and Laplace approximation. In this estimation
procedure, we approximate the posterior distribution
as

p (w,µ,α|X,Y) ≈ q1 (w,µ) q2 (α) . (12)

q1and q2 are probability density functions that are iteratively
updated to obtain a better approximation. In the variational
Bayesianmethod, q1and q2 are alternately updated using the rules

log q1 (w,µ) := 〈log p(w,µ,α,Y|X)〉q2(α) + const (13)

and

log q2 (α) := 〈log p(w,µ,α,Y|X)〉q1(w,µ) + const, (14)

where 〈x〉q(x) denotes the expectation of x with respect to
the probability distribution q (x). Each update decreases
the Kullback–Leibler divergence between p (w,µ,α|X,Y)
and q1 (w,µ) q2 (α), which makes q1 (w,µ) q2 (α) a better
approximation of the posterior distribution (Attias, 1999;
Bishop, 2006; Yamashita et al., 2008). In the following, we
describe the procedure of updating q1 and q2, respectively.

To update q1, the right side of (13) is rewritten as

N
∑

n=1

C
∑

c=1

ync log
[

F
(

µc − wTxn

)

− F
(

µc−1 − wTxn

)]

−
1

2

D
∑

d=1

ᾱdwd
2 + const, (15)

where ᾱd = 〈αd〉q2(α). F is the logistic sigmoid function whose
definition was given in (4). The probability distribution function
whose logarithm is given by (15) cannot be obtained in analytic

form, and we therefore applied the Laplace approximation. In
the approximation, (15) is replaced with its second-order Taylor
series expansion around the maximum, and the update equation
of q1 is rewritten as

q1 (w,µ) := ϕ (w; w̄,6w) ϕ
(

µ; µ̄,6µ

)

, (16)

where, the function ϕ(·;m,6) denotes the probability density
function of the multidimensional Gaussian distribution with
mean m and covariance 6. w̄ and µ̄ are the values of w and
µ that maximize 〈log p(w,µ,α,Y|X)q2(α)〉. 6w is the Hessian
matrix of 〈log p(w, µ,α,Y|X)q2(α)〉 with respect to w at w̄. 6µ is
the Hessian matrix of 〈log p(w, µ,α,Y|X)q2(α)〉 with respect toµ

at µ̄. The calculation of w̄ and µ̄ was performed using a gradient
method in the present study. As 6µ is not used in the update of
q2, only w̄, µ̄, and6w were calculated in the present study.

In the update of q2, using the relationship (16), the update rule
is given by

q2 (α) :=

D
∏

d=1

ψ (αd; ᾱd, γd) , (17)

where, ϕ(·;m,6) denotes the probability density function of the
gamma distribution with mean ᾱ and degree of freedom γ . γd is
0.5 regardless of d, and ᾱd is given by

ᾱd : =
1

w̄2
d
+6w(d,d)

, (18)

where w̄d is the d-th element of w̄ and6w(d,d) is the d-th
diagonal element of 6w. To accelerate convergence, a modified
rule adopted in previous studies (MacKay, 1992; Yamashita et al.,
2008) was used instead of (18):

ᾱd : =
1− ᾱd6w(d,d)

w̄2
d

. (19)

As initial parameters, ᾱ1, · · · , ᾱD were set to 1, and q1 and q2 were
alternately updated 100 times in this study.
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