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Abstract

Motivation: Elementary flux mode (EFM) analysis allows an unbiased description of metabolic net-

works in terms of minimal pathways (involving a minimal set of reactions). To date, the enumer-

ation of EFMs is impracticable in genome-scale metabolic models. In a complementary approach,

we introduce the concept of a flux tope (FT), involving a maximal set of reactions (with fixed direc-

tions), which allows one to study the coordination of reaction directions in metabolic networks and

opens a new way for EFM enumeration.

Results: A FT is a (nontrivial) subset of the flux cone specified by fixing the directions of all reversible

reactions. In a consistent metabolic network (without unused reactions), every FT contains a ‘max-

imal pathway’, carrying flux in all reactions. This decomposition of the flux cone into FTs allows the

enumeration of EFMs (of individual FTs) without increasing the problem dimension by reaction split-

ting. To develop a mathematical framework for FT analysis, we build on the concepts of sign vectors

and hyperplane arrangements. Thereby, we observe that FT analysis can be applied also to flux opti-

mization problems involving additional (inhomogeneous) linear constraints. For the enumeration of

FTs, we adapt the reverse search algorithm and provide an efficient implementation. We demon-

strate that (biomass-optimal) FTs can be enumerated in genome-scale metabolic models of B.cuenoti

and E.coli, and we use FTs to enumerate EFMs in models of M.genitalium and B.cuenoti.

Availability and implementation: The source code is freely available at https://github.com/

mpgerstl/FTA.

Contact: st.mueller@univie.ac.at or juergen.zanghellini@boku.ac.at

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The development of constraint-based modeling (CBM) approaches

contributed tremendously to our understanding of metabolic proc-

esses, in particular, to the analysis of genome-scale metabolic models

(GSMMs). Combined with CBM approaches, GSMMs provide a

mechanistic basis for our understanding of the genotype-phenotype

relationship.

For the analysis of GSMMs, two branches within the CBM spec-

trum turned out to be most successful: flux-balance analysis and

elementary flux mode (EFM) analysis. Both method families use

stoichiometric information and consider the linear equalities and

inequalities for the reaction rates (fluxes) that arise from the steady-

state assumption and irreversibility constraints. Whereas flux-

balance analysis identifies optimal solutions (under additional linear
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constraints) and remains computationally practicable even at gen-

ome scale, EFM analysis describes all feasible solutions (the flux

cone) in terms of minimal metabolic pathways. Due to the combina-

torial nature of EFM enumeration, such an analysis faces severe

computational challenges already for medium-scale metabolic mod-

els (Jungreuthmayer et al., 2013). Despite major advances in algo-

rithm design (Gagneur and Klamt, 2004; Hunt et al., 2014; Terzer

and Stelling, 2008; van Klinken and Willems van Dijk, 2016), EFM

enumeration for GSMMs is not practicable to date. Hence other

approaches focused on the enumeration of subsets of EFMs charac-

terized by particular qualities (De Figueiredo et al., 2009; Kaleta

et al., 2009).

In metabolic networks with reversible reactions, (thermodynam-

ically feasible) EFMs can be grouped into largest (thermodynamical-

ly) consistent sets (LTCSs) (Gerstl et al., 2016). For all EFMs within

one LTCS, the directions of all reactions are fixed (as determined by

the Gibbs free energy). Importantly, every flux mode can be written

as a sum of EFMs from one LTCS. In fact, a fundamental result of

EFM analysis states that every flux mode can be written as a con-

formal sum of EFMs, that is, if a component of the flux mode has a

certain sign, then this component has the same sign (or is zero) in all

EFMs involved (Müller and Regensburger, 2016; Urbanczik and

Wagner, 2005). In our previous work, it remained open whether

LTCSs can be defined without referring to EFMs and computed

without enumerating all EFMs beforehand. In the present paper, we

show that this is indeed possible.

We introduce the novel concept of a flux tope (FT) as a (nontri-

vial) subset of the flux cone specified by fixing the directions of all

reversible reactions. Obviously, every flux mode is contained in a

FT, that is, the flux cone is decomposed into FTs. A feasible combin-

ation of reaction directions naturally corresponds to a sign vector

(having –, 0, or þ entries) of the flux cone, and every FT corre-

sponds to a support-maximal sign vector of the flux cone. In fact,

the term ‘tope’ comes from the theory of oriented matroids, where it

refers to a maximal sign vector of a linear subspace (Bachem and

Kern, 1992; Bokowski, 2006). Whereas an EFM represents a min-

imal pathway (involving a minimal set of reactions), a FT contains a

maximal ‘pathway’ (involving a maximal set of reactions). As

EFMs, FTs need not be thermodynamically feasible, and we discuss

the definition and computation of thermodynamically feasible FTs

(corresponding to LTCSs) in the outlook. Ultimately, FT analysis

can be used to study the coordination of reaction directions in

GSMMs, that is, the thermodynamic repertoire of cellular

metabolism.

Most importantly, the enumeration of FTs (as opposed to EFMs)

is computationally practicable even at larger scale. Our implementa-

tion is based on the reverse search algorithm for cell enumeration in

hyperplane arrangements (Avis and Fukuda, 1996; Fukuda, 2016).

Moreover, FTs can be used to enumerate EFMs in GSMMs with re-

versible reactions. Indeed, FTs can be computed first, and EFMs (of

individual FTs) can be enumerated efficiently (without increasing

the problem dimension by reaction splitting) in a second step.

2 Materials and methods

2.1 Sign vectors
For a vector x 2 R

n, we define the sign vector sign xð Þ 2 f�; 0;þgn

by applying the sign function component-wise, that is,

sign xð Þi ¼ sign xið Þ for i ¼ 1; . . . ; n; (1)

and we write

sign Sð Þ ¼ fsign xð Þ j x 2 Sg (2)

for a subset S � R
n.

The relations 0 < – and 0 < þ induce a partial order on {–, 0,þ}n:

for sign vectors n; g 2 f�; 0;þgn, we write n � g if the inequality

holds component-wise and say that n conforms to g. Analogously, for

x 2 R
n and n 2 f�; 0;þgn, we say that x conforms to n if

sign xð Þ � n. E.g.

sign

�1

0

2

0
BB@

1
CCA ¼

�

0

þ

0
BB@

1
CCA �

�

�

þ

0
BB@

1
CCA ¼ sign

�2

�1

1

0
BB@

1
CCA;

that is, (–, 0, þ)T conforms to (–,–,þ)T, and (–1, 0, 2)T conforms to

(–, 0, þ)T (trivially) and (–,–,þ)T.

Given a subset S � R
n and a sign vector n 2 f�; 0;þgn, we define

S� n ¼ fx 2 S j sign xð Þ � ng; (3)

the subset of S conforming to n. (In the application to metabolic net-

works below, the set S is the flux cone, and the sign vector n is a

maximal sign vector of the flux cone, fixing the directions of all

reactions.)

Finally, we call the vectors x; y 2 R
n conformal if there exists a

sign vector n 2 f�; 0;þgn such that sign xð Þ; sign yð Þ � n or, equiva-

lently, if xi yi � 0 for i ¼ 1; . . . ;n.

2.2 Metabolic networks
A metabolic network is given by m internal metabolites, r reactions

and the corresponding stoichiometric matrix N 2 R
m�r, which con-

tains the net stoichiometric coefficients of each metabolite in each

reaction. The sets of irreversible and reversible reactions are given

by Iirr � f1; . . . ; rg and Irev ¼ f1; . . . ; rg n Iirr, respectively. A vector

of reaction rates that satisfies the steady-state and irreversibility con-

straints is called a flux mode. In geometric terms, a flux mode is an

element of the flux cone

C ¼ fv 2 R
r j Nv ¼ 0 and vi � 0 for i 2 Iirrg; (4)

a polyhedral cone defined by the nullspace of the stoichiometric ma-

trix and nonnegativity conditions.

2.3 Flux topes
An EFM e 2 C is a support-minimal nonzero flux mode, and every

element of the ray fke j k > 0g is an EFM, too. With respect to the

partial order on {–, 0,þ}r defined above, the sign vector sign eð Þ is a

minimal nonzero element of

sign Cð Þ ¼ fsign vð Þ j v 2 Cg; (5)

the set of all sign vectors of the flux cone. Conversely, a minimal

nonzero sign vector r 2 sign Cð Þ determines the ray

C�r ¼fv 2 C j sign vð Þ � rg

¼ fv 2 C j sign vð Þ ¼ rg

¼ fke j k > 0g;

where e 2 C is some EFM with sign eð Þ ¼ r. Analogously, a maximal

sign vector s 2 sign Cð Þ determines the pointed subcone

C� s ¼ fv 2 C j sign vð Þ � sg; (6)

which we call a flux tope (FT).
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A FT C� s consists of all flux modes that conform to the defining

sign vector s 2 sign Cð Þ, in particular, it contains all conforming

EFMs. Indeed, EFMs are extreme rays of FTs, and this property may

serve as a definition of EFMs (Klamt et al., 2017; Müller and

Regensburger, 2016).

2.4 Consistency
A flux cone is called consistent (Acu~na et al., 2009) if every reaction

(in every possible direction) is supported by a flux mode, that is, if

for every i 2 f1; . . . ; rg there exists v 2 C such that vi > 0 and, add-

itionally, for every i 2 Irev there exists v0 2 C such that v0i < 0. We

say that a flux mode has full support, if all its components are

nonzero.

PROPOSITION 1. If a flux cone is consistent, then every reaction (in

every possible direction) is supported by a flux mode with full

support.

Proof. Let C be a consistent flux cone and i 2 f1; . . . ; rg. Then

there exists v 2 C such that vi > 0. Suppose v does not have full sup-

port, that is, vj ¼ 0 for some j 6¼ i. By consistency, there exists w 2 C

such that wj > 0. Now, consider the convex combination

u ¼ 1� kð Þvþ kw 2 C. For sufficiently small 0< k< 1,

sign uð Þ > sign vð Þ, in particular, ui, uj > 0. Repetition of the argu-

ment eventually yields a flux mode with full support.

Finally, let i 2 Irev. Then there exists v 2 C such that vi < 0, and

a flux mode with full support can be constructed as above. h

We say that a FT C� s has full support, if the defining maximal

sign vector s 2 sign Cð Þ has full support, that is, if s 2 f�;þgr.

PROPOSITION 2. If a flux cone is consistent, then all FTs have full

support.

Proof. Let C be a consistent flux cone. Suppose there exists a FT

C� s with a maximal sign vector s 2 sign Cð Þ that does not have full

support, and let v 2 C� s with sign vð Þ ¼ s. By consistency, there

exists w 2 C with full support. Now, consider the convex combin-

ation u ¼ 1� kð Þvþ kw 2 C. For sufficiently small 0< k< 1, u

has full support and sign uð Þ > sign vð Þ ¼ s, contradicting that s is

maximal. h

Note that a flux cone can be made consistent using flux variabil-

ity analysis, see Section 3.1.

2.5 Hyperplane arrangements
Let the columns of the matrix K 2 R

r�d form a basis of the nullspace

of the stoichiometric matrix N, and hence NK ¼ 0. Further, let K i

2 R
d for i ¼ 1; . . . ; r denote the ith row of K and

hi ¼
�

x 2 R
d
��K ix ¼ 0

�
for i ¼ 1; . . . ; r (7)

be the corresponding (central) hyperplane. Then, every flux mode v

2 C can be written as

v ¼ Kx; (8)

where x 2 R
d is unique and vi ¼ K ix � 0 for i 2 Iirr. Most import-

antly, sign vð Þ 2 f�; 0;þgr describes the positions of x with respect

to the hyperplanes h1; . . . ; hr. In particular, a sign vector of the flux

cone with full support (defining a FT) corresponds to a cell of the

hyperplane arrangement that satisfies the irreversibility constraints.

For a general central hyperplane arrangement of r hyperplanes in

R
d, there is a well-known upper bound for the number of cells: Out

of 2r full sign vectors, 2
Pd�1

i¼0

�
r� 1

i

�
correspond to cells (Buck,

1943; Fukuda, 2016). This upper bound simplifies to 2r if d� r. In

case of irreversibility constraints, where r ¼ jIrevj þ jIirrj, we have

the obvious upper bound 2jIrev j for the number of FTs. In case

jIrevj ¼ 0, there is only one FT.

2.6 A toy model
We consider the small network displayed in Figure 1a. It consists of

three internal metabolites and six reactions. The resulting stoichio-

metric matrix amounts to

N ¼

1 0 0 �1 0 �1

0 �1 0 1 1 0

0 0 2 0 �1 1

0
BB@

1
CCA: (9)

A basis of the nullspace of N is given by the columns of the

matrix

K ¼

1 0 0

0 1 0

�1

2

1

2
0

0 0 1

0 1 �1

1 0 �1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

: (10)

Every flux mode can be written as v ¼ Kx with a unique x 2 R
3.

Since the submatrix of K consisting of the rows 1, 2 and 4 (corre-

sponding to the reactions R1, R2 and R4) is the identity matrix, we

get

v ¼ K

v1

v2

v4

0
BB@

1
CCA: (11)

Now, the irreversible reactions R1, R2 and R6 define the nonne-

gativity conditions v1 � 0; v2 � 0, and v1 – v4 � 0 and shape the

flux cone, whereas the reversible reactions R3, R4 and R5 determine

the hyperplanes � 1
2 v1 þ 1

2 v2 ¼ 0; v4 ¼ 0, and v2 – v4 ¼ 0 and divide

the flux cone into FTs. The resulting five FTs are listed in Figure 1b.

The projection of the FTs on the flux components v1, v2 and v4 is

depicted in Figure 1c.

The six (generating) EFMs ei of the toy network are listed in

Figure 1b, and their projections ei are depicted in Figure 1c.

According to Equation (11), we can write them as

e1; . . . ; e6ð Þ ¼ K e1; . . . ; e6ð Þ ¼ K

2 0 0 2 2 2

0 2 0 2 0 2

0 0 �2 0 2 2

0
BB@

1
CCA: (12)

Each FT is generated by three EFMs. (This is the smallest pos-

sible number since the dimension of the nullspace is three.)

The EFMs e4; e1 and e6 are contained in the largest number of

FTs (four and three, respectively), see Figure 1b and c. They generate

the most ‘central’ FT s2 (depicted in pink), having the largest

number of neighbours (three). The EFMs e2 and e3 are contained in

two FTs each. Together with the above EFMs, they generate four

(out of five) FTs. The remaining EFM e5 is contained only in

the most ‘peripheral’ FT s5, having only one adjacent FT.

As opposed to the other FTs, flux vectors in s5 use reaction R5 in re-

verse direction.
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2.7 Reverse search
If (i) the flux cone is consistent, then all maximal sign vectors have

full support, by Proposition 2. If (ii) the nullspace matrix does not

contain rows which are multiples of each other, then hyperplanes

are distinct, and cells can be enumerated using reverse search (Avis

and Fukuda, 1996). The algorithm starts from a cell in the hyper-

plane arrangement (represented by a full sign vector) and recursively

checks all adjacent full sign vectors (differing in exactly one compo-

nent) whether they represent cells.

In our implementation, we use the idea that only adjacent full

sign vectors need to be checked, however, for efficiency reasons, we

adapt the algorithm. In particular, we do not operate on the hyper-

plane arrangement, but directly on full sign vectors, see Section 3.2.

In the following, we assume (i) and (ii) which can be ensured

using appropriate pre-processing, see Section 3.1.

2.8 Flux optimization
In flux-balance analysis, one often optimizes linear combinations of

reaction rates under box constraints, i.e. one solves linear programs

(LPs)

max cTv s:t: v 2 P; (13)

defined on the flux polyhedron

P ¼ fv 2 R
r
��Nv ¼ 0 and ‘i � vi � ui for i ¼ 1; . . . ; rg; (14)

where ‘i; ui 2 �1;þ1½ �. The lower and upper bounds define a cor-

responding flux cone C, in particular, i 2 Iirr if and only if ‘i � 0. If

‘i ¼ –1 or 0 and ui ¼ þ1 for all i 2 f1; . . . ; rg, then P¼C, other-

wise P � C.

Let v	 be an optimal flux and d ¼ cTv	 the corresponding opti-

mal value. Then P	 ¼ fv 2 P j cTv ¼ dg is the polyhedron of opti-

mal fluxes. As for the flux cone C, FTs and consistency can be

defined for the optimal flux polyhedron P	 (Klamt et al., 2017).

After ensuring consistency using flux variability analysis, all FTs of

the flux polyhedron have full support and correspond to cells in a

(non-central) hyperplane arrangement that satisfy the box con-

straints. Finally, after ensuring that hyperplanes are distinct (see

Section 3.1), FTs can be enumerated using reverse search.

In our toy model (Fig. 1), assume upper bounds for the uptake

reactions R1 and R3 in Figure 1a, in particular, v1 � 10 and v3 �
10. Then the projected flux cone in Figure 1c becomes a polyhedron

with v2 � 30; v3 � �5; v4 � 10 and v5 � �10. Still, since EFM e3

(the internal cycle) is not constrained by the uptake reactions, there

is no lower bound for v4 (and no upper bounds for v5 and v6). As a

consequence, FTs s1; s2 and s5 become bounded, whereas s3 and s4

remain unbounded (for negative v4). When the flux through the

product reaction R2 is optimized, then the maximum v2 ¼ 30 is

attained at flux distributions in FTs s1 and s3, see again Figures 1c

and 2. Note that optimal solutions are contained in adjacent FTs, in

particular, s1 and s3 are separated by the hyperplane v4 ¼ 0, and the

direction of reaction R4 is not determined by the optimum.

2.9 Genome-scale metabolic models
We study GSMMs of Mycoplasma genitalium, iPS189þ (Suthers

et al., 2009 including recent modifications by Hartleb et al., 2016),

Blattabacterium cuenoti Bge, iCG238 (González-Domenech et al.,

(a)

(c)

(b)

Fig. 1. (a) Toy model with three internal metabolites (A, B, C) and six reactions, where jIirrj ¼ 3 reactions are irreversible (R1, R2, R6) and jIrevj ¼ 3 are reversible (R3,

R4, R5). Forward and backward directions are indicated by full and empty arrow heads, respectively. Reaction R3 produces two molecules of C (stated next to the

arrow head), all other stoichiometric coefficients are one. (b) Three-dimensional table listing the EFMs ei and the FTs sj . Containment of EFMs in FTs is marked by

‘*’. Note that out of 2jIrevj ¼ 8 full sign vectors, only five define FTs, while the remaining three do not correspond to flux modes, see also Figure 2. (c) EFMs and FTs

projected on the flux components v1, v2, v4 with colors as in table (b). The projected EFMs ei are depicted by (full and dashed) arrows, and their components are

highlighted in the top plane of table (b) and listed in Equation (12). The projected EFMs generate the projected FTs and the projected hyperplane (separating the

FTs). In particular, the projected EFMs e2; e3 and e5 (thick arrows) generate the projected flux cone (Color version of this figure is available at Bioinformatics online.)
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2012) and Escherichia coli K-12 MG1655, iJR904 (Reed et al.,

2003). For iPS189þ and iCG238, we allow the consumption of all

nutrients for which uptake reactions are present in the model. For

iJR904, we model growth on minimal medium [ammonium, hydro-

gen(þ), oxygen, phosphate, sulfate] with glucose as the sole carbon

source. A summary of the algebraic characteristics of the models is

given in Table 1. All models are available at https://github.com/

mpgerstl/FTA.

3 Implementation

3.1 Pre-processing
We use flux variability analysis (Mahadevan and Schilling, 2003) to

make the flux cone consistent. That is, we remove all reactions that

cannot carry nonzero steady-state flux and change all reversible

reactions into irreversible that cannot carry flux in both directions.

Further, we identify an initial FT determined by a maximal sign

vector of the flux cone. By consistency, this sign vector has full sup-

port and, after changing the directions of reversible reactions having

a minus entry, it has only plus entries.

Finally, we determine reaction dependencies. We compute a

basis matrix for the nullspace of the stoichiometric matrix, using the

nullspace method of the R package pracma, and determine rows (de-

pendent reactions) that are multiples of other rows (independent

reactions).

3.2 Efficient enumeration of flux topes
To check if a full sign vector s 2 f�;þgr (with si ¼ þ for i 2 Iirr)

determines a FT, we check the feasibility of the LP

Nv ¼ 0; ‘ � sivi � u for i ¼ 1; . . . ; r: (15)

For numerical reasons, we set lower and upper bounds, ‘ ¼ 10–6

and u¼103, respectively, and a tolerance of the LP solver of at most

10–10.

The algorithm starts with the sign vector having only plus

entries. In the first step, it visits all full sign vectors having one minus

entry in an independent reversible reaction (and all reactions de-

pending on it) and checks their feasibility, using the above LP

(see Fig. 2). In the second step, the algorithm visits all feasible, full

sign vectors having two minus entries in an independent reversible

reaction, and so on.

More specifically, in step n, the algorithm starts with the set of

all feasible full sign vectors having n – 1 minus entries (the ‘parent’

sign vectors), and visits all full sign vectors with n minus entries (the

‘child’ sign vectors). Note that ‘child’ sign vectors can be reached

from several ‘parent’ sign vectors. If a sign vector is visited for the

first time, its feasibility is checked using the above LP and stored in

a tree of bit patterns (one bit, plus or minus, for each independent

reversible reaction), in order to avoid the repetition of the feasibility

check. The algorithm terminates if there are no feasible full sign vec-

tors having n minus entries or if n reaches the number of independ-

ent reversible reactions. For an illustration of our implementation,

see Figure 2 and Supplementary Table S1.

Our enumeration algorithm can be threaded efficiently. In par-

ticular, checking the feasibility of ‘child’ sign vectors for a given

‘parent’ sign vector forms an independent task.

We implemented the algorithm in C. LPs are solved with

CPLEX. The source code is available at https://github.com/mpgerstl/

FTA. Unless otherwise stated, computations were carried out using

six threads on a XeonVR E5-1650v3 CPU with DDR4 RAM modules

running on Debian 8.

4 Results

4.1 FTs correspond to maximal sets of conformal EFMs
We analyzed a GSMM of M.genitalium, iPS189þ (Hartleb et al.,

2016; Suthers et al., 2009) and enumerated all FTs and all EFMs.

(The enumeration of all EFMs was possible since the model is suffi-

ciently small.) More than 3 million EFMs were found, which are

contained in only 672 FTs, see Table 1. The FTs were enumerated

within 1 s, whereas EFM computation took 10 h.

We verified that the 672 FTs correspond to maximal sets of con-

formal EFMs (having matching signs). Thereby, we first computed

the set of all EFMs and formed the maximal sets of conformal EFMs

using a mixed integer LP described in Gerstl et al. (2016), which was

previously used for the computation of LTCS from the set of EFMs.

Fig. 2. Enumeration of FTs for the toy network in Figure 1 (with colors as in Figure 1). Out of 2jIrev j ¼ 8 full sign vectors, only five define FTs. Two FTs maximize the

flux through reaction R2 (dark blue frames), three are sub-optimal (light blue frames). Three full sign vectors do not represent a FT (red frames), since either C is

only produced or B is only consumed. Sign vectors are depicted as nodes of a directed acyclic graph (arranged in levels n¼0 through n¼3) with directed edges

pointing from ’parent’ to ’child’ sign vectors (Color version of this figure is available at Bioinformatics online.)
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We also computed the sets of EFMs for all individual FTs and found

that their union equals the set of all EFMs.

We conclude that in network containing reversible reactions (i)

FTs can be enumerated efficiently, (ii) few FTs condense the infor-

mation contained in many EFMs and (iii) EFMs can be computed

using FTs.

4.2 FT analysis may be feasible when EFM analysis is

not
We studied a GSMM of B.cuenoti, a mutualistic, bacterial endosym-

biont living in fat cells of cockroaches. The model iCG238

(González-Domenech et al., 2012) is significantly larger than

iPS189þ, and a full EFM analysis is infeasible with current methods.

However, we were able to enumerate all FTs within 30 h and found

60.2�106 FTs, see Table 1.

We note that the number of FTs is much smaller than the obvi-

ous upper bound 231 ¼ 2.15�109, where 31 is the number of inde-

pendent reversible reactions. To attain this upper bound, each FT

would need to have 31 adjacent FTs. However, most frequently, a

FT has only 22 adjacent FTs, see Figure 3.

4.3 Optimal FTs can be enumerated in GSMMs
For the model iCG238 (González-Domenech et al., 2012), we were

further interested in fluxes that maximize biomass production. As

described in Section 2.8, we enumerated the FTs of the optimal flux

polyhedron. We found that, out of the 60 million FTs of the flux

cone, only 270 are FTs of the optimal flux polyhedron, see Table 1.

In fact, the optimal FTs could be identified within 1 s, without first

enumerating all FTs (taking 30 h) and then selecting the optimal

ones. We verified that both approaches result in the same set of

biomass-optimal FTs.

The decrease in the number of FTs from 60 million to 270 is a

consequence of additional irreversibility constraints arising from the

optimality condition. While the model iCG238 contains 31 inde-

pendent reversible reactions, biomass-optimality enforces 21 add-

itional irreversibility constraints leaving only ten reactions

reversible, see Table 1. Interestingly, out of all amino acid transport

reactions, only the exchange of Alanine remained reversible. All

other amino acids cannot be produced when B.cuenoti is growing

optimally.

To complete the study of the model iCG238, we randomly

selected 10% of the biomass-optimal FTs and performed an EFM

analysis. All FTs contained around 109 EFMs, see Figure 4; how-

ever, the run times for EFM enumeration varied strongly, ranging

from 1 h to more than 60 h in one extreme case.

Finally, we analyzed a GSMM of E.coli, iJR904 (Reed et al.,

2003). We enumerated all biomass-optimal FTs and found around

twelve million FTs within less than 35 h runtime. Interestingly, the

number of FTs computed in each step of our algorithm is distributed

normally, see left panels in Figure 6 and Supplementary Figure S2.

Indeed, the same distribution was found for B.cuenoti, iCG238, see

Supplementary Figure S3 in the supplement.

Next, we studied the frequency of reaction directions in

biomass-optimal FTs of iJR904. The direction of fructose-

bisphosphate aldolase (FBA) turned out to be most rigid, with the

forward direction being used in 80% of the FTs. On the other hand,

12 (out of the 27) reversible reactions were most flexible, showing

no preference for forward or backward directions, see the diagonal

in Figure 5. In fact, Figure 5 illustrates the coordination of reaction

directions for pairs of reversible reactions. Only seven (out of�
2� 27

2

�
¼ 1431) pairs of reaction directions are infeasible (black

squares in the off-diagonal cells in Fig. 5), thereby highlighting the

plasticity of metabolic networks. While most infeasible pairs

occurred within the nucleotide salvage pathway, some also occurred

across different pathways, e.g. the infeasible pair of malate dehydro-

genase (MDH) and fructose-bisphosphate aldolase (FBA) from the

tricarboxylic acid cycle and glycolysis, respectively.

The enumeration of all FTs turned out to be computationally in-

feasible. In fact, the enumeration of all FTs up to step n¼11 (see

Fig. 6) required two months and 260 GB memory, thereby using 20

threads on two IntelV
R

XeonVR E5-2650v3 CPUs with DDR4 RAM

modules running on CentOS 7. Assuming that the incremental num-

ber of FTs is distributed normally, we estimated the total number of

FTs to be around 1012, see top-right panel in Figure 6. This predic-

tion is by two orders of magnitude lower than the upper bound

Table 1. Algebraic characteristics of consistent GSMMs: dimensions m� r of the stoichiometric matrix N, dimension of the nullspace with

basis K, d ¼ rankðKÞ, and number of independent reactions, rind. (Numbers in brackets refer to the numbers of reversible reactions.)

Organism model ID m� r d EFMs run time rind FTs run time rind FTs (max.BM) run time

M.genitalium iPS189þ 271� 277 (21) 28 3 252 686 10.3 h 83 (13) 672 1.0 s 83 (7) 48 <1.0 s

B.cuenoti iCG238 306� 350 (45) 51 c.i. — 137 (31) 60 226 956 29.8 h 137 (10) 270 <1.0 s

E.coli iJR904 450� 667 (53) 233 c.i. — 432 (49) c.i. — 432 (27) 11 796 480 34.8 h

Note: Computational results: number of EFMs [computed by FluxModeCalculator (van Klinken and Willems van Dijk, 2016)], number of FTs (computed by

our implementation), and number of FTs that maximize biomass production (max.BM).

c.i., computationally infeasible.

Fig. 3. Frequency of the number of adjacent FTs, computed in iCG238

Fig. 4. Runtime (of EFM enumeration) versus number of EFMs for 27 random-

ly selected, biomass-optimal FTs, computed in iCG238
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determined by the number of independent reversible reactions. The

quality of the fit was evaluated for iCG238 (B.cuenoti) and

biomass-optimal FTs of iJR904 (E.coli), where already after a few

steps the predictions are within a 50% range of the true value, cf.

Supplementary Figure S4.

5 Discussion

In this work, we introduced the novel concept of a flux tope (FT).

For a consistent metabolic network, a FT is a full-dimensional

pointed subcone of the flux cone, specified by fixing the directions

of all (reversible) reactions. In particular, every FT contains a full

‘pathway’, carrying flux in all reactions. Whereas flux variability

analysis allows to study the feasible directions of individual reac-

tions, FT analysis allows to study all feasible (or all optimal) combi-

nations of reaction directions. We developed a mathematical

framework for FT analysis, building on the concepts of sign vectors

and hyperplane arrangements, we provided an efficient algorithm

for the enumeration of FTs, we demonstrated that FTs can be enum-

erated in large metabolic networks, and we used FTs to enumerate

EFMs in metabolic networks with reversible reactions. Ultimately,

we are interested in FTs that are both stoichiometrically and thermo-

dynamically feasible and hence characterize the thermodynamic rep-

ertoire of cellular metabolism.

To efficiently enumerate FTs, we build on the correspondence

between FTs and cells in a (central) hyperplane arrangement. In par-

ticular, we adapt the reverse search algorithm for cell enumeration

in hyperplane arrangements. Reverse search is both compact and

output-polynomial. (Recall that an algorithm is compact if its space

requirement is polynomial in the input size only and output-

polynomial if its runtime is polynomial in both input and output

size.) Moreover, it constantly produces output (not just upon com-

pletion). As it turns out, enumerating cells in the hyperplane ar-

rangement (7) is problematic. In particular, solving LPs involving

the (dense) null-space matrix K is slow. Hence, we directly solve the

LPs (15) involving the (sparse) stoichiometric matrix N. Further, we

trade some space requirements for smaller runtime and store the sol-

utions of LPs to avoid repeated computations. Finally, we change

the algorithm from depth-first to breadth-first search. This allows to

investigate neighborhoods of a given FT, if the enumeration of all

FTs is computationally infeasible or if the reversion of reaction

directions increases an objective function (e.g. biomass). In fact, it

was suggested that reversing reaction directions can improve strain

performance (Nishikawa et al., 2008). Moreover, coordination of

reaction directions is key to the study of emergent properties in

cross-feeding communities. Currently, it is unclear if members of a

community adjust their metabolism in an optimal manner, and un-

biased methods like FT analysis are required to identify essential

interactions between species (Gottstein et al., 2016).

For EFM enumeration, a metabolic network is often

‘reconfigured’ by splitting reversible reactions, and one considers the

resulting higher-dimensional network involving irreversible forward

and backward reactions. This approach is not practicable for FT

enumeration. For the reconfigured system, there is exactly one (triv-

ial) FT. To identify the FTs of the original system, additional con-

straints have to be added: For every reversible reaction, either the

forward or the backward flux has to be zero. Due to the enforced

zero fluxes, the FT enumeration problem is not an LP (but a mixed

integer LP), and (efficient) reverse search cannot be used.

All models under study have significantly fewer FTs than EFMs.

In fact, in the GSMM of B.cuenoti, every single FT has more EFMs

than the whole network has FTs. This is in contrast to general

hyperplane arrangements, in which there are least as many topes

(sign vectors with maximal support) as vertices (sign vectors with

minimal support) (Fukuda et al., 1991). We conjecture that the

lower number of FTs compared to EFMs is a typical feature of

GSMMs; a detailed comparison will be the scope of further work.

Currently, metabolic pathway analysis is restricted to medium-scale

models since the number of EFMs explodes with the size of a model.

FTs helps to accommodate this problem in two ways: (i) there are

fewer FTs than EFMs, and (ii) they can be enumerated more effi-

ciently. (Recall that the complexity of the double description method

for EFM enumeration is not even known).

Fig. 5. Relative frequency of pairs of reaction directions in biomass-optimal

FTs of iJR904. (Tick labels correspond to reaction identifiers in iJR904.) Every

cell corresponds to a pair of reversible reactions and is divided in four

squares corresponding to the possible combinations of reaction directions.

E.g. 50% of all biomass-optimal FTs are supported by reaction NDPK1 in back-

ward and reaction ADK1 in forward direction (see inset). Black squares depict

unfeasible pairs of reaction directions (Color version of this figure is available

at Bioinformatics online.)

Fig. 6. Cumulative and incremental number of FTs as a function of the step

size n (top and bottom panels, respectively). In particular, number of bio-

mass-optimal and all FTs (left and right panels, respectively), computed in

iJR904 (E.coli). Dashed lines represent fits to normal distributions. Parameter

values are listed in Supplementary Table S2
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Finally, the enumeration of FTs opens up a new way for enumer-

ating EFMs in GSMMs. The flux cone is the union of all FTs, which

can be subject to EFM analysis, individually. For a given FT, the

directions of all (reversible) reactions are fixed, and the double de-

scription method can be used without increasing the problem dimen-

sion by reaction splitting. On our machines, a conventional EFM

analysis of iCG238 (B.cuenoti) was infeasible due to memory

restrictions. Still, we were able to enumerate all EFMs of individual

FTs, cf. Figure 4, which suggests the parallel enumeration of EFMs

for all FTs. Clearly, a naive parallelization is inefficient, since EFMs

are typically contained in several FTs. Especially EFMs contained in

FTs with many adjacent cells are shared frequently. Tests with

iPS189þ indicate that, on average, an EFM is enumerated more

than 100 times. Yet, despite the frequent repetitions, the total CPU

run time (compared to a standard EFM analysis) increased only by a

factor of ten. Further work is needed to make a FT-based EFM enu-

meration competitive in terms of run time.

6 Outlook: thermodynamically feasible FTs

Recently, it has been shown that many EFMs are thermodynamical-

ly infeasible and hence irrelevant for the characterization of meta-

bolic phenotypes (Gerstl et al., 2016, 2015a,b; Jungreuthmayer

et al., 2015; Peres et al., 2017). The same constraints apply to FTs.

In our toy model, the FTs s3 and s4 contain the thermodynamically

infeasible EFM e3 (the internal cycle), cf. Figures 1b and 2, and

hence they are irrelevant biologically. A single thermodynamically

infeasible EFM leads to the elimination of two FTs, that is, thermo-

dynamic constraints reduce the number of FTs even more than the

number of EFMs.

A thermodynamically feasible FT represents one possible com-

bination of reaction directions and contains all corresponding path-

ways. Thereby, the thermodynamic feasibility of a FT is determined

by the metabolite concentrations via the Gibbs free energy. By cellu-

lar control of the metabolite concentrations, a FT can be reached

and the corresponding pathways can be activated.

A first generalization of our enumeration algorithm involves the

elimination of FTs that do not contain any thermodynamically feas-

ible flux mode: either by straightforward post-processing or by fur-

ther adaptation of reverse search. In the end, we are not just

interested in FTs (defined by full sign vectors) that contain thermo-

dynamically feasible flux modes (possibly with smaller sign vectors),

but rather in thermodynamically feasible FTs (defined by maximal

sign vectors). The latter definition leads to combinatorial problems

which require further theoretical analysis and algorithmic

developments.
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