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Abstract: Retroviruses cause cancers in a variety of animals and humans. Research on 

retroviruses has provided important insights into mechanisms of oncogenesis in humans, 

including the discovery of viral oncogenes and cellular proto-oncogenes. The subject of 

this review is the mechanisms by which retroviruses that do not carry oncogenes  

(non-acute retroviruses) cause cancers. The common theme is that these tumors result from 

insertional activation of cellular proto-oncogenes by integration of viral DNA. Early 

research on insertional activation of proto-oncogenes in virus-induced tumors is reviewed. 

Research on non-acute retroviruses has led to the discovery of new proto-oncogenes 

through searches for common insertion sites (CISs) in virus-induced tumors. Cooperation 

between different proto-oncogenes in development of tumors has been elucidated through 

the study of retrovirus-induced tumors, and retroviral infection of genetically susceptible 

mice (retroviral tagging) has been used to identify cellular proto-oncogenes active in 

specific oncogenic pathways. The pace of proto-oncogene discovery has been accelerated 

by technical advances including PCR cloning of viral integration sites, the availability of 

the mouse genome sequence, and high throughput DNA sequencing. Insertional activation 

has proven to be a significant risk in gene therapy trials to correct genetic defects with 

retroviral vectors. Studies on non-acute retroviral oncogenesis provide insight into the 

potential risks, and the mechanisms of oncogenesis.  

Keywords: retrovirus; proto-oncogene; oncogenesis; retroviral vector; oncogene; non-

acute retrovirus; gene therapy 
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1. Introduction 

Retroviruses have historically been of interest because they induce cancers in animals; some of the 

fundamental principles of molecular cancer biology were first discovered through studies on these 

viruses (e.g., the discovery of oncogenes and proto-oncogenes). Retroviruses of humans are associated 

with human T-cell leukemia (HTLV-I) and AIDS (HIV-1). Very recently new human retroviruses have 

been discovered (e.g., XMRV) [1,2], and their relationships to human disease are under debate and 

active investigation [1,3–10]. This review will focus on non-acute retroviruses—those that induce 

tumors indirectly through activation of cellular genes.  

2. Retrovirus Structure and Replication 

Retroviruses have been studied intensively for the past forty years, and many details of their 

structure and replication have been elucidated (reviewed in Coffin et al. [11]). A brief summary is 

provided here. Retroviruses are enveloped RNA viruses that carry two identical copies of genomic 

RNA in the virion. They have relatively simple genomes (8–12 Kb in length); the genomic RNA is 

positive stranded and resembles cellular mRNA in that is capped at the 5' end and polyadenylated at 

the 3' end. All retroviruses contain at least three genes: gag that encodes the viral core proteins (matrix 

[MA], capsid [CA] and nucleocapsid [NC]), pol that encodes the viral enzymes (protease [PR], reverse 

transcriptase [RT] and integrase [IN]), and env that encodes the proteins of the viral envelope (surface 

[SU] and transmembrane [TM]). The retrovirus life cycle is illustrated in Figure 1. When retroviruses 

infect cells, they bind to cell surface receptors via the envelope SU protein. The bound virus then 

enters the cell either by receptor-mediated endocytosis or fusion at the plasma membrane. The result is 

viral cores in the cytoplasm. Reverse transcriptase is activated within the cores, where it uses the viral 

RNA as a template for synthesis of linear double-stranded viral DNA. The viral DNA is then 

transported to the nucleus, where it is integrated into the host chromosome by the viral integrase, to 

form the provirus. Integration of viral DNA into the host DNA occurs at multiple (almost random) 

sites, although for various retroviruses there is some preference for integration. For instance, murine 

leukemia viruses tend to favor viral DNA integration near transcriptional start sites [12]. The provirus 

is transcribed by cellular RNA polymerase II, yielding a viral transcript that is identical to genomic 

RNA. The viral transcript is exported to the cytoplasm with or without mRNA splicing. In the 

cytoplasm, spliced viral mRNA is translated into a polyprotein precursor for envelope protein. Some of 

the cytoplasmic unspliced viral RNA is translated into precursor polyproteins for Gag or Pol (a Gag or 

Gag-Pol polypeptide). The viral polyproteins combine with viral RNA to form virus particles that bud 

from the cell surface. The initially released viral particles are immature and non-infectious. Maturation 

results from viral protease cleavage of the viral polyproteins in released virions. Retroviral infection is 

typically not lytic—the end result of infection is a cell stably producing virus particles.  
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Figure 1. The retrovirus life cycle. See text for details. 
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The process of reverse transcription results in a viral DNA that is somewhat longer than the 

template viral RNA, due to the presence of long terminal repeats (LTRs) at either end of the viral DNA 

(Figure 2). The LTRs are subdivided into three regions, according to the region of the viral genome 

from where they are encoded. U3 sequences are encoded in viral RNA sequences Uniquely at the 3' 

end of the genome, U5 sequences are encoded from sequences Uniquely at the 5' end of the genome, 

and R sequences are encoded by RNA sequences that are Repeated at either end of the genome. The 

LTRs carry important transcriptional signals. These include a cleavage/polyadenylation site in the R 

region and a basal promoter and enhancers in U3. Transcription is initiated at the U3-R boundary in 

the upstream LTR, and cleavage/ polyadenylation takes place at the R-U5 boundary in the 

downstream LTR.  

Figure 2. Retroviral LTRs. The relationship of retroviral RNA to the reverse transcribed 

DNA is shown. The viral RNA contains short direct repeats at either end (R), and the viral 

DNA contains long terminal repeats. Subdivision of the LTR into U3, R and U5 regions is 

shown at the bottom. 
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3. Retroviral Oncogenesis: Acute Transforming vs. Non-Acute Retroviruses 

Retroviruses cause a variety of tumors in animals and humans, ranging from solid tumors such as 

carcinomas and sarcomas through hematopoietic neoplasms such as leukemias and lymphomas. They 

can be divided into two classes: acute transforming retroviruses and non-acute retroviruses [13]. As 

the name implies, acute transforming retroviruses induce tumors rapidly, while non-acute retroviruses 

induce tumors with a longer latency. Acute transforming retroviruses were among the first retroviruses 

to be discovered—Rous sarcoma virus (RSV), a virus that causes fibrosarcomas in chickens, is the 

prototypical virus of this class. A common feature of acute transforming retroviruses is that they carry 

additional genetic information—viral oncogenes [13,14]. The viral oncogenes endow acute 

transforming retroviruses with the ability to induce tumors rapidly, and acute transforming retroviruses 

frequently can alter the growth properties of infected cells in tissue culture (cell transformation) [15]. 

The oncogene of RSV is called v-src; it encodes a tyrosine-specific protein kinase [16–19]. Other acute 

transforming retroviruses carry different oncogenes; for instance avian MC29 virus that induces acute 

myeloid tumors in chickens carries an oncogene called v-myc [20] and avian erythroblastosis virus 

carries two oncogenes, v-erbA and v-erbB [21]. Approximately 25 viral oncogenes have been 

discovered; in some cases more than one acute transforming retrovirus carries the same or a 

similar oncogene.  

A seminal finding was that retroviral oncogenes are actually derived from normal cell genes [22]. 

The normal cell counterparts of retroviral oncogenes are called cellular proto-oncogenes. For instance 

v-src was derived from the proto-oncogene c-src. As a group the cellular proto-oncogenes encode 

proteins that function in positive (but regulated) stimulation of cell growth or division and can promote 

cell survival. Viral oncogene proteins differ from the corresponding cellular proto-oncogene proteins 

in various ways, but a common theme is that the viral oncogene proteins cause unregulated stimulation 

of cell growth/division compared to their cellular proto-oncogene protein counterparts. Many cellular 

proteins in key signal transduction pathways were first discovered as cellular proto-oncogene 

counterparts of viral oncogenes. These include the cellular Ras [23–25], Raf [26,27], Myc [28,29], Fos 

[30,31], Jun [32,33], and Akt [34,35] proteins to name a few. The discovery of cellular proto-oncogenes 

was of fundamental importance to cancer research, since it became apparent that non-viral cancers 

frequently have activating mutations of proto-oncogenes [36,37] or they over-express them through 

gene amplification [38–40] or chromosomal translocation [41–43]. These were the first kinds of 

genetic mutations in human cancers to be identified.  

Non-acute retroviruses do not carry viral oncogenes, and they do not transform cells in culture. 

They induce tumors more slowly than acute transforming retroviruses. Non-acute retroviruses have the 

standard genome organization of retroviruses, while most acute-transforming retroviruses are 

replication-defective because they have substituted oncogene sequences in place of viral genes. These 

viruses must be co-infected with a related “helper virus” that provides the viral structural proteins to 

make infectious particles. Examples of non-acute retroviruses include avian leukosis viruses that 

induce lymphoid tumors in chickens, murine leukemia viruses (MuLVs) that induce leukemias, murine 

mammary tumor virus (MMTV) that induces mammary carcinomas, and feline leukemia viruses 

(FeLVs) [13]. The mechanisms by which these non-acute retroviruses induce tumors will be subject of 

this review.  
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4. Insertional Activation of Proto-Oncogenes 

The landmark study that elucidated the basic principle of how non-acute retroviruses induce tumors 

was published by Hayward et al. in 1981 [44]. These investigators studied B-lymphomas in chickens 

induced by avian leukosis virus (ALV). They carried out Southern blot and Northern blot analyses of 

multiple ALV-induced tumors using two hybridization probes for ALV: a probe representative of the 

entire ALV genome (cDNArep) and another one that contained sequences only from the 5' end (the R 

and U5 regions of the LTR-cDNA5'). Analysis of Southern blots of tumor DNAs with the ALV 

cDNArep probe indicated that while viral DNA could be detected in all tumors, there were frequently 

missing viral sequences. Likewise when tumor RNAs were studied by Northern blotting with cDNArep, 

not all tumors showed evidence for viral RNA transcripts. On the other hand, all of the tumors showed 

transcripts that could be detected by ALV cDNA5'. The fact that the transcripts could be detected by 

cDNA5' but not cDNArep led Hayward et al. to propose that they represented transcripts that initiated in 

the downstream LTR and read into adjacent host sequences [44]. Moreover, the fact that the transcripts 

detectable by cDNA5' from the different tumors were of approximately the same size led the 

investigators to propose that viral DNA was being inserted into the same chromosomal locations in the 

different tumors—the length of the transcripts would be determined by the site of proviral insertion 

and the relative position of the cleavage/polyadenylation signals in the host cell DNA. They proposed 

that the inserted proviral DNA was leading to over-expression of the host cellular gene by  

read-through transcription from the viral LTR, a process termed “promoter insertion” (Figure 3A). 

Over-expression of the cellular gene was ultimately responsible for the leukemogenesis.  

Proof of the promoter insertion model for ALV leukemogenesis was obtained when the activated 

cellular gene was identified. Hayward et al. tested the hypothesis that the activated cellular gene might 

be a proto-oncogene, i.e., the cellular homolog of a known viral oncogene [44]. They were able to 

demonstrate that these tumors contained ALV DNA inserted next to the c-myc proto-oncogene. This 

was accomplished by using a v-myc hybridization probe that would cross-hybridize with c-myc 

sequences. They showed that the RNA transcripts in ALV-induced tumors that could hybridize with 

cDNA5' would also hybridize with the v-myc hybridization probe, and that the c-myc genes in the 

tumors also had insertions of ALV DNA.  

The promoter insertion mechanism of ALV leukemogenesis also provided a conceptual framework 

for understanding the relatively long latency of the disease. Since retroviruses integrate proviral DNA 

at virtually random sites throughout the genome, the likelihood of an insertion in the vicinity of c-myc 

in any infected cell would be quite low. Multiple rounds of infection (and time) would be necessary 

before an ALV provirus inserted next to c-myc in one infected cell. That infected cell would then 

receive the enhanced growth signals and develop into the tumor. For this reason, tumors induced by 

non-acute retroviruses are also typically monoclonal or oligoclonal outgrowths of a single (or small 

number) of infected cells. However, as discussed below, the long latency of disease is affected by other 

factors as well.  

The studies of Hayward et al. [44] were followed up by another group in which ALV-induced  

B-lymphomas induced in chickens with a different genetic background were examined [45]. They 

confirmed integration of ALV proviruses adjacent to c-myc in tumor DNAs, as well as the  

over-expression of c-myc RNA. However, not all of the tumors had proviral integrations compatible 
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with promoter insertion activation of c-myc (Figure 3B). In some cases the ALV provirus was inserted 

upstream of c-myc but in the opposite transcriptional orientation, or downstream from c-myc but in the 

same orientation. These cases ultimately have been ascribed to the strong ALV enhancers in the LTR 

activating the endogenous c-myc promoter, resulting in over-expression of a normal c-myc transcript. 

T-lymphomas induced in mice by Moloney murine leukemia virus (M-MuLV) have also been found to 

result from activation of c-myc [46,47], and in this case the predominant mechanism is enhancer 

activation [46]. In addition, other M-MuLV-induced T-lymphomas result from activation of novel 

proto-oncogenes (see following section).  

Figure 3. Insertion activation of c-myc in avian leukosis virus (ALV)-induced  

B-lymphomas. (A) Promoter insertion activation of c-myc as reported by Hayward et al. [42]. 

(B) Enhancer activation of c-myc (one of the configurations) reported by Payne et al. [43].  

ALV provirus c-myc

A.  PROMOTER INSERTION

ALV provirus c-myc

B.  ENHANCER ACTIVATION

 
 

Another group studied tumors induced by ALV, but in a line of chickens resistant to lymphoma, 

where erythroleukemias developed instead [48]. In this case, promoter insertion of a different  

proto-oncogene c-erbB (a.k.a. epidermal growth factor receptor) occurred. In these tumors proviral 

insertion was into the coding sequences of c-erbB, and transcription initiated in the upstream ALV 

LTR, with read-through from the downstream LTR into c-erbB [49,50]. This resulted in a fusion 

transcript that was further processed by mRNA splicing to encode a novel protein containing viral Gag 

and Env sequences fused to a truncated EGF receptor.  

Overall, the general mechanism for oncogenesis by non-acute retroviruses can be considered to be 

LTR-activation of proto-oncogenes. This includes classical promoter insertion as well as enhancer 

activation. Depending on the retrovirus and the biological system, one or the other, or both 

mechanisms may predominate.  
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5. Discovery of New Proto-Oncogenes by Studying Insertional Activation 

Other investigators studied tumors induced by other non-acute retroviruses using the same 

conceptual framework as developed by Hayward et al. However, in some cases many if not all of the 

tumors did not show proviral insertions in the vicinity of proto-oncogenes known at the time.  

Nusse et al. studied mammary tumors induced by MMTV in mice [51]. They identified tumors with 

relatively low numbers of inserted proviruses by Southern blotting, and then they cloned all of the 

proviruses from such a tumor. The adjacent cellular sequences from the different proviruses were then 

used as hybridization probes in Southern blots of other MMTV-induced tumors, in search of common 

insertion sites (CISs). It was hypothesized that a CIS would be in the vicinity of a cellular gene that 

was activated by proviral insertion. In any given tumor, all of the integrated proviruses would not 

necessarily represent a CIS; indeed only one or a small number would likely be. Hence the searches for 

CISs began with tumors containing small numbers of inserted proviruses, to increase the probability 

that any cloned provirus represented a CIS. In the case of MMTV-induced mammary tumors, the CISs 

were designated int-1 and int-2 [51–53], and subsequent studies of MMTV led to identification of int-3 

[54]. Int-1 is a founding member (Wnt1) of the Wnt family of growth factor receptors, which are 

components of the Wnt-beta-catenin signaling pathway [55]. This pathway is frequently dysregulated 

in many human epithelial tumors such as colon cancer [56]. Int-2 has been subsequently found to be 

the same as fibroblast growth factor 3 (Fgf3), and int-3 has been found to be Notch4 [55].  

Similar studies on various MuLV strains in mice and rats have led to identification of other novel 

proto-oncogenes through identification of CISs (Table 1). These include pim-1 [57], pim-2 [58], Mis-1 

[59], Spi-1 [60,61] and Fli-1 [62]. Pim-1 is a serine-threonine kinase, and Spi-1 (PU.1) and Fli-1 are 

transcription factors of the Ets family. In each of these cases, this was the first identification of these 

genes, which have subsequently been found to play important roles in normal physiology, and to be 

dysregulated in certain cancers. In addition to the CISs identified from tumors induced by exogenous 

retroviruses, Copeland, Jenkins and co-workers have employed recombinant inbred mouse strains that 

have high frequencies of leukemia due to spontaneous activation of endogenous MuLVs—this has led 

to identification of another set of CISs termed endogenous virus insertions (evi-1, 2, etc.) [63].  

In general, a given non-acute retrovirus will induce a specific type of tumor, or a restricted range of 

tumor types (e.g., T-lymphomas for M-MuLV, myeloid and erythroid leukemias for Friend MuLV). 

Correspondingly, the tumors induced by a particular virus will typically show activation of a limited 

number of proto-oncogenes. For instance, T-lymphomas induced by M-MuLV predominantly show 

activation of c-myc, pim-1 and/or pim-2 [46,58]. In contrast, erythroid leukemias induced by Friend 

MuLV predominantly show activations of fli-1 [62], and myeloid tumors in recombinant inbred mice 

show activations of evi-1 [64]. This may reflect the relative abilities of particular proto-oncogenes to 

contribute to malignancy in different cell types when they are over-expressed. The genetic background 

of the host also affects the pattern of insertional activation (discussed in Section 7). 
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Table 1. Common insertion sites (CIS) or activated proto-oncogenes in MuLV-induced tumors1. 

VIRUS DISEASE CIS or PROTO-ONCOGENE 

Moloney MuLV T-lymphoma  
  In mice: 

c-myc, pim-1, pvt-1/mis-1/mlvi-1, lck, pim-2a, 
n-myca, bmi-1a, frat-1a, pal-1/gfi-1a 

  In rats: 
c-myc, pvt-1/mis-1/mlvi-1, mlvi-2, mlvi-3, 
mlvi-4, dsi-1, lck, tpl-1/ets-1a, tpl-2a, gfi-1/pal-
1a, gfi-2/IL-9R 

 Myeloid leukemia c-myb, mml-1 
AKR MuLV/Gross Virus; 
SL3-3 MuLV 

T-lymphoma c-myc, gin-1, n-ras 

RadLV (Radiation leukemia 
virus) 

T-lymphoma c-myc, pim-1, vin-1/cyclinD2, notch1, kis-1, 
kis-2 

Friend MuLV Erythroleukemia fli-1, fre-2 
 Myeloid leukemia fis-1, fim-1, evi-1/fim-3, c-fms/fim-2 
Endogenous MuLV (AKXD, 
BXH-2 recombinant inbred 
mice) 

Myeloid leukemia evi-1/fim-3, evi-2, meis-1 and others1 

 B-lymphoma evi-3 and others1

Abelson MuLV 
(contains v-abl oncogene) 

B-lymphoma ahi-1, ahi-2 (M-MuLV helper inserted) 

Friend SSFV  
(SFFV gp52c is an oncogene) 

Erythroleukemia Spi-1, p53b

1 Data from retroviral tagging of mice genetically predisposed to cancer (e.g., myc transgenic mice) 
are not included here. They can be found in the Mouse Retrovirus Tagged Cancer Gene (RTCG) 
database [65,66].  
a Insertions associated with tumor progression or that collaborate with other proto-oncogene 
activations; 
b Insertion at p53 inactivates its function; 
c gp52 oncogene is a deleted form of endogenous retroviral envelope protein. 

6. LTRs as Determinants of Disease Specificity 

Related retroviruses can differ in their abilities to induced tumors, as well as the kinds of tumors 

induced. Generation of molecular chimeras between related viruses identified the LTRs as primary 

pathogenic determinants. For instance, the LTR from an oncogenic MuLV (e.g., Gross MuLV) could 

confer leukemogenicity to a related weakly leukemogenic Akv-MuLV [67,68]. Likewise the LTR from 

Friend MuLV that induces erythroleukemia could convert M-MuLV from inducing T-lymphoma to 

erythroleukemia [69]. This was extended to show that just the enhancer elements in the U3 region of 

the LTRs were sufficient to switch the disease specificity [70]. The disease specificity of the Friend vs. 

Moloney LTRs was also correlated with the relative transcriptional activities of these LTRs in 

lymphoid vs. erythroid/myeloid cells [71]. Enhancer sequences consist of binding motifs for  
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sequence-specific transcription factors. For some retroviruses, these are tandemly repeated which 

makes binding stronger. 

The importance of the LTRs in oncogenicity of non-acute retroviruses can be understood in the 

context of LTR-activation of proto-oncogenes. In order for a non-acute retrovirus to induce oncogenic 

transformation of a particular differentiated cell, it must have an LTR that can transcriptionally activate 

proto-oncogenes in that cell (either by promoter insertion or enhancer activation). The enhancer 

sequences of the LTR bind cellular transcription factors, and they are frequently cell-specific, with 

binding motifs for factors that may be highly expressed in particular differentiated cells. Thus the 

ability of a retrovirus to activate proto-oncogenes and induce tumors will depend on the relative 

strength of the enhancer sequences, and the cells in which they are active.  

7. Cooperation among Activated Proto-Oncogenes 

In some cases tumors induced by non-acute retroviruses have shown evidence for activation of 

more than one proto-oncogene in the same tumor—e.g., int-1 (Wnt-1) and int-2 in MMTV-induced 

mammary tumors [72] and pim-1 and c-myc in M-MuLV-induced tumors [46]. This could reflect 

cooperation of the two proto-oncogenes (either within the same tumor cell or between adjacent cells), 

or simply two independent tumors in the same mass. This has been addressed by transplanting the 

original tumors into recipient animals and analyzing the secondary tumors for the presence (or not) of 

both proto-oncogene activations [72,73]. The results indicated that the tumors induced by these viruses 

are generally oligonal collections of independent tumors, some of which contain activation of one 

proto-oncogene while others contain activation of the other. On the other hand, in the case of  

MMTV-induced tumors with int-1 and int-2 insertions, transplantation into recipient mice resulted in 

maintenance of independent oligoclonal populations with int-1 and int-2 insertions when the tumors 

were hormone-dependent [72]. This suggests that in MMTV-induced hormone-dependent tumors, 

cooperation between tumor cell sub-populations with activated int-1 and int-2 genes may be occurring.  

Intracellular cooperation among proto-oncogenes in MuLV leukemogenesis was demonstrated by 

Berns and co-workers in transgenic mice over-expressing pim-1 under control of the immunoglobulin 

heavy chain enhancer (E) [74]. The transgenic mice developed T-cell lymphomas slowly (7 months) 

and at a low frequency (5–10%). However, when these mice were infected with M-MuLV all of them 

developed tumors and much more rapidly (7–8 weeks). The resulting tumors were found to harbor  

M-MuLV insertions near c-myc or the related n-myc proto-oncogene [74]. This provided strong 

evidence for cooperation between pim-1 and myc family proto-oncogenes in development of  

T-lymphoma. Cooperation between pim-1 and myc proto-oncogenes was again observed when mice 

transgenic for c-myc driven by the E promoter/enhancer (E-myc) were infected with M-MuLV [75]. 

Acceleration of leukemogenesis (T- or B-lymphoma) occurred, and a substantial fraction of the tumors 

showed proviral insertions next to pim-1. Other tumors showed novel CISs [75], leading to the 

identification of new proto-oncogenes (e.g., bmi-1). This discovery process is now referred to as 

retroviral tagging.  

Retroviral tagging in double and triple transgenic mice has been used to identify proto-oncogenes 

active in particular pathways. For instance E-myc/Pim-1-/- mice were infected with M-MuLV with the 

goal of identifying proto-oncogenes that could substitute for Pim-1 [76]; the predominant activated 



Viruses 2011, 3              

 

 

407

proto-oncogene was Pim-2, indicating that it cooperates with c-myc in the absence of Pim-1. This 

rationale was extended to studies in Emyc/Pim-1-/-/Pim-2-/- mice where Pim-3 was identified [77]. 

Retroviral tagging studies in transgenic mice over-expressing myc from other T-cell specific promoters 

have identified other cooperating proto-oncogenes, including Notch1 [78] and Runx2 [79,80]. More 

recently the same strategy has been used by others to identify genes that can collaborate with myc and 

Runx2 [81] or complement deficiencies in multiple cycling-dependent kinase inhibitors [82].  

Recently retroviral tagging has been extended to identifying potential cooperating proto-oncogenes 

in solid tumors [83]. Inactivations of the APC tumor suppressor protein are important for colon cancer 

development [56]. Mouse colon epithelial cells from mice containing an APC mutation (Min) were 

infected in vitro with the MSCV strain of MuLV. Infected cells from Min mice formed colonies in soft 

agar while those from wild-type APC did not. Colony formation in agar is one property associated with 

malignant transformation. CISs in the agar colonies identified several proteins that can apparently 

collaborate with mutated APC in transformation [83].  

8. Insertional Activation in Multi-Step Carcinogenesis and Tumor Progression 

It is now well-understood that cancer is a multi-step process, with multiple genetic and biochemical 

changes taking place within a developing tumor cell. While insertional activation of proto-oncogenes 

by non-acute retroviruses has traditionally been viewed as an initiating or early event in tumor 

development, it can also participate in later steps in tumorigenesis. One interesting case was studies on 

B-lymphomas induced by Abelson MuLV. Ab-MuLV is an acute transforming retrovirus whose 

replication-defective genome carries the v-abl oncogene. In order to efficiently infect mice and induce 

lymphomas Ab-MuLV must be co-infected with a helper MuLV—originally M-MuLV. However 

when a different helper MuLV was employed (from an endogenous MuLV), the rapid leukemogenicity 

of Ab-MuLV was lost [84]. Chimeras between the two helper MuLVs indicated that the M-MuLV 

LTR was necessary for Ab-MuLV leukemogenesis. This led Poirier et al. to test the hypothesis that the 

M-MuLV helper was activating proto-oncogenes that cooperated with the v-Abl protein to produce the 

tumors [85], and they indeed indentified a CIS (ahi-1) in some of the tumors. This suggested that the 

M-MuLV helper is cooperating with v-Abl oncogene protein in inducing the rapid B-lymphomas.  

M-MuLV insertions into ahi-1 typically are downstream of the last exon, but in some cases they 

generate C-terminal truncations of the putative protein [86].  

The ability of activated proto-oncogenes to participate in later steps in M-MuLV leukemogenesis 

has been studied by Tsichlis and co-workers. When M-MuLV-induced lymphomas from rats are 

cultured in vitro, they tend to acquire additional copies of M-MuLV proviruses. Bear et al. [87] 

hypothesized that these could represent activation of “tumor progression loci”, and they discovered 

several CISs in the cultured cells (tpl-1, tpl-2) [87,88]. They found evidence for insertional activation 

of these loci in tumors as well. These same workers also investigated the possibility that MCF 

recombinant viruses that arise in MuLV-infected mice could also be contributing to leukemogenesis by 

insertional activation. In vitro infection of M-MuLV-induced tumor cells with MCF recombinants and 

culture in the absence of growth factors led selection of cells with viral integrations into new CISs  

(gfi-1, gfi-2) [89,90]. Gfi-1 encodes a novel DNA binding protein, while gfi-2 encodes the IL-9 

receptor. Thus activation of proto-oncogenes can participate in later stages of oncogenesis, 
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downstream of other proto-oncogene activations, viral oncogenes, or potentially non-viral 

oncogenic events.  

While MuLVs do not morphologically transform cells in culture, Heard et al. [91] have observed 

multi-stage changes culminating in development of myeloid leukemia cells when long term bone 

marrow cell cultures were infected in vitro with F-MuLV. With continued passage, cells in the culture 

progressed through stages of (1) enhanced responsiveness to macrophage colony stimulating factor  

(M-CSF/CSF-1), (2) growth factor independence, and ultimately (3) acquisition of tumorigenicty. 

Tumors induced in this system showed two novel CISs, Fim-1 and Fim-2 [92]; Fim-2 was later found 

to be the structural gene for M-CSF [93]. 

9. Other Mechanisms of Insertional Oncogenesis 

The most common mechanism of oncogenesis by non-acute retroviruses is transcriptional activation 

of proto-oncogenes. However proviral insertions can have other effects that result in oncogenic stimuli. 

One example is in erythroleukemias induced by the Friend virus complex—an acute transforming 

retrovirus (SFFV) as well as a helper virus (F-MuLV). Erythroleukemia cell lines established from 

these tumors show inactivation of the p53 tumor suppressor gene due to insertion of an SFFV provirus 

[94,95]. In most of the cell lines, the normal p53 gene was also lost, resulting in lack of functional p53. 

Insertional inactivation of the NF-1 tumor suppressor gene has also been found in myeloid leukemias 

arising in BXH-2 recombinant inbred mice [96]—the CIS originally termed evi-2 was found to be in 

the NF-1 gene.  

Another example is myeloid tumors induced by M-MuLV in adult Balb/c mice primed with 

pristane. Pristane treatment results in inflammation and myeloid cell expansion. The resulting tumors 

show insertion of M-MuLV proviruses within the 3rd or 4th introns of the c-myb proto-oncogene in the 

same transcriptional orientation [97,98]. This leads to expression of a hybrid transcript initiated in the 

M-MuLV provirus with readthrough into the downstream c-myb sequences; mRNA splicing leads to a 

truncated c-myb mRNA and a c-myb protein lacking an N-terminal negative regulatory domain [97]. 

This results in a constitutively active c-myb protein (transcription factor), which contributes to 

development of the myeloid tumors. Thus proviral insertion can lead to alteration (truncation) of a 

proto-oncogene protein that results in oncogenic activation. Another interesting feature of this system 

is that administration of pristane, which elicits a strong macrophage response, is necessary for 

development of the myeloid tumors [99]. The pristane is inducing inflammation and mitogenesis in 

myeloid cells that presumably cooperates with the oncogenic effects of the truncated c-Myb protein. 

Indeed, the same M-MuLV insertions into c-myb can be detected in lymphoid tissue from other strains 

of mice inoculated as newborns in the absence of pristane, but the T-lymphomas that develop do not 

show c-myb insertions [100]. Thus the truncated c-Myb requires additional mitogenic stimuli to 

manifest its oncogenic effect, and this protein may not be effective in lymphoid cells. In fact in 

erythroleukemias induced by ALV in chickens, the activated form of the EGF receptor (c-erbB) is 

truncated at the amino terminus (extracellular growth factor binding domain), similar to the activated 

v-erbB oncoprotein of avian erythroblastosis virus [49].  

Another very interesting mechanism of insertional activation is in chicks infected embryonically 

and then post-hatching with ALV. Some of these animals developed B-lymphomas that frequently 
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contained proviral insertions at c-myc as well as a novel CIS designated bic-1 [101]. The ALV 

insertion enhanced expression of the bic-1 transcript, but at the time, the mechanism of action of bic-1 

was unclear, since it could not encode any protein. More recently, bic-1 has been found to be the 

precursor of miR-155, a microRNA (miRNA) whose over-expression has been observed in human 

cancers as well [102]. Over-expression of miR-155 leads to down-regulation of target transcripts—

tumor suppressors such as JARID2/jumonji [103]. Indeed, bic-1 is the first oncogenic miRNA to be 

discovered. Similarly a CIS previously identified in RadLV—induced T-lymphomas in mice (Kis2) 

has been found to encode the precursor for the miRNA cluster, miR-106-363 [104]. Over-expression 

of miR-106-363 could induce anchorage-independent growth, and human T-lymphomas also showed 

over-expression of this miRNA cluster [104]. In SL3-3 MuLV-induced T-lymphomas, proviral 

insertion and over-expression of the miR-106a cistron has also been reported [105].  

Another recent study has characterized T-lymphomas in mice induced by the SL3-3 strain of MuLV 

[106]. A frequent CIS in these tumors was found to be the Gfi-1 proto-oncogene (see above). 

Interestingly, in some cases, the proviral insertion was into the 3' untranslated region of the gfi-1 RNA, 

resulting in a truncated transcript. Tumors with such transcripts showed a high level of Gfi-1 protein, 

while tumors that did not have proviruses inserted in the 3' UTR did not. Dabrowska et al. provided 

evidence that the 3' UTR of Gfi-1 contains target sites for several miRNAs (including  

miR-155), and that the proviral insertions would uncouple the Gfi-1 coding sequences from the 

miRNA binding sites [106]. Thus over-expression of Gfi-1 protein could result from truncation of 

miRNA binding sites.  

10. Insertional Mutagenesis in the Age of Genomics 

Original methods to identify CISs were laborious and time consuming, involving Southern blotting, 

screening DNA libraries, genome walking and extensive cloning. Due to the large distances over 

which a provirus can act on a gene and the limited knowledge of the mouse genome, identification of the 

proto-oncogenes in the vicinity of a CIS was challenging. Identification of CISs and retroviral tagging 

drastically changed with the development of PCR-based strategies (inverse and splinkerette-based PCR) 

for cloning host-virus junctions, along with sequencing of the mouse genome. The host DNA on 

cloned host-virus junction fragments could be aligned with the mouse genome, yielding precise 

location of the insertions sites. Thus high-throughput studies could be performed with hundreds of 

insertion sites identified in a single study. Copeland and co-workers were the first to use this approach 

on leukemias arising in recombinant inbred mice (AKXD and BXH-2), identifying more than 90 

potential CISs in one experiment [107]. Other investigators have carried out similar studies, using 

retroviral tagging in wild-type or in tumor-prone transgenic/knock-out mice. This allowed 

identification of novel CISs involved in development of particular tumor types, or that collaborate with 

known oncogenic pathways [77,81,108–110]. Currently, over 600 CISs have been identified. For a 

compilation of these sites see the Mouse Retrovirus Tagged Cancer Gene Database [65,66]. 

Very recently the advent of high throughput DNA sequencing has further increased the rate at 

which CISs can be identified. Host-viral junction fragments are PCR-amplified from tumor cells and 

then directly subjected to deep sequencing with the goal of identifying as many host cell insertion sites 

as possible. In a recent study, more than 9000 insertions from 476 lymphomas were identified [82]. 
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Data from retroviral tagging screens are now being compared with other cancer genome screens  

(e.g., comparative genomic hybridization) [111], providing a rich database for genetic changes in 

different cancers.  

Examination of CISs in MuLV-induced tumors has also suggested involvement of additional 

miRNAs in tumorigenesis. An informatic search of the RTCGD database identified 19 CISs that were 

within 10 Kb of an miRNA [112]. Some of these insertions could affect expression of an miRNA, 

similar to the activation of bic-1/miR155 in ALV-induced lymphomas.  

11. Insertional Mutagenesis and Gene Therapy 

Retrovirus-based vectors have been employed in human gene transfer experiments to introduce 

therapeutic molecules into cells to combat various diseases. The generation and use of retroviral 

vectors has been reviewed extensively [113]. Briefly, retroviral vectors are generated by recombinant 

DNA manipulations on plasmids containing a retroviral provirus. Internal viral coding sequences are 

substituted with DNA encoding a gene of interest; the viral LTRs and encapsidation (psi) signals for 

incorporation of viral RNA into particles are retained (Figure 4). Retroviral particles are obtained by 

introducing the vector DNA into “packaging” cells that express viral structural proteins from mRNAs 

that cannot themselves be packaged, or transiently co-transfecting cells with vector and helper 

plasmids. The transfected packaging cells will then produce viral particles that contain the vector 

sequences as RNA. These vector particles can then be used to infect target cells where reverse 

transcription and integration of the vector genome takes place, followed by expression of the vector. 

Retroviral vectors have the advantages that they integrate their DNA into the genomes of the infected 

host cells (transduction). Thus the genetic information for therapeutic molecules will permanently 

integrate into the target cells, which can lead to stable and prolonged expression. Retroviral vectors 

based on gammaretroviruses such as murine leukemia viruses were some of the first vectors employed 

in human gene transfer experiments, and they are still being used. More recently vectors based on 

lentiviruses such as HIV-1 have been employed [114].  

Figure 4. Retroviral vectors. Organization of a retroviral vector as well as two helper 

plasmids to produce the viral proteins are shown. Ψ, the packaging sequences on viral 

RNA. In some cases the helper plasmids are stably expressed in a packaging cell, or in 

other cases they are co-transfected with the vector plasmid.  
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The first human gene transfer trial used an MuLV-based vector expressing adenosine deaminase 

(ADA) for treatment of individuals with hereditary severe combined immuno-deficiency (SCID-ADA) 

that resulted from deficiency of ADA. The initial experiment involved ex vivo transduction of  

T-lymphocytes from the patients, followed by infusion of the transduced cells [115]. Transduced  

T-cells could be persistently detected in the patients receiving them, and there was evidence for 

clinical benefit—improvement of immunological status. Despite the theoretical concern that the 

transduced vectors might cause malignancies by insertional activation of proto-oncogenes, the two 

patients in the first trial did not show any evidence of malignancies. Subsequent trials to treat  

SCID-ADA have involved transduction of hematopoietic precursors (CD34+) ex vivo with  

ADA-expressing retroviral vectors; in total more than 30 patients have been treated worldwide, with 

correction of the immunodeficiency in many, and no malignancies [116].  

A watershed event for the gene therapy field occurred in clinical trials involving X-linked SCID—a 

genetic deficiency of the common gamma chain for growth factor receptors [117,118]. Hematopoietic 

progenitor cells (CD34+) from X-SCID patients (n = 20, results combined from two clinical trials in 

France and the UK) were transduced ex vivo with an MuLV-based vector expressing the common 

gamma chain and then infused into the patients. The transduced cells established and corrected the 

immunologic deficiency in 19 of 20 patients. However, five of the treated patients ultimately 

developed T-cell leukemia [119,120]. Analysis of the leukemic cells indicated that they shared a CIS at 

the cellular proto-oncogene LMO2 [121]. Additional integrations were observed at NOTCH1, 

CDKN2A, STIL-TAL1, CCND2 and BMI1 [120,122]. LMO2 had previously been found to be 

activated by chromosomal translocation in human T-cell leukemia [123]. In the X-SCID patients the 

MuLV LTR of the gene transfer vector was activating LMO2 expression. Thus the theoretical concern 

of insertional oncogenesis in gene transfer trails with retroviral vectors was confirmed. Recently a 

patient in an analogous trial to correct the genetic defect in Wiscott-Aldrich syndrome also developed a 

T-cell leukemia in which insertional activation of LMO2 was observed [124,125]. Likewise, a gene 

therapy trial using an MuLV-based vector to correct the genetic defect of X-linked chronic 

granulomatous disease resulted in myelodisplasia (a preleukemic syndrome) associated with 

insertional activation of the evi-1 proto-oncogene [126].  

Modifications of retroviral vectors to improve their safety have been developed, even before the 

complications in the X-SCID trial. One common modification is to remove the enhancer sequences 

from the U3 region of the LTR. This can be accomplished by deleting them from the U3 region of the 

downstream (but not upstream) LTR, of a plasmid containing a retroviral vector DNA. The U3 

sequences in the vector RNA will be derived from the downstream LTR, so after reverse transcription 

in an infected cell both LTRs will contain the deleted U3 regions and be inactive. Such vectors are 

referred to as self-inactivating (SIN) vectors [127]. Expression from SIN vectors is obtained by 

incorporating an internal promoter/enhancer. SIN vectors have the theoretical advantage that the 

deleted LTRs will not be able to insertionally activate proto-oncogenes. Additional modifications to 

retroviral vectors have included adding transcriptional insulator sequences to the LTRs or to the 

internal promoters [128]. Insulators prevent enhancers from activating promoters on the other side of 

an insulator.  

Lentivirus-based vectors are currently of considerable interest since they can infect non-dividing 

cells. Also lentiviruses (including HIV-1 and animal lentiviruses) do not induce tumors. In addition, 
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while MuLV shows a preference for proviral insertion at or near start sites of transcription [129],  

HIV-1 shows a preference for inserting into the bodies of genes but not at their promoters [130]. The 

lack of integration specificity for transcriptional start sites might reduce the likelihood of insertional 

activation of proto-oncogenes by lentiviral vectors, although enhancer activation of proto-oncogenes 

can occur over several kilobases of DNA. Lentiviral SIN vectors have also been developed.  

Human gene transfer trials with lentiviral vectors are just beginning. One of the first trials has 

involved use of an HIV-based SIN vector expressing beta-globin to treat patients with beta-thalassemia 

[131]. In the first patient the vector was successful in correcting the beta-globin deficiency. However 

clonal dominance of a population of hematopoietic cells occurred in this patient, and the cells  

over-expressed HMGA2, a protein that is also over-expressed in cancers [132]. This could potentially 

indicate a pre-neoplastic state or cells with enhanced malignant potential, although there has been no 

progression to malignancy over 30 months. When the molecular mechanism for the over-expression of 

HMGA2 was investigated, it was found that the lentiviral vector was inserted downstream of HMGA2, 

which resulted in readthrough and splicing from HMGA2 mRNA into a cryptic splice acceptor site in a 

beta-globin insulator of the vector. This resulted in truncation of the HMGA2 mRNA and removal of 

the binding site for a regulatory miRNA which led to over-expression of HMGA2, analogous to 

activation of gfi-1 by SL3-3 MuLV (see Section 9). In fact lentiviral vectors might be more efficient at 

this mechanism, given their preference for inserting within the coding sequences of genes.  

The mechanisms of oncogenesis by non-acute animal retroviruses reviewed here provide useful 

perspectives for considering safety of retroviral vectors in human gene transfer experiments.  

Vector-associated malignancies have been observed in correction of three diseases so far, and 

monoclonal expansion has been observed in the ongoing beta-thalassemia trial. Mechanisms of  

proto-oncogene activation beyond enhancer/promoter activation need to be considered, and the relative 

frequencies of different mechanisms may differ for different vectors (gammaretroviral vs. lentiviral). 

The gene therapy field is relatively new, so most of the gene transfer experiments have been monitored 

for relatively short times. If insertional activation of proto-oncogenes contributes only one 

preneoplastic event, enhanced development of malignancies might take prolonged periods (decades) to 

become apparent. Indeed the latency of leukemia development by HTLV-I is decades. It may be 

impossible to completely eliminate the risk of insertional mutagenesis from retroviral vectors; the 

relative risks of oncogenesis need to be weighed against the benefits of the gene therapy  

(e.g., correction of SCID).  

12. Summary and Perspectives 

Studies of retroviruses that lack oncogenes (non-acute retroviruses) have provided important 

insights into oncogenesis. A common mechanism employed by these viruses is to insertionally activate 

cellular proto-oncogenes. A frequent process is LTR activation of proto-oncogenes, either by promoter 

insertion or enhancer activation. Study of different non-acute retroviruses has led to identification of 

new proto-oncogenes, and this has been accelerated by recent high throughput genomic studies. Study 

of retroviral oncogenesis in animals has highlighted the fact that oncogenesis is a multi-step process, 

and that proto-oncogene activation may provide only one or a few steps in this process. Alternate 

mechanisms of proto-oncogene activation besides LTR activation have also been observed, such as 
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activation by truncation of regulatory domains in either the mRNA or protein. While no evidence for 

proto-oncogene activation has been observed for the well-characterized human pathogenic retroviruses 

(HTLV-I and HIV-1), these mechanisms will be important to consider when newly discovered 

potentially oncogenic human retroviruses are investigated. The mechanisms elucidated by study on 

non-acute retroviral oncogenesis in animal models also help to frame safety considerations for 

retroviral vectors in gene therapy trials.  
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