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Ulcerative colitis (UC) is a chronic nonspecific inflammation that mainly affects the mucosa
and submucosa of the rectum and colon. Numerous studies have shown that
endoplasmic reticulum stress (ERS)-induced autophagy plays a vital role in the
pathogenesis of UC. ERS is the imbalance of internal balance caused by misfolded or
unfolded proteins accumulated in the endoplasmic reticulum (ER).Excessive ERS triggers
the unfolded protein response (UPR), an increase in inositol-requiring enzyme 1, and a
Ca2+ overload, which activates the autophagy pathway. Autophagy is an evolutionarily
conserved method of cellular self-degradation. Dysregulated autophagy causes
inflammation, disruption of the intestinal barrier, and imbalance of intestinal
homeostasis, therefore increasing the risk of colonic diseases. This review summarizes
the pathogenesis of ERS, UPR, and ERS-related autophagy in UC, providing potential new
targets and more effective treatment options for UC.
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INTRODUCTION

Ulcerative colitis (UC) is a chronic, nonspecific inflammatory disease of the rectum and colon, whose
etiology is unexplained. The main symptoms of UC include hematochezia, diarrhea, abdominal pain
and tenesmus (Seyedian et al., 2019; Naseer et al., 2020). UC, one of the refractory diseases of the
digestive system with recurrent episodes of intestinal inflammation, is common in Western
countries, with a prevalence rate of 100∼200/100,000 in Europe and North America. The
number of cases reported in China has also increased significantly in recent years (Li et al.,
2017; Ng et al., 2018; Feuerstein et al., 2019). UC patients tend to be relatively young, which decreases
social productivity and personal quality of life (Kaplan, 2015).

Destruction of the intestinal mucosal barrier caused by the interaction of genetics, infection,
immunity, and environmental pollution is the core event leading to the pathogenesis and
progression of UC. Accordingly, as a major component of the intestinal mucosal barrier,
damage to intestinal epithelial cells (IECs) may play a decisive role in this event (Ren et al.,
2019; Yan et al., 2020). IECs, including microfold (M) cells, enteroendocrine cells, absorptive
epithelial cells, goblet cells, and Paneth cells, respond to various types of immune cells, and regulate
epithelial barrier function and gut microbiota (Okumura and Takeda, 2017; Soderholm and
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Pedicord, 2019). IECs, with a well-developed structure of the
endoplasmic reticulum (ER), are one of the most metabolically
exubera-nt cell types. Sustained and severe endoplasmic
reticulum stress (ERS) induces autophagy through the
unfolded protein reaction (UPR) in IECs, which causes
inflammation. Excessive ERS can also disrupt the intestinal
mucosal barrier, and ultimately lead to UC (Hosomi et al.,
2015; Iida et al., 2017; Ma et al., 2017). This review is a
systematic appraisal of the current literature to provide a
better understanding of the role of the pathogenesis of ERS,
UPR, and ERS-related autophagy in UC.

ERS IN UC

The ER is one of the largest cellular organelles, and has a complex
structure (Lu et al., 2020). It is the main site of protein synthesis,
folding, lipid synthesis, carbohydrate metabolism, and calcium
storage (Schwarz and Blower, 2016; Stevenson et al., 2016). ERS is
driven by the accumulation of unfolded andmisfolded proteins in
the ER (Liu and Green, 2019).

During ERS, the cell activates a response to changes in protein
folding, which is called the UPR (Hetz, 2012). Moreover, the
other pathway is ER-associated degradation (ERAD), which
maintains ER (Olzmann et al., 2013). However, persistent ERS
and UPR can induce cell death (Bernales et al., 2006). To date, the
UPR is initiated by three kinds of ER transmembrane sensors,
including inositol-requiring enzyme 1 (IRE1), protein kinase
R-like ER kinase (PERK), and activating transcription factor 6
(ATF6) (Ron and Walter, 2007). The interaction between the
heavy-chain-binding protein (BiP) and adenosine nucleotides
mainly participates in these three processes (Pobre et al.,
2019). Under ERS conditions, BiP dissociation activates IRE1,
PERK, or ATF6, and initiates cascades of the UPR and
downstream signals (Ma et al., 2017). Above all, three UPR
signaling pathways (IRE1, PERK, and ATF6) are involved in
the pathogenesis of UC.

IRE1 PATHWAY

IRE1 is a key factor in the severity and duration of UPR (Pincus
et al., 2010). Mammalian IRE1 contains two subtypes: IRE1α and
IRE1β. IRE1α is widely expressed in the human body, while
IRE1β is mainly expressed in the gastrointestinal tract and
pulmonary epithelial cells (Tirasophon et al., 1998; Wang
et al., 1998). X-Box-binding protein 1 (XBP1) in mammals is
a crucial transcriptional activator in this process. The increase in
protein load in the ER activates XBP1 (Calfon et al., 2002), which
can relieve ERS. Simultaneously, IRE1 can also bind to and
activate tumor necrosis factor receptor–associated factor 2
(TRAF2), which is a binding protein that binds plasma
membrane receptors to c-Jun N-terminal kinase (JNK), and
then activates JNK (Urano et al., 2000). Regulated IRE1-
dependent decay (RIDD) has dual functions: maintaining
homeostasis under low ERS and inducing apoptosis by
excessive ERS (Pluquet et al., 2013).

IRE1β is expressed in goblet cells, which secrete mucoprotein 2
(MUC2). MUC2 is more easily degraded by pathogens in the
colon environment during UC, suggesting that MUC2 acts as a
protective mucin in UC. The level of MUC2 increases sharply in
IRE1β−/− mice, indicating that IRE1β can degrade MUC2 and
maintain the stability of MUC2 in the intestine (Tsuru et al.,
2013). Bertolotti found that IRE1β−/- mice developed colitis
several days earlier than wild-type mice with dextran sulfate
sodium (DSS) induced UC, indicating that IRE1β−/− mice had
a marked susceptibility to DSS (Chassaing et al., 2014). IRE1α
gene deletion induced the apoptosis of IECs, which destroyed the
intestinal mucosal barrier and led to spontaneous colitis (Zhang
et al., 2015). Therefore, IRE1 is an essential signal in the
pathogenesis of UC, and its absence leads to spontaneous colitis.

MicroRNAs are also involved in UPR/ERS through IREIα, an
ER transmembrane kinase-endoribonuclease (RNase). Activation
of IRE1α caused decay of select microRNAs (miRs -17, -34a, -96,
-125b), which inhibit translation of Caspase-2 mRNA generally.
IRE1α regulated Caspase-2 translation via downregulating select
anti- Caspase-2 miRNAs by cleaving select pre-miRNAs to
prevent proper DICER processing of their mature forms.
Thus, IRE1α cleaves select microRNAs to prevent the
translation of proapoptotic Caspase-2 during ERS (Upton
et al., 2012). Besides that, IRE1α induces thioredoxin-
interacting protein (TXNIP) to activate the NLRP3
inflammasome and promote cell death during ERS. However,
TXNIPmRNA stability during ER stress is controlled by a specific
micro-RNA, miR-17. miR-17 levels decline speedily under ERS.
IRE1α increases TXNIP mRNA stability by reducing miR-17.
And TXNIP protein activates the NLRP3, causing Caspase-1
cleavage and interleukin 1β (IL-1β) secretion. Therefore,
microRNAs indirectly regulates signaling hubs to control cell
death during ERS (Lerner et al., 2012).

Transcription of the XBP1u gene regulates the ERS-mediated
UPR signaling pathway. Studies found that ERS increased and
goblet cells decreased in Xbp1−/− mice, which decreased MUC 2
secretion and enhanced susceptibility to experimental colitis. The
expression of tumor necrosis factor (TNF-a) and C/EBP
homologous protein (CHOP) increased, while the
antimicrobial ability decreased (Kaser et al., 2008). Briefly,
IRE1β, IRE1α, and XBP1 in the IRE1 pathway are associated
with a protective effect on UC by degrading MUC2 secreted by
goblet cells, protecting the intestinal mucosal barrier, improving
the sensitivity of mice to DSS, maintaining the homeostasis of the
intestinal environment and inhibiting the inflammation process.

PERK PATHWAY

During ERS, PERK oligomerization and autophosphorylation
activate eukaryotic initiation factor 2α (eIF2α) kinase and
alleviate ERS by augmenting the UPR (Ma et al., 2002;
Verfaillie et al., 2012). Moreover, the expression of ATF4 was
induced by phosphorylation of eIF2α (Vattem and Wek, 2004).
Subsequently, the expression of CHOP increased and induced
apoptosis. (Rozpedek et al., 2016). X-linked inhibitor of apoptosis
protein (XIAP) is a potent inhibitor of cysteinyl aspartate specific
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proteinase (Caspase) activity (Eckelman et al., 2006). ATF4
promotes the degradation of XIAP, while the PERK signaling
pathway downregulates XIAP synthesis through two modes: 1)
reduction of the synthesis of XIAP through the phosphorylation
of eIF2α and 2) degradation of XIAP through ATF4 activation
(Hiramatsu et al., 2014). In addition, ATF4 induces the
expression of ATF5, which can promote apoptosis (Teske
et al., 2013). The repression of PERK signaling blocks the
expression of most genes by overcoming ERS, and leads to cell
death (Mcquiston and Diehl, 2017).

The extension of eIF2α phosphorylation results in an increase
in ATF4 and CHOP expression. Moreover, high expression of
CHOP mediates apoptosis in epithelial cells, which promotes the
progression of UC (Waldschmitt et al., 2014). Furthermore,
CHOP also stimulates MAC-1 to promote macrophage
infiltration and induce reactive oxygen species (ROS)
production in macrophages by upregulating endoplasmic
reticulum oxidoreductin 1α (ERO-1α) (Namba et al., 2009).
eIF2α phosphorylation activates nuclear factor kappa-B (NF-
κB) signaling, therefore activating more inflammatory factors
and disrupting the intestinal mucosal barrier (Deng et al., 2004).
Okazaki found that inhibiting the dephosphorylation of eIF2α
could inhibit the PERK signaling pathway and alleviate DSS-
induced colitis (Okazaki et al., 2014). Specifically, the PERK
pathway induced the expression of CHOP and ATF5, and
degraded XIAP through ATF4. This mechanism promoted
apoptosis and raised proinflammatory cytokines, which
disrupted intestinal epithelial function and affected the
development of UC.

ATF6 PATHWAY

The ATF6 transcription factor contains two subtypes: ATF6α and
ATF6β. In the process of ERS, ATF6, released from the ER
membrane, is cleaved by proteases in the Golgi apparatus and
transferred to the nucleus. In the nucleus, ATF6 can bind specific
DNA and initiate a series of signals to maintain ER homeostasis
(Wang et al., 2000; Sato et al., 2011). In addition, ATF6 also
regulates the expression of CHOP, which in turn regulates ERS
(Yang et al., 2020). ATF6α induces the phosphorylation of Akt
and activates the NF-κB pathway (Yamazaki et al., 2009). The
absence of the SIP ATF6-processing enzyme and mutation of the
S1P-encoding gene (Mbtps1) resulted in increased susceptibility
to DSS-induced colitis (Brandl et al., 2009). The inhibition of
ATF6α signaling can significantly generate the expression of IL-8
and TNF-α proinflammatory cytokines (Stengel et al., 2020).
Therefore, the ATF6 pathway can enhance the expression of
inflammatory cytokines and aggravate intestinal inflammation by
activating the NF-κB signaling pathway and by expressing genetic
mutations, which exacerbate the development of UC.

ERS, IMMUNE RESPONSE AND UC

ERS is responsible for the development of UC through a variety of
immune responses. Related studies have found that IL-22,

dendritic cells (DCs), and nucleotide-binding oligomerization
domain (NOD) exhibit potential effects on the intestinal
immune response. IL-22, combined with IL-17A, regulate
transcription during ERS and promote apoptosis in IECs. The
IL-22-ERS axis is vital in the pathogenesis of chronic colitis and
might provide a new therapeutic target for future treatment
(Powell et al., 2020). Interestingly, William found that ERS
stimulated cloned human colorectal gland cells to produce
more IL-8, and activated dendritic cells to become
proinflammatory cells. This indicated that there was a
previously unknown mechanism between epithelial ERS and
immune activation in inflammatory bowel disease (IBD) (Rees
et al., 2020). In addition, NOD-like receptors (NLRs) were pattern
recognition receptors (Caruso et al., 2014). Marijke found that
after thapsigarnin treatment, the NOD1/2 level and IL-6
production increased sharply. IL-6 production was
significantly decreased in bone marrow–derived macrophages
(BMDGs) of dithiothreitol-induced NOD1/2−/− mice compared
with wild-type mice. In the NLR family, NOD1 and NOD2
induce ERS to produce more IL-6 through the IRE1α/tumor
necrosis factor receptor–associated factor 2 (TRAF2) pathway,
causing intestinal inflammation (Keestra-Gounder et al., 2016).
Recent studies on ERS, the immune response and UC have shown
that ERS can induce apoptosis in IECs and promote the
expression of proinflammatory cytokines by regulating the
expression of IL-22, DCs, and NOD during the immune
response, thereby causing intestinal inflammation and
accelerating the development of UC.

Consequently, the mechanism of ERS causing UC can be
summarized as follows: 1) regulation of ERS susceptibility
genes, 2) induction of apoptosis in IECs, 3) intestinal mucosal
barrier dysfunction, and 4) production of pro-inflammatory
cytokines, which induces intestinal inflammation and the
occurrence of UC (Figure 1).

AUTOPHAGY IN UC

Autophagy is an evolutionarily conserved process, whose main
function is to degrade endogenous biological macromolecules for
recycling (Ravanan et al., 2017). In the case of nutritional
deficiency, autophagy is rapidly induced by self-digestion to
maintain cell vitality, and core anabolic functions are
promoted under conditions of adequate nutrition (Kaur and
Debnath, 2015; Yang et al., 2019). Three kinds of autophagy
are found in mammals: macroautophagy, microautophagy and
chaperone-mediated autophagy (Dikic and Elazar, 2018). Recent
studies have reported that autophagy is regulated by autophagy-
related genes (ATG) (Li and Zhang, 2019), mammalian target of
rapamycin (mTOR) (Munson and Ganley, 2015), adenosine 5′-
monophosphate-activated protein kinase (AMPK) (Li and Chen,
2019), Ca2+ (Hu et al., 2019) and NOD2 (Negroni et al., 2016).

ATG is involved in the formation of multiple
autophagosomes, starting with the activation of the unc-51
like autophagy activating kinase 1 (ULK1) complex (Kabeya
et al., 2000). Similar to the mammalian homolog of Atg8,
microtubule-associated protein light chain 3 (LC3) has two

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 6973603

Qiao et al. ERS, Immune Response, Autophagy and UC

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


forms: LC3I and LC3-II. The level of LC3-II reflects the number
of autophagosomes. Recently, LC3 is a classic indicator of
autophagy in mammals (Tanida et al., 2008). Paiva
demonstrated that the level of LC3II is higher in UC. A
decreased number of cells exhibiting colocalized LC3/p62,
which was verified by immunofluorescence, indicates that
autophagy is involved in the pathogenesis of UC (Paiva et al.,
2018). In DSS-induced colitis, the number of Lgr5+ stem cells, the
LC3II/I ratio and the level of p62 increase, which is aggravated by
activating autophagy in Lgr5+ stem cells (Xie et al., 2020). Ardali
found that the level of ATG5 closely relates to autophagy in the
stool of UC patients and is significantly higher than that in
healthy people (Ardali et al., 2020). This finding indicates that
autophagy plays a central role in the pathogenesis of UC and
might be used as a diagnostic marker for UC in the future.

After activation, the ULK1 mammalian autophagy complex
binds to vesicles and phosphorylates ATG9. Next, at the
amplification stage, ATG8 (LC3) combines with
phosphatidylethanolamine (PE) to form an ATG8–PE
complex, which promotes the elongation of the autophagic
membrane, and the closure and formation of autophagosomes
and autophagosome lysosomes (Lin and Hurley, 2016; Goodwin
et al., 2017; Yu et al., 2017; Levine and Kroemer, 2019; Turco et al.,
2020). ATG9A decreases in DSS-induced colitis, and the
overexpression of ATG9A improves autophagy induced by

rapamycin (Xu et al., 2018). The aforementioned studies
indicate that ATG9 and ATG5 autophagy-related genes might
be important genes in the pathogenesis of UC, thus assisting in
clinical diagnosis.

mTOR forms the catalytic subunits of two different protein
complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2),
which play an important role in protein synthesis, lipid and
glucose metabolism and other physiological functions (Saxton
and Sabatini, 2017). The initiation of autophagy requires the
Beclin1–VPS34 core complex, and mTORC1 negatively regulates
autophagy by inhibiting the ULK1 and VSP34 complex (Rabanal-
Ruiz et al., 2017). Death-associated protein 1 (DAP1) has been
identified as a novel substrate of mTOR. DAP1 negatively
regulates autophagy by inducing apoptosis and reducing the
number of autophagosomes with PERK-eIF2α (Yahiro et al.,
2014). mTOR can also regulate autophagy and further regulate
UC in various ways. In DSS-induced colitis, deficiency of
meteorin-like protein (METRNL), secreted by IECs,
deteriorated UC partially by inhibiting autophagy through the
AMPK-mTOR-p70S6K pathway. METRNL deficiency
aggravated UC by inhibiting autophagy, suggesting that UC
can be attenuated by activation of autophagy (Zhang et al.,
2020). Hypoxia inactivates mTOR and degrades p62 and LC3,
reducing inflammation by restoring autophagy (Cosin-Roger
et al., 2017). Zhou found that boosting mTOR-dependent

FIGURE 1 | ERS in UC. When unfolded or misfolded proteins accumulate excessively in the ER, ERS occurs and the UPR is initiated. The UPR consists of three
pathways: IRE1, PERK, and ATF6. When the cell is in steady state, the three stress-related proteins bind to GRP78. When ERS occurs, GRP78 dissociates from three
kinds of receptors and activates the IRE1, PERK, and ATF6 pathways. 1) IRE1 cleaves XBP1u into more stable XBP1s, and IRE1 can bind to TRAF2 to activate JNK. The
factors related to ER folding, lipid biosynthesis, and ERAD are regulated during the IRE1 reaction. 2) PERK activates eIF2α through autophosphorylation, eIF2α
activates ATF4, and ATF4 induces CHOP expression, which is a cytokine that promotes apoptosis. 3) ATF6 is cleaved in the Golgi apparatus and binds to specific DNA
to regulate CHOP. ERS regulates ERS susceptibility genes, induces IEC apoptosis, destroys the intestinal mucosal barrier, and produces proinflammatory cytokines,
leading to UC. Abbreviations: ATF, activating transcription factor; CHOP, C/EBP homologous protein; ER, endoplasmic reticulum; ERS, endoplasmic reticulum stress;
ERAD, endoplasmic reticulum associated degradation; eIF2α, eukaryotic initiation factor 2α; GRP78, glucose-regulated Protein 78; IECs, intestinal epithelial cells; IRE1α,
inositol-requiring enzyme 1; JNK, c-Jun N-terminal kinase; PERK, protein kinase R-like endoplasmic reticulum kinase; TRAF2, tumor necrosis factor
receptor–associated factor 2; XBP1, X-box-binding protein 1; UC, ulcerative colitis; UPR, unfolded protein response.
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autophagy through the NF-κB pathway quenches intestinal
inflammation. The mTOR inhibitor AZD8055 (ATP-
competitive mTOR inhibitor) alleviates experimental colitis in
mice (Zhou et al., 2018). Therefore, the inhibition of mTOR may
help alleviate the symptoms of UC by activating autophagy.

MicroRNAs (miRNAs) are noncoding RNAs that are
indirectly involved in autophagy and through inhibition of
Beclin1 (Chen et al., 2017). Schaefer found that the expression
of miRNAs in the blood and tissues of the UC group and the
expression of miR-19a, miR-21, miR-31, and miR-101 were
significantly increased (Schaefer et al., 2015). This indicates
that miRNAs are involved in the pathogenesis of UC and that
specific miRNAs distinguish UC from other diseases. Wang
found that miRNAs regulate NF-κB or mTOR signaling to
modulate autophagy in intestinal cells by releasing anti- or
proinflammatory factors (Wang et al., 2018). Based on these
studies, miRNAs regulate autophagy in a variety of ways,
including disruption of the intestinal mucosa and changes in
intestinal permeability to aggravate or improve UC, but the
specific role of miRNAs still needs to be verified.

Vitamin D receptor (VDR) is closely related to autophagy.
VDR plays a vital role in IECs by reducing apoptosis and
enhancing autophagy through Beclin-1 (Lu et al., 2019).
Zhang found that VDR deficiency promoted the release of the
tight junction protein Claudin-2, which enhanced the
permeability of the intestinal mucosal barrier and further
accelerated the progression of UC (Zhang et al., 2018).

Yongyan Shi found that necroptotic apoptosis was one of the
pathogeneses of IBD. VDR inhibits necroptotic apoptosis,
alleviates inflammation, and suppresses the induction of colitis
by preventing receptor interacting serine/threonine kinase 3
(RIPK3) from binding to RIPK1 (Shi et al., 2020). Jot and
others showed that VDR also protects the intestines through
the VDR-gut microbiota axis and reduces the susceptibility of
DSS-induced colitis (Ooi et al., 2013). These studies all indicate
that VDR enhances autophagy and alleviates colitis through
different signaling mechanisms.

In summary, autophagy can restore the intestinal mucosal
barrier and alleviate UC by regulating expression of susceptibility
genes, modifying intestinal microbes, inhibiting proinflammatory
cytokines, and suppressing the immune response (Figure 2).

ERS AND AUTOPHAGY

Under oxidative stress, energy deficiency, Ca2+ depletion,
increased mRNA translation, metabolic changes and
inflammatory stimulation, cell homeostasis is destroyed and
ERS is activated (Luo and Cao, 2015). Several mediators
released under ERS can directly induce the formation of
autophagosomes and initiate autophagy (Kaser and Blumberg,
2011). Autophagy plays two major functions: on the one hand,
moderate autophagy maintains the stability and survival of cells;
on the other hand, excessive autophagy causes cell damage and

FIGURE 2 | Autophagy in UC. Autophagy is regulated by ATG, mTOR, AMPK, and NOD2. ATG participates in the formation of the ULK1 complex and initiates
autophagy. The ATG12–ATG5–ATG16 complex recruits autophagosome membranes and combines ATG8 (LC3) with phosphatidylethanolamine (PE) to form an
ATG8–PE complex, leading to the formation of autophagosomes and autophagolysosomes. mTOR negatively regulates autophagy by inhibiting the ULK1 complex,
VSP34 complex, and DAP1. AMPK activates ULK1 and phosphorylates Beclin-1 to activate autophagy. VDR enhances autophagy through Beclin-1. Autophagy
improves UC by altering the expression of susceptibility genes, improving intestinal microbes and the immune response and inhibiting the expression of proinflammatory
cytokines.Abbreviations: AMPK, 5′-monophosphate-activated protein kinase; ATG, autophagy associated gene; IECs, intestinal epithelial cells; IFN-γ, Interferon-γ; IL-
1β, interleukin-1β; mTOR, mammalian target of rapamycin; PE, phosphatidylethanolamine; TNF-α, tumor necrosis factor-α; UC, Ulcerative colitis.
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even apoptosis (Kaur and Debnath, 2015). ERS induces the
transformation of LC3 from LC3-I to LC3-II and the
formation of autophagy (Ogata et al., 2006; Wu et al., 2021).

Recent studies have confirmed the connection between ERS
and autophagy, and ERS induces autophagy through various
pathways. For example, PERK regulates ATF4 and CHOP
transcription factors, influences autophagosome formation,
and further affects autophagy (Rouschop et al., 2010). B cells
controlled by Trk-fused gene (TFG) are more sensitive to ERS
and contain more LC3 and an increased number and size of
autophagosomes (Steinmetz et al., 2020). ERS upregulates death-
related protein kinase 1 (DAPK1) through ATF6, mediates
mAtg9 trafficking, and activates autophagy (Zhou et al., 2016).
In addition, ATF4 induces the expression of DNA damage
response 1 (REDD1) during ERS. The upregulated expression
of REDD1 in UC is correlated with autophagy induction by
inhibiting mTOR (Kimball and Jefferson, 2012; Angelidou et al.,
2018).

ERS can induce autophagy not only through the UPR
pathway, but also by Akt signal transduction. For instance,
ROS mediate Akt inactivation and increase the expression of
ERS-related molecules such as CHOP and XBP1, leading to
apoptosis. ERS can induce autophagy and reduce
inflammation by inhibiting the phosphatidylinositol (3-kinase
PI3K)/serine-threonine protein kinase (Akt)/mammalian target
of rapamycin (mTOR) pathway (Xue et al., 2017; Chung et al.,
2019). This indicates that ERS and autophagy can be activated by
inhibiting the Akt pathway. ERS induced an increase in CHOP
expression and a decrease in B-cell lymphoma-2 (Bcl-2)
expression, and activated autophagy by releasing Beclin-1
through the PERK/CHOP/Bcl-2/Beclin-1 pathway (Liu et al.,
2014; Ning et al., 2019). Corazzari found that ERS activates
the Tribbles homolog 3 (TRB3) axis and the IRE1/TRAF2/
apoptosis signal regulating kinase-1 (ASK1)/JNK signaling axis
to induce autophagy (Corazzari et al., 2015). IRE1/XBP1 and
IRE1/JNK1 both induce autophagy by activating Beclin-1 (Rather
et al., 2020).

In general, ERS induces autophagy through multiple
pathways: 1) the IRE1/TRAF2/ASK1/JNK/Bcl-2 (Vps34)
signaling axis; 2) the IRE1/XBP1/Beclin-1 signaling axis; 3) the
Akt/CHOP/Beclin-1 signaling axis; 4) the ATF4/REDD1/mTOR
signaling axis; and 5) the PERK/CHOP/Bcl-2/Beclin-1 signaling
axis. Whether ERS-induced autophagy plays a role in more
signaling axes, for example, ATF6–XBP1–ULK1 and
ATF4–ATG7–Beclin-1, needs to be further explored.

ERS, AUTOPHAGY AND UC

The interaction between ERS and autophagy can synergistically
affect the development of UC. Additionally, IECs, as a target of
ERS and autophagy, play a vital role in the pathogenesis of UC
(Adolph et al., 2013).

On the one hand, ERS regulates autophagy. Recent reports
indicate that the mechanism by which ERSregulates autophagy is
complex. Lopes found that ERS activated the ATF6–DAPK1
signal in IECs and enhanced autophagic killing of bacteria

(Lopes et al., 2018). The expression of REDD1 in intestinal
neutrophils is closely related to the severity of UC. REDD1
activates neutrophil autophagy by inhibiting mTOR
phosphorylation, and autophagy positively regulates neutrophil
extracellular traps (NETs). Intestinal neutrophil expression
through NETs promotes the release of IL-1β, which mediates
inflammation and further exacerbates UC. The REDD1/
autophagy/NETs/IL-1β pathway plays an important role in the
initiation and propagation of UC. Therapy targeting IL-1β could
be beneficial for active UC (Angelidou et al., 2018). The
expression of glucose-regulated protein (GRP)78 in the colon
is increased in UC, especially in the inflamed intestinal mucosa
(Shkoda et al., 2007). Tréton found that unspliced and spliced
XBP1, GRP78 and GRP94 and ER degradation in the colonic
mucosa of UC patients is associated with elevated levels of the
active form of ATF6 (p50ATF6α) and impairment of the
eIF2α–ATF4–CHOP pathway (Tréton et al., 2011). Stengel
found that ATF6α, as an intermediate signaling molecule that
regulates its upstream regulators and downstream XBP1 and
Atg16L1, participates in the crosstalk between ERS and
autophagy of IECs in IBD (Stengel et al., 2020). ERS activates
autophagy through multiple signals in IECs and aggravates UC.

On the other hand, autophagy regulates ERS. Moderate
autophagy can inhibit ERS, increase the number of goblet cells
and mucin secretion, protect intestinal epithelial mucosal barrier
function, and relieve the symptoms of UC. In DSS-induced
colitis, the inhibition of triggering receptor expressed on
myeloid cells 1 (TREM1) induced macroautophagy and
chaperone-mediated autophagy, which compensates for the
UPR to reduce ERS (Kökten et al., 2018). In addition, the
stimulation of NOD and TNF receptors in IECs promote
ATG16L1 stabilization via conserved helix-loop-helix
ubiquitous kinase (IKKα)-dependent phosphorylation of
ATG16L1 at serine 218, thereby protecting ATG16L1 against
caspase-3-dependent degradation and limiting ERS activation
(Diamanti et al., 2017). In fact, compared with Atg16L1[ΔIEC]

or Xbp1[ΔIEC] mice, mice lacking Atg16L1 and Xbp1 (Atg16l1
[ΔIEC]Xbp1[ΔIEC]) develop more severe colitis. However, all
Atg16L1[ΔIEC], Xbp1[ΔIEC] and Atg16L1[ΔIEC]Xbp1[ΔIEC] mice
show increased accumulation and excessive activation of ER to
nucleus signaling 1 (ERN1), due to the deficiency of ERN1
degradation caused by autophagy (Tschurtschenthaler et al., 2017).

In general, moderate ERS can maintain intestinal homeostasis,
but when ERS is too strong, key molecules such as IRE1, PERK
and ATF6 which produce proinflammatory cytokines and
destroy the intestinal mucosal barrier to induce UC, are
lacking. Autophagy can inhibit the expression of
proinflammatory cytokines and improve the immune response
and can also reduce UC in other ways, but excessive autophagy
increases cell apoptosis and aggravates UC (Figure 3).

The inhibition of autophagy can be used as a therapeutic
strategy in UC. Many drugs can inhibit autophagy. The mTOR
inhibitor 2-chloro-N-(6-cyanopy-ridin-3-yl) propanamide
alleviated UC symptoms in mice by inhibiting autophagy
(Bhonde et al., 2008). Curcumin reduced the number of
autophagosomes by regulating autophagy and improved the
symptoms of DSS-induced colitis in mice (Yue et al., 2019).
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Nicotine increased the expression of LC3II/LC3I and Beclin-1
through the AMPK–mTOR–p70S6K pathway, reduced p62
levels, and relieved experimental colitis by regulating
autophagy (Gao et al., 2020). Oral administration of Na2SO3

and NaHSO3 (3:1) produces SO2.SO2 suppresses autophagy by
reducing oxidative stress and reducing the expression of the
proinflammatory cytokines TNF-α, IL-1β, and IL-6, as well as
downregulating Beclin1 expression. Therefore SO2 alleviates the
pathological manifestations of colitis in rats by anti-inflammatory,
antioxidation and autophagy inhibition (Banerjee et al., 2019).
Galangin pretreatment increases autophagy-related protein
expression and promotes the formation of autophagosomes,
which can be used to prevent UC (Xuan et al., 2020). Melatonin
alleviates colitis-related colon cancer by reducing autophagy, as
revealed by the expression of autophagy-related markers (Trivedi
et al., 2016). These drugs all reduce UC inflammation by regulating
the expression of autophagy-related proteins.

ERS, AUTOPHAGY RELATED DRUGS
FOR UC

Autophagy deficiency is closely related to the pathogenesis of UC.
Some therapeutic drugs work by improving autophagy, which

makes autophagy a new therapeutic target for the treatment of
UC. Drugs that modulate both ERS and autophagy need further
investigation (Hooper et al., 2016). Berberine (BBR) inhibits the
IRE1/XBP1 pathway and JNK activation and reduces the
expression of proinflammatory cytokines and ERS. Hence,
BBR might be one of the targeted therapeutic agents for UC
(Hao et al., 2012). Lactobacillus paracasei–derived extracellular
vesicles (LpEVs) attenuate DSS-induced colitis by reducing the
expression of pro-inflammatory cytokines IL-1α, IL-1β, IL-2, and
TNF-α proinflammatory cytokines and promoting the expression
of anti-inflammatory cytokines, including IL-10 and TGFβ.
LpEVs increase IRE1 and PERK phosphorylation, ATF6
cleavage, and CHOP expression by activating ERS to reduce
LPS-induced intestinal inflammation and maintain intestinal
homeostasis (Choi et al., 2020). Low-dose naltrexone reduces
the level of ERS, restores the intestinal mucosal barrier, and
improves the severity of IBD (Lie et al., 2018). Lycium barbarum
leaves contain a variety of compounds and prevent inflammation
through the IRE1–XBP1–dependent ER stress pathway, which
might be linked to its antioxidant activity, making the leaves a
beneficial food for human health (Lee et al., 2021). Dodecapeptide
(LR12) is an inhibitor of triggering receptor expressed onmyeloid
cells-1 (TREM-1). Compared with healthy mice, the mice in the
DSS[+]/LR12[+] group were similar and had no signs of

FIGURE 3 | ERS, autophagy, and UC. ERS regulates autophagy through multiple pathways: 1) IRE1/TRAF2/ASK1/JNK/Bcl-2/Beclin-1 signaling axis; 2) lIRE1/
XBP1/Beclin-1 signaling axis; 3) ATF6/CHOP/ATG9 signaling axis; 4) ATF6/DAPK1 signaling axis; 5) ATF6/DAPK1 signaling axis; 6)ATF6/CHOP/ATG7-LC3II signaling
axis; 7) ATF6/CHOP/ATG9 signaling axis; and 8) PERK/elf2α/ATF4/REDD1/mTOR signaling axis. ERS regulates UC through defects in the ATG16L1 gene. Autophagy
stimulatesmTOR receptors in IECs to inhibit TREM1 and through regulating ERN1 to alleviate ERS. Autophagy also regulates UC. The interaction between ERS and
autophagy synergistically affects the development of UC. Abbreviations: AMPK, 5′-monophosphate-activated protein kinase; ASK 1, apoptosis signal regulating
kinase-1; ATF, activating transcription factor; ATG, autophagy associated gene; Bcl-2, B-cell lymphoma-2; CHOP, C/EBP homologous protein; DAPK1, death-related
protein kinase 1; eIF2α, eukaryotic initiation factor 2α; ER, endoplasmic reticulum; ERAD, endoplasmic reticulum-associated degradation; ERN1, endoplasmic reticulum
to nucleus signaling 1; ERS, endoplasmic reticulum stress; LC3Ⅱ, microtubleassociated protein light chain 3II; mTOR, mammalian target of rapamycin; IRE1, inositol-
requiring enzyme1; JNK, c-Jun N-terminal kinase; PERK, protein kinase R-like endoplasmic reticulum kinase; TRAF2, tumor necrosis factor receptor–associated factor
2; TREM1, triggering receptor expressed on myeloid cells 1; XBP1, X-Box-binding protein 1; UC, ulcerative colitis; UPR, unfolded protein response.
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ulcerations. However, DSS[+]/LR12[−]mice developed ulcers with
inflammatory cell infiltration, and increased endoscopic scores.
LR12 reduced ERS and restored impaired autophagy, indicating
that TREM-1 inhibition alleviates the symptoms of colitis,
mitigates endoscopic tissue damage, and prevents UC (Kökten
et al., 2018). Hooper found that azathioprine induces autophagy
by regulating mTORC1 signal transduction and the UPR sensor
PERK, thus contributing to its efficacy in treating IBD (Hooper
et al., 2019). The aforementioned drugs can reduce or prevent UC
by inhibiting ERS.

CONCLUSION AND PROSPECTS

The role of ERS and autophagy in IBD has received increasing
attention. This study summarizes the relationship between ERS
and autophagy in UC. Moderate ERS can maintain the balance
of the intestinal environment, but excessive ERS can induce
intestinal inflammation by regulating ERS susceptibility genes,
inducing intestinal epithelial cell apoptosis and intestinal
mucosal barrier dysfunction, and producing proinflammatory
cytokines, leading to the occurrence of UC. However, ERS can
activate autophagy, which alleviates UC by inhibiting
proinflammatory cytokines and immune responses and
improving the intestinal microorganisms, but excessive
autophagy still aggravates UC. The interaction between ERS
and autophagy can synergistically affect the development of UC.
Exploring the important mechanism of ERS-induced autophagy
in the pathogenesis of UC can contribute to the understanding
of the pathogenesis of UC and provide an effective method for
the treatment of UC in the future. However, the specific
regulatory mechanism of the ERS–autophagy signaling axis
needs further investigation. For example, it is of interest to
determine whether there are more stress- and autophagy-related
pathways; the specific role and exact function of each protein,
molecule, and enzyme in the respective pathways and to identify
more autophagy-related genes and their regulatory mechanism
in UC. The activation of key molecules in ERS can activate
autophagy through multiple pathways. However, the following

issues remain unaddressed: whether inhibition of one of the key
molecules can affect multiple pathways and will produce side
effects; if the effect of single target treatment is not significant,
whether multitarget treatment can be used; how each signaling
pathway works in multitarget therapy; whether the therapeutic
drugs confirmed in current studies that can regulate ERS-
autophagy in mice can play the same role in other
organisms; and whether the combination of targeted
autophagy and targeted ERS agents can exert better effects.
There are many drugs for treating UC, but some patients have
not been cured. Hence, it is urgent to develop novel drugs for the
treatment of UC. A better understanding of the relationship
among ERS-induced autophagy in UC, regulation of ERS-
autophagy, alleviation of IEC damage, restoration of
intestinal mucosal barrier function, and maintenance of
intestinal homeostasis can provide potential new targets and
more effective therapy for UC.
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