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Abstract

Background: Horseshoe crabs are marine arthropods with a fossil record extending back approximately 450 million
years. They exhibit remarkable morphological stability over their long evolutionary history, retaining a number of
ancestral arthropod traits, and are often cited as examples of “living fossils.” As arthropods, they belong to the
Ecdysozoa, an ancient super-phylum whose sequenced genomes (including insects and nematodes) have thus far
shown more divergence from the ancestral pattern of eumetazoan genome organization than cnidarians, deuterostomes
and lophotrochozoans. However, much of ecdysozoan diversity remains unrepresented in comparative genomic analyses.

Results: Here we apply a new strategy of combined de novo assembly and genetic mapping to examine the
chromosome-scale genome organization of the Atlantic horseshoe crab, Limulus polyphemus. We constructed a genetic
linkage map of this 2.7 Gbp genome by sequencing the nuclear DNA of 34 wild-collected, full-sibling embryos and their
parents at a mean redundancy of 1.1x per sample. The map includes 84,307 sequence markers grouped into 1,876 distinct
genetic intervals and 5,775 candidate conserved protein coding genes.

Conclusions: Comparison with other metazoan genomes shows that the L. polyphemus genome preserves ancestral
bilaterian linkage groups, and that a common ancestor of modern horseshoe crabs underwent one or more ancient
whole genome duplications 300 million years ago, followed by extensive chromosome fusion. These results provide a
counter-example to the often noted correlation between whole genome duplication and evolutionary radiations. The
new, low-cost genetic mapping method for obtaining a chromosome-scale view of non-model organism genomes that
we demonstrate here does not require laboratory culture, and is potentially applicable to a broad range of other species.
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Background
Comparative analysis of genome sequences from diverse
metazoans has revealed much about their evolution over
hundreds of millions of years. The discovery of extensive
gene homology across large evolutionary distances has
allowed researchers to track chromosome rearrangements
and whole genome duplications. The resulting value of
whole chromosome sequences presents a challenge for
existing whole genome shotgun (WGS) assembly strategies.
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Whole genome duplication events were long suspected
[1], but only the availability of genome sequences has
allowed confirmation of them in fungal, vertebrate, plant
and ciliate lineages [2-5]. In contrast, when only a few
chordate, insect and nematode genomes were available,
conservation of gene linkage (i.e., synteny) and gene
order were observed only between closely-related species,
and consequently were not expected to be conserved
between phyla. As more metazoan genomes have been se-
quenced, it has become clear that long-range linkage has
been conserved over long time scales in many lineages.
Sequencing the genomes of representatives of chordate,

mollusk, annelid, cnidarian, placozoan and sponge clades,
has identified 17 or 18 ancestral linkage groups (ALGs)
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[6-10]. Each of these ALGs consists of a set of ancestral
genes whose descendants share conserved synteny in
multiple sequenced genomes. These ALGs have been
interpreted to correspond to ancestral metazoan chromo-
somes, and correlations between inferred rates of gene
movement between ALGs across the metazoan tree sug-
gest that these ancestral linkage relationships are conserved
through the action of selective constraints on a subset of
genes [11].
The relatively small number of genomes from anciently

distinct metazoan lineages and the fragmented nature of
draft genome assemblies still limit both the search for an-
cient whole genome duplications and the power of the
data to constrain models of chromosome-scale genome
structure evolution. While WGS sequencing technology
and assembly methods are active areas of research and
technological development, and have improved at a dra-
matic pace in recent years, high quality de novo assembly
of large, complex metazoan genomes remains a difficult
and resource-intensive problem. Without genetic or phys-
ical maps, or reliance on a high-quality reference genome
of a closely-related species, WGS sequencing projects still
typically produce assemblies containing thousands of scaf-
folds, hundreds of scaffolds incorrectly joining sequence
from different chromosomes, or both [12].
Next-generation sequencing has greatly reduced the

cost of constructing high density genetic maps by elimin-
ating the need to develop and genotype polymorphic
markers individually [13]. This has been achieved either
by focusing sequence coverage within or adjacent to gen-
omic regions of distinct biochemical character, such as re-
striction sites with restriction site associated DNA
sequencing (RAD-seq) and related methods [14,15], or by
combining information across regions using a reference
genome sequence [16,17]. While RAD-seq is applicable to
organisms lacking a reference genome assembly, it is not
directly applicable to comparisons of genome organization
across long evolutionary time spans because such compar-
isons rely on the identification of homologous sequence
markers (typically protein-coding genes), which typically
have only a small overlap with the restriction-associated
markers.
Here we present a genotype-by-sequencing method for

constructing a high-density genetic map using low-
coverage, low-cost, whole genome sequencing data from
the offspring of a wild cross. In this joint assembly and
mapping (JAM) approach, the traditionally independent
and sequential steps of genome assembly, polymorphic
marker identification and genetic map construction are
combined. Existing assemblers expect lower densities of
sequence polymorphism, deeper coverage, greater com-
puter memory or more aggressive quality trimming that
decrease sequence coverage [18-20]. Our current imple-
mentation focuses on conservative assembly of short
scaffolds sufficient for map construction, but our results
suggest that further integration of genetic mapping infor-
mation within whole genome shotgun assembly methods
can be a cost effective way to produce assemblies of large,
complex genomes with chromosome-scale contiguity.
We have applied this approach to produce a genetic map

of the genome of the Atlantic horseshoe crab, Limulus
polyphemus. Horseshoe crabs are marine arthropods with
a fossil record extending back 450 million years [21]. They
exhibit remarkable morphological stability over their long
evolutionary history, retaining a number of ancestral
arthropod traits [22], and are often cited as examples of
“living fossils”. L. polyphemus has a genome about 90% the
size of the human genome. It is an important species from
ecological, commercial and conservation perspectives [23],
that has been used as a model system for research in
behavioral ecology, physiology and development [24]. The
map and SNP markers described here will be a resource
for the L. polyphemus genome project, research in horse-
shoe crab population biology, and comparisons of meta-
zoan genome organization. By anchoring protein coding
genes to this map, we are able to extend analysis of ances-
tral linkage groups and whole genome duplications to the
chelicerate lineage.

Data description
A pair of naturally spawning horseshoe crabs and their
eggs were collected from their natural habitat on the
beach at Seahorse Key. The larvae were hatched at the
lab 4 weeks later from the collecting date. The tissue
samples from the third walking legs of the parental
horseshoe crabs and 34 larvae were used for DNA
extraction, library preparation following manufactures’
standard protocols. Two parents and 34 larvae were in-
dividually barcoded during library preparation. Illumina
paired-end libraries with insert sizes of approximate
300 bp were prepared for each sample. These libraries were
pooled together for the subsequent sequncing on the Illu-
mina HiSeq2000 platform at Medical College of Wisconsin
Sequencing Service Core Facility. A total of 1.7 billion
100 bp paried-end (PE) reads were obtained after the qual-
ity filtering. The total sequencing coverage was estimated
as 38.9 × based on the k-mer frequency distribution. The
raw sequencing data can be retrived from NCBI SRA via
NCBI BioProject accession PRJNA187356.

Analyses
Assembly and mapping
The JAM method is designed to produce a combined
assembly of polymorphic sequences, tagged by genomic
regions with a maximum of one single nucleotide polymor-
phisms (SNP) per k-mer window (Methods). Starting with
genomic reads from a mating pair of adult L. polyphemus
and 34 offspring (100 bp paired-end reads on 300 bp
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inserts), we analyzed 1.7 billion reads containing at least
one high-quality 23-mer.
Fitting Poisson models for unduplicated sequence to the

frequencies of filtered 23-mers suggests that 1.1 billion
genomic loci are unique at this resolution (Figure 1). This
fit assumes that the vast majority of mappable genomic
loci have only one or two alleles represented in the
parents’ four haploid contributions, which gives rise to the
four components plotted in Figure 1. Of these sufficiently
unique loci, 63% are modeled as homozygous, 27% as
paired major-minor alleles, and the remaining 10% as tied
allele pairs. The corresponding SNPs, if always at least 23
bases apart, would be 1.6% of bases in the unique loci.
Dividing the total number of filtered 23-mers by the
modeled homozygous depth of coverage d = 38.9 yields an
estimated genome size of 2.74 billion bases, consistent
with the measured DNA content of 2.8 pg (978 Mb ≃ 1 pg
DNA) [25].
We categorize specific 23-mers by their edit distances to

others: having no neighbors within a single base substitu-
tion (unique tags) or with a single mutually unique one-
substitution neighbor (“SNPmer pair” tags). A subset of
these, including SNPmer pairs for approximately 7.9 mil-
lion SNPs, constitute the tags used for contigging and
scaffolding. The SNP-mer pairs account for approximately
45% of the modeled fraction of alleles, the others missed
from similarity to other sequences (e.g., due to repeats) or
distance from each other (because of indels or multiple
SNPs per 23-mer).
Chaining these 23-mers together (see Methods) produces

an initial 6.6 million contigs, 3.9 million of which are
Figure 1 Fitting Poisson distributions to Limulus 23mer frequencies.
loci that are homozygous (single allele shared by all haplotypes), have two
or have two alleles in a major-minor relationship (present in parents as AA
tied, major or minor each have a frequency peak corresponding to their di
sharing simple or repetitive sequence not sufficiently unique at a 23-mer s
linkable by paired reads for scaffolding. Applying Bambus
[26] produces 944,000 scaffolds spanning 1.3 billion bases
(Table 1). These scaffolds serve as markers incorporating
multiple 23-mer tags, including SNPmer pairs used to
identify haplotypes.
After assembly, the mean density of SNPs across the four

parental haplotypes in assembled regions was estimated
based on read re-alignments to be 7.6 per thousand bases.
We jointly inferred the phases of these SNPs and segrega-
tion pattern (offspring genotypes) in the mapping cross for
each marker in a maximum likelihood framework
(Methods). We focused on the 91,320 markers with at least
18 inferred bi-allelic SNPs for constructing the linkage
map. These markers grouped into 1,908 high-confidence
map bins (i.e., unique segregation patterns, assumed to
correspond to loci in the genome uninterrupted by meiotic
recombination in the cross [27]. Map bins fell into 32
linkage groups (Figure 2), close to the 26 pairs (2 N = 52)
previously found in a cytogenetic analysis of two chromo-
some spreads [28]. Twenty map bins were removed for
having inconsistent positions in the maternal and paternal
maps, and 12 were singletons.
To estimate the frequency of incorrect genotype calls

as a function of the log likelihood difference between
the called and alternative genotype (genotype confi-
dence score), including contributions from uncertainty
in SNP-mer identification, assembly and sampling noise,
we carried out a simulation of the library pooling and
sequencing, k-mer assembly and genotype inference pro-
tocols, using the sequenced Ciona intestinalis genome as
a starting point.
The distribution of sequenced 23-mers, modeled as sampling genomic
alleles that are tied (A and a present in parents as AA×aa or Aa×Aa),
×Aa or Aa×aa). Alleles whose parental contributions are homozygous,
stinctive fraction of the overall depth of genomic sequencing d. Loci
cale contribute to a long tail off the right edge of the plot.



Table 1 K-mer contig and scaffold statistics

Assembled Count Total (bp) Avg. span (bp) n50 span (bp)

k-mer contigs 6,614,434 1,240,275,515 188 418

Linkable contigs 3,925,844 1,137,576,911 290 460

Initial scaffolds 944,246 1,261,263,172 1336 3047

Reference scaffolds 944,246 1,295,334,515 1372 2930

Reference bases 1,131,458,744 1198 2553
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In the simulated C. intestinalis data set (Methods), a
single stretched exponential distribution provided a good
fit to the frequency of genotype calling errors as a func-
tion of the call confidence score for scores up to 6, or
down to error frequency of approximately 1%. The ob-
served error frequency declined more slowly for higher
confidence scores. The minimum x2 fit used for esti-
mating the genotyping error rate in the L. polyphemus

map bins was pe sð Þ ¼ a1 e
−sc1
b1 þ a2e

−sc2
b2 , with parameter

values a1 = 0.49, b1 = 2.08, c1 = 1.26, a2 = 5.47, b2 = 0.17,
c2 = 0.16 (Figure 3).

Applying this model to the L. polyphemus marker
genome calls, we estimated that the genotype calling error
rate in the map bin representative markers was 0.0099.
We observed that 51% of adjacent map bin pairs are sepa-
rated by a single inferred recombination event in the
cross, and 94% are separated by three or fewer recombi-
nants in each parent.
Of the 91,320 markers with at least 18 putative SNPs,

84,307 (92%) were assigned to their closest map bins with
a threshold of (Methods), for an estimated genome-wide
average density of one mapped sequence marker every
32 kb. A mean of 45 markers were mapped to each map
bin, and the number of markers mapped was used to esti-
mate the relative physical size of map bins. Approximately
46% of the scaffolds with 12–17 SNPs could be placed
with the same threshold, for an additional 32,688 markers,
or one marker every 23 kb.
The total length of the scaffolds assigned to map bins

was 411 Mb, and they contained 2.67 million bi-allelic
SNPs assigned a phase with a posterior probability of at
least 0.99. Of these, 72% were inferred to be unique to one
of the four parental chromosomes. This is close to the
74% predicted under the finite sites neutral coalescent
model given the observed SNP density [29].
Sequence composition and recombination rate
In the scaffolds longer than 1 kb (N = 378,506 and mean
length = 2.9 kb), the G/C base content was 33.3 ± 2.8%,
and the local relative frequency of CpG dinucleotides
was bimodally distributed, with about 30% of sequences
exhibiting depletion of CpG. TpG and CpA dinucleo-
tides were over-represented on average and their local
densities negatively correlated (r = −0.54, p < 2.2e-16)
with CpG density, suggesting ongoing germ-line CpG
methylation for a fraction of the genome [30].
The mean maternal and paternal recombination rates

were estimated to be 1.28 and 0.76 centimorgans per
megabase respectively, consistent with expectation based
on the negative correlation between recombination
intensity and genome size observed in previous studies
[31]. We did not observe evidence of segregation distor-
tion for any map bins. The correlation in local recom-
bination rates in two parents across the genome is
estimated as r2 = 7.1%; p < 1e-29, suggesting considerable
variation in recombination landscape between two sexes
in limulus [32-34]. A positive correlation between local
recombination rate and local SNP density was observed
(r2 = 9.7% ; p < 1e-40), which is consistent with previous
observations in human with comparable correlation co-
efficient [35].

Ancestral linkage group conservation
We found that 34,942 scaffolds have significant se-
quence conservation with 10,399 predicted proteins of
the tick Ixodes scapularis: like Limulus, a chelicerate,
but one with a well-annotated genome [36]. 6,246 of
these hits formed reciprocal best pairs, of which 5,775
(92%) could be placed on the linkage map at a thresh-
old of p<. These were used as conserved markers for
comparisons of genome organization. When linkage
groups were divided into 108 non-overlapping bins of
1,000 markers, 52 had significant (p < 0.05, after Bonfer-
roni correction for 1,944 pairwise tests) enrichment in
shared orthologs (or “hit”) with at least one of eighteen
ancestral chordate linkage groups [7]. A hidden Markov
model segmentation algorithm [6] identified 40 break-
points in ALG composition in the linkage groups.
Approximately 72% of the genome is spanned by 53
intervening segments that hit one or (for eight of them)
two ALGs (Figures 4 and 5). Each of the eighteen an-
cestral ALGs has at least one hit among the 45
segments with a unique hit to the ALGs.

Whole genome duplications
Whole genome duplication (WGD), or polyploidization
is a rare, but dramatic genetic mutation event which
doubles the size of a genome and creates a redundant
pair of copies from every gene. Because it creates



Figure 2 Each of the numbered blocks represents one of the 32 linkage groups of the L. polyphemus genetic map, and is composed of four
columns: Two bands of the triangular matrices in which the color scale indicates the fraction of samples showing recombination between
pairs of markers; maternal recombination frequency is shown on the left, paternal on the right. A column labeled “ALG” indicates segments of
significant (p < 0.05 in Fisher’s Exact Test, after Bonferroni correction for multiple tests) conservation of gene content with ancestral bilaterian linage
groups. The column labeled HOX shows the map positions and types of predicted homeobox transcription factor genes. The two color scales are for:
recombination frequency between pairs of markers and log p-value for enrichment in gene content with ancestral linkage groups.
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redundant copies of genes for entire biochemical path-
ways and genetic networks, it has been proposed that it
creates unique raw material for the evolution of novel
biological functions and increased complexity.
Homeobox gene clusters
Homeobox genes encode a large family of transcription
factors involved in diverse embryonic patterning and struc-
ture formation processes of eukaryotes. As a particular



Figure 3 Genotype call error rate as a function of call confidence score for bins of 10,000 calls in simulated Ciona intestinalis genome
data. The stippled blue region shows 95% confidence intervals of the Bayesian posterior probability distribution of the underlying error rate
computed from the Beta distribution Beta(ne + 1, nc − ne + 1) conjugate the assumed binomial distribution of observed errors, where ne and nc are

the number of errors and number of calls in each bin respectively. The red curve shows the best fit error model a1 e
−sc1

b1 þ a2e
−sc2

b2 , with parameter
values a1 = 0.49, b1 = 2.08, c1 = 1.26, a2 = 5.47, b2 = 0.17, c2 = 0.16. χ2 reduced = 0.82.
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subfamily of homeobox genes, the Hox cluster is known to
control metazoan body patterning along the anterior-
posterior axis. We identified 155 scaffolds with significant
homology to predicted chelicerate homeobox gene seque
nces in public databases. We classified these sequences into
homeobox subfamilies (Methods) and placed them on the
map by best hit. Two large clusters of Hox genes are found
on linkage group (LG) 15 and LG 21, each containing mul-
tiple members of the anterior, central and posterior classes.
There are also two parahox cluster homologs, each with
Figure 4 Limulus-Human macro-synteny dot plot. Blue points indicate
(vertical displacement) and their candidate orthologs in the 30 L. polyphem
three homeobox genes: gsx and cdx orthologs and a third
homeobox gene not confidently assigned to a subfamily in
our analysis (LG 5 and LG 19). There are two smaller clus-
ters containing multiple hox genes (LG 18 and LG 20), and
clusters of other homeobox genes, including members of
the msx, lbx, nk, evx and gbx families (Figure 2).

Genomic distribution of paralogous genes
WGD creates many pairs of duplicate genes or “paralogs”.
The distinctive features of these genes have been used to
the position of human genes in reconstructed ancestral chordate ALGs
us linkage groups (horizontal displacement).



Figure 5 Limulus-Human macro-synteny dot plot as in Figure 4, showing breaks introduced by hidden Markov model segmentation of
the linkage groups as vertical lines.
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infer WGD events in fungal, vertebrate and plant genomes
[2-4]. We examined the genomic distribution of 2,716
pairs of candidate paralogous gene markers in L. polyphe-
mus for signatures of WGD. In 45% of these pairs both
markers mapped to the same chromosome, compared
with 5.3 ± 0.5% in 1,000 datasets with randomly-permuted
Figure 6 Genomic distribution of candidate paralogs. The map positio
L. polyphemus genome are plotted with blue points. Pairs are biased tow
diagonal. Also, paralogs split between linkage groups are significantly clu
paralogous gene identities. The mapped positions of pairs
within the chromosomes were highly correlated (average
r2 = 0.81, and exceeding 0.95 for 8 of the large chromo-
somes; Figure 6), suggesting that many of the pairs repre-
sent recent tandem gene duplicates or single genes
fragmented across multiple markers. In the following, these
ns of pairs of putatively paralogous protein coding genes within the
ard nearby map positions, and therefore concentrated along the
stered into “paralogons”.
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same-chromosome paralogs are referred to as “tandem”
duplicates.
Inter-chromosomal duplicates are clustered into con-

served paralogous micro-synteny blocks (or “paralogons”
[3]): there are 25 pairs of loci, each with at least six (mp= 6)
independent paralog pairs clustered with a maximum
gap (max-gap) of 300 markers between adjacent paralogs in
each cluster. Paralog pairs are considered independent if
they are based on homology to a distinct out-group gene,
to guard against relying on either multiple exons of the
same gene, or recently-duplicated genes as independent
evidence of ancient segmental paralogy. These clusters span
25,044 markers, or 30% of the map, after removing redun-
dancy from paralogons with overlapping footprints. In
1,000 datasets with randomly-permuted paralogous gene
identities, the maximum number of such clusters observed
was 11; the mean and standard deviation were 3.9 ± 1.0.
The observed clustering into paralogons was greater than
that in the randomized datasets over a broad range of
choices of max-gap and mp. For example, for max-gap =
100, mp = 3 there are 52 clusters vs. 3.5 ± 1.9, range 0–10;
for max-gap = 500, mp = 9 there are 12 vs. 2.9 ± 1.7, range
0–9. Because of the large proportion of apparent tandem
gene duplicates (45%), this randomization scheme increases
the number of inter-chromosomal paralog pairs relative to
the data, making it a conservative significance test for inter-
chromosomal paralog clustering. When genes with tandem
duplicates are excluded from the randomizations, the
observed number of clusters is greater than the maximum
observed in 1000 randomizations for all the combinations
of max-gap in the set (100, 200, 300, 400, 500, 600) and mp
in the set (3, 4, 5, 6, 7, 8, 9). 23 max-gap = 600, mp = 7
clusters span 59% of the map, compared to respective mean
number and map coverage of 3.3 ± 1.8, and 13 ± 6% in these
randomizations.
Among the marker pairs mapping to different chromo-

somes, we found a significant excess of pairs relating seg-
ments derived from the same ALG relative to
randomization controls (247 pairs vs. 102 ± 11, p < 0.001
in randomizations of all genes; 202 vs. 46 ± 7 when genes
in tandem duplicates are excluded). This pattern is con-
sistent with the creation of these segments by duplication
(rather than fission).
The max-gap clusters have a significant amount of over-

lap among their footprints. For example, the footprints of
the max-gap = 600, mp = 7 clusters had a total length of
72,072 markers, but a net footprint after redundnacy
removal of 49,545 markers. A genomic region a which has
conserved synteny with two other regions of the genome
(b and c) could arise either from mixing of adjacent
regions (through local genome rearragements) with hom-
ology to b and c respectively, or by successive duplications.
In the latter case b and c are also homologous. We exam-
ined the relationships among the paralogons for evidence
of successive rounds of duplication. We considered a
graph in which nodes correspond to merged, non-redun
dant paralogon footprint regions. Nodes are connected
with edges if a max-gap cluster connects the two nodes.
The average clustering coefficient of this graph is equal to
the probability that footprints a and c share a max-gap
cluster, given that there are edges (a, b) and (b, c) in the
graph. We compared the clustering coefficients to those
found in random Erdős-Rényi graphs with the same
number of nodes and edge probability as the observed
graph. We found that the observed data shows signifi-
cantly more clustering than these random graphs for a
wide range of choices of max-gap and mp. For example,
for max-gap 600, mp =7, the average clustering coeffi-
cient is 0.19, while 10,000 random graphs had coeffi-
cients of 0.034 ± 0.042, p = 0.0039.

Age distribution of paralogous genes
Because WGD events create many paralogs at the same
time, they leave characteristic peaks in the age distribution
of paralogous genes. In L. polyphemus the distribution
shows peaks centered at 0.71 and 1.34 substitutions per
synonymous site (Ks), values within the approximately
linear response range of Ks estimates to WGD age [37]
(Figure 7). For comparison, the synonymous site diver-
gence between an Asian horseshoe crab species Tachypleus
tridentatus and L. polyphemus has a mode of 0.35. The
common ancestor of these species has been estimated to
have lived 114–154 million years ago (MYA), coincident
with the opening of the Atlantic ocean [38], suggesting a
WGD event 230–310 MYA, and possibly an older one
450–600 MYA.

Discussion
Our results demonstrate that a low cost, combined ap-
proach to whole genome sequencing and genetic mapping
can be used to efficiently create a very high density genetic
recombination map for a non-model organism with a
large genome. Because the approach uses genome-wide
sequencing, a large number of sequence markers can be
anchored to the map, allowing comparisons of genome
organization at the chromosome scale over very large evo-
lutionary divergences. The identification of chromosomal
segments with significant gene composition homology to
each of the chordate ALGs demonstrates that the predom-
inance of fusion and mixing of ancestral linkage groups
previously observed in analyzed ecdysozoan genomes [10]
is not ancestral to, or universal in the clade.
The map allows quantitative characterization of other

features of chromosome-scale organization, such as the
correlation between local recombination rate and poly-
morphism levels. Similar positive correlations between
local recombination rate and polymorphism level have
been observed in other metazoans including humans



Figure 7 Distribution of estimated non-synonymous (Ka; top) and synonymous (Ks; bottom) and sequence divergence rates for pairs of
putative L. polyphemus paralogs (left) and L. polyphemus - T. tridentatus orthologs (right).
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[39-41] and plants [42,43]. Future comparisons with more
closely related chelicerates will allow tests to distinguish
whether these rates are positively correlated with inter-
specific divergence, consistent with a neutral process of
correlated mutation and recombination rates [35]. Alter-
natively, the association could be explained by hitchhiking
and background selection [44].
The enrichment of inter-chromosomal paralog pairs in

segments of the same ALG origin is consistent with their
creation by duplication (rather than fission), although
because small-scale duplication is biased toward local
(tandem) duplication, fission of segments could also leave
behind an enrichment of paralogs. Such a mechanism,
however, would not create the observed organization of
paralogs, that is, their clustering into “paralogons”. The fact
that these paralogons span a large portion of the map (59%)
suggests that it was a whole genome duplication, rather
than segmental duplications that gave rise to the pattern.
The existence of duplicated hox and parahox clusters

on four different chromosomes is highly suggestive of
multiple whole genome duplication. Hox clusters have
not been found in duplicate copies except in vertebrates
where they have been created by whole genome duplica-
tion, and have only rarely been subsequently lost.
The double-peaked shape of the distribution of syn-
onymous site divergence between pairs of paralogs, com-
bined with the existence of two small clusters of HOX
genes in addition to the two complete HOX clusters
suggests that there may have been two rounds of whole
genome duplication in the horseshoe crab lineage.
WGDs preceded major species radiations in verte-

brates, angiosperms and teleost fish, and the importance
of their role in evolution is the subject of long-running
debate [1-4]. The discovery of whole genome duplication
in an invertebrate, and during horseshoe crabs’ long and
famously conservative evolutionary history suggests that
such events may have been more common than previ-
ously assumed in metazoan evolution, and that while
they may have provided raw material for adaptive evolu-
tion in some cases, they are not evolutionary drivers.
Methods
Joint assembly and mapping (JAM) overview
Barcoded genomic DNA libraries were created, pooled,
and sequenced in four lanes on the Illumina HiSeq2000
platform for a mating pair of L. polyphemus and 34
offspring.
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The JAM method proceeds through three major phases:
1. The frequencies of DNA sub-sequences of fixed length k
(k-mers) are profiled to characterize the quality, uniqueness,
polymorphisms and repetition in genomic reads, using soft-
ware we developed building on work from the Atlas assem-
bler [45]. Allelic pairs of k-mers representing alternate
forms of SNPs are identified and tracked through the sub-
sequent steps. 2. Contigs are assembled on a graph of
unique k-mers and paired SNP k-mers sampled to reduce
memory usage, then ordered and oriented using the
Bambus scaffolder [26,46]. Each multi-SNP scaffold is trea-
ted as a single marker for the linkage mapping steps 3. The
paired SNP k-mers (in each scaffold are combined with the
read, mate-pair, and parent- or offspring-library associa-
tions of their alleles for haplotype phasing and construction
of a high density genetic linkage map. The software is pub-
lic available as open source software at GitHub [47].

Sampling and sequencing
The parental horseshoe crabs and their eggs were col-
lected from their natural habitat on the beach at Seahorse
Key, an island along the west coast of north Florida, on 27
March 2010. This naturally spawning pair were observed
as the eggs were being laid and fertilized (fertilization is
external in this species, i.e., the eggs are fertilized in the
sand under the female as the eggs are being laid). The
tissue sample were collected from the third walking legs
of this parental pair. We marked where the egg samples
were laid and returned a few hours later and dug up the
nest, then removed the fertilized eggs. We also have
conducted paternity analyses that show that fertilization is
by the associated male and not by extraneous sperm that
might be at the nesting site (in this case the density of
nesting females was low on this day so we know that the
eggs we collected were from the pair we observed).
Trilobite larvae were reared in plastic dishes as previously
described and hatched from the eggs 4 weeks later [48].
Tissue samples and larvae were preserved in RNALater.
Genomic DNA purification and library construction were
carried out using Qiagen DNAEasy, Illumina TruSeq and
Nextera kits, following manufacturers’ protocols. Barcoded
samples were pooled and sequenced on the Illumina
HiSeq2000 platform.
Limulus larvae were processed as follows; each larva,

suspended in 100 μL of RNAlater and stored at −80°C
in a 1.5 mL Eppendorf tube, was thawed on ice, after
which RNAlater was removed. DNA was extracted using
the Qiagen DNAEasy kit per manufacturer’s protocols.
DNA was quantified using picogreen DNA quantitation
kit. To prepare TruSeq libraries, DNA was first purified
another time using zymo genomic DNA clean columns
per manufacturer’s protocols. Adult L. polyphemus DNA
was prepared as above, but using claw tissue rather than
whole larvae. All DNA extracts were tested by gel
electrophoresis to ensure DNA was not degraded. TruSeq
libraries were prepared at University of Georgia’s Georgia
Genomics Facility. 1–5 μg of sample DNA was subjected
to fragmentation using Covaris sonicator. Fragmented
DNA was then used for library construction using
Illumina TruSeq library prep kits. Libraries were pooled
together in equimolar amounts (for 10 larvae) and used
for the first sequencing run in separate lanes for the
parental and larval pools. For larval samples 11–34, library
prep was switched from TruSeq to Nextera kits. Nextera
library preparation was performed according to manufac-
turer’s protocol. The Nextera library product was quanti-
fied by picogreen, and fragment size distribution was
checked by using Lonza flash gel, to ensure that fragment
size distribution was between 300–1,000 bp. Sample
libraries were pooled in equimolar concentrations and
sent for the second sequencing run in two lanes, each on
a pool of 12 larvae. Both sequencing runs, comprising four
library pools, were performed on the Illumina HiSeq2000
platform at Medical College of Wisconsin Sequencing
Service Core Facility.
A total of 1.7 billion Illumina reads qualified for k-mer

analysis and assembly by containing at least 23 consecu-
tive q20 bases. The maternal library accounted for 13% of
these reads, the paternal library 7.4%, and the 34 offspring
libraries for 2.4% on average, 0.64% at minimum.

k-mer decomposition
We determined a lower bound on the k-mer size long
enough for a given expectation of uniquenes in a random
genome. While increasing k reduced the rate of coinciden-
tally repeated k-mers, it also reduced the effective depth of
coverage due to untrimmed errors and edge effects at
read ends — and increased the cases of multiple SNPs
per k-mer locus, which are not tracked in our current
software implementation. We can approximately model
a genome-scale string G of random nucleotides as G
samples taken with uniform probability from the space
of all k-mers (of size 4k/2 for odd k-mers treating
reverse-complements as same; slightly more for even
k). The Poisson distribution then gives the probability
that a location in G has its own, unique k-mer (shared
with no other location) as

e−λ; where λ ¼ G
4k
2

¼ 2G

4k

The probability of a location sharing its kmer is then;
thus, to limit the maximum rate R of G-locations sharing
k-mers, we require k ≥ [log4(−2G/ln(1− R))]. For example,
for a mammalian-scale genome of approximately 3 billion
bases, and R = 0.1%, we chose k ≥ 22. For Limulus polyphe-
mus, the Animal Genome Size Database [25] reports an
estimated haploid genome size of 2.80 pg and, as each
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picogram represents almost a billion nucleotide base-pairs
of DNA, the mammalian-scale choice of k applies [19,49].
This lower bound ignores chemical and biological

sequence biases, so selecting k for a real genome project
requires attention to error rates, repeats tandem and
interspersed, and genome size, all known vaguely, if at
all, before sequencing. Studying the k-mer distributions
after sequencing can clarify these genomic properties as
we select k to maximize the net yield of candidate k-mer
tags, between errors and with at most one SNP location,
in sequencing reads. We converted Illumina/Solexa
FASTQ format (paying attention to the different quality
encodings of the software versions) into FASTA format
[50], masking (replacing with ‘N’) any base with Phred-
scale [51] quality below 20, and soft-masking (representing
in lower case) other bases with quality below 30. For initial
trimming experiments, we varied these quality thresholds
as indicated below. We stored k-mers in hash tables with
open addressing [52], supporting odd k < =31. We tallied
for each k-mer a bit vector for presence or absence in up
to 64 sample libraries (36 for Limulus parents and off-
spring), and an overall count of occurrences in all libraries
(count limited to 64 − 2 k bits). Where the k-mer hash
would be too large for available memories, we sampled the
k-mers using a hash-slicing factor S (must be prime).
Representing each k-mer as an integer in, slice s con-
sists of those k-mers whose remainder on division by S
is s. We can tabulate one slice for a representative sample
of 1/S k-mers (for initial estimation of depth of coverage
and genome size) or, using S independent jobs, to collect
information for k-mers in all slices. Our hash tables stored
odd-length k-mers so that reverse-complementary
sequences can be combined without the ambiguous orien-
tation of palindromic sequences (e.g., ATCGAT).
After selecting k as described above and making a full

tabulation of k-mer counts and bit vectors, we filtered
out k-mers not expected to represent genomic sequence.
k-mers were required to have three copies in the total
sequence set, with at least one copy in the initial run
and one in the second run. This was partly to filter out
incomplete adapter sequences, which can be difficult to
trim, but were different in the two runs.
Extending methods developed for the Atlas assembler

[45] to heterozygous sequences, Figure 1 gives a rough
decomposition of the k-mer frequency distribution for
23-mers with quality ≥20, minimizing the square of the
residuals of k-mer counts on frequencies 3 through 70
while not exceeding the observed counts. Four linked
distributions model fractions of the genome as monoal-
lelic or biallelic: homozygous regions with d = 38.9-fold
coverage (dark blue), minor alleles covered at d/4
(green), tied alleles at d/2 (red) and major alleles at 3d/4
(purple). This fit is robust enough to confirm the abun-
dance of major-minor allele pairs (27% of k-loci, vs. 10%
for tied alleles), with the broader peaks in the data than
in the fitted curves consistent with less uniform
sampling (for example, varying coverage of parents and
offspring). The Poisson decomposition suggests a density
of polymorphisms of 1.2% in major-minor allele pairs,
based on dividing the modeled number of such se-
quenced pairs by k (assuming most polymorphisms are
SNPs spaced at least k bases apart), by d (the estimated
depth of sequencing) and by the estimated genome size
of 2.74 billion bases.

SNPmer identification
The filtered kmer counts, computed in parallel, are loaded
into a hash table with additional fields to track kmers that
are uniquely within one mismatch of each other. Because
this step analyzes all (non-error) k-mers in one table, this
requires a single large-memory processor (on the order of
32 GiB).
For each k-mer, we check all its 3 k one-substitution

neighbors. The k-mers are partitioned each into one of
three categories: unique: having no edit-neighbors within
one substitution; ambiguous: having either multiple one-
substitution neighbors, or one neighbor that has mul-
tiple neighbors; or partnered: uniquely pairable with
exactly one other k-mer differing by one substitution,
such k-mers also known from now on as SNPmers or
SNPmer pairs. For each SNPmer, we save the position of
the substitution, a bitmask for the change (transition,
complement, or non-complement transversion), and
whether the canonical form of the partner in the table
has the same sense or is reverse complemented with
respect to this k-mer.
Only partnered and unique k-mers will be further

tracked. While this limited method cannot identify k-mers
for genomic SNP and non-SNP locations with complete
confidence, false pairing or missed pairing should have
limited effects, as confirmed by assembly experiments
with simulated Ciona sequence (see Error model calibration
in Methods). False pairing, due to coincidental similarities
or repeats, would combine nodes of the k-mer graph
(see below) and cause noise in the scaffolding, haplotype
phasing, and linkage analysis. Such misleading links are
minimized by the robust edge requirements in contig-
ging and scaffolding, described below. Missed pairing
can happen from indel polymorphisms, SNPs separated
by fewer than k − 1 positions, failure to sequence minor
alleles, or ambiguity due to too many similar k-mers.
Ambiguously non-unique k-mers will be skipped over
(reducing connectivity of the k-mer graph if there are
too many in a row). Where allelic k-mers misidentified
as unique cause conflicting edges in the k-mer graph,
nodes for unpartnered major alleles will either be chained
into contigs with flanking unique sequence or left as
orphaned fragments, and unpartnered minor alleles will
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be left as orphaned fragments. Overall, errors in identify-
ing parnered and unique k-mers should shorten contigs
and scaffolds and hide linkage, not promote false linkages.
Table 2 shows the totals and percentages of the differ-

ent kmer categories, counting each SNPmer pair as one
k-mer. SNPmer pairs account for 16.3% of the putative
genomically unique 23mer markers; dividing by 23 gives
us the fraction of bases in those markers that are puta-
tive SNPs: 0.71% .

Node k-mer selection
To reduce the memory requirements of our k-mer
assembly graph, we select a approximate one-tenth sub-
set of the SNPmer and unique k-mer tags.
In the case of a true SNP at least k-1 bases from other

SNPs and from gaps in error-free coverage of either allele,
there will be k covering SNPmer pairs (provided that cov-
ering k-mers are also uniquely pairable). By taking only
SNPmer pairs with the substitution in particular positions,
we can reduce the size of the graph and its redundancy.
Analyzing the distribution of substituted position for all
the SNPmer pairs, we observe an enrichment for sub-
stitutions near the ends, probably due to proximity to
low-quality sequence. By selecting positions 3, 12 and
21 of 23-base SNPmers, we avoid the most problematic
positions and reduce this portion of k-mer nodes by a
factor of 7.67.
Unlike for SNPmers, there are no canonical positions

that identify the unique, unpaired k-mers . Several mecha-
nisms have been proposed for sampling k-mers in a repre-
sentative way [53,54]. We use the more pseudo-random
hash-slicing rule, already discussed above, to sample a
single slice of k-mers: those whose integer encodings are
congruent to a particular slice number s, modulo S (the
hash slicing factor). We have found that on the finished
human genome (results not shown), hash slicing is effect-
ively a Poisson sampling, with sampled k-mers spaced
according to an exponential distribution.
A caveat in applying hash slicing is that taking the

remainder modulo a prime is not very pseudo-random
for Mersenne primes (equal to 2p − 1 for some p), when
k-mers are represented in base-4 encoding [52]. We
therefore pick a slicing factor of 11, the smallest non-
Mersenne prime greater than our SNPmer sampling
factor.
Table 2 K-mer categories, counting a SNPmer pair as
one k-mer

k-mer type #Distinct Percentage

No partner/unique 946,431,901 55.48%

Partnered/SNPmer 184,756,149 10.83%

Ambiguous 574,557,296 33.68%

TOTAL 1,705,745,346
The resulting k-mer subset has 86.0 million unique-
unpaired k-mers and 24.0 million SNPmer pairs, each
reduced as predicted, for a total factor of 9.8 reduction
in k-mer nodes for the next step.

Contigging and scaffolding
Each 23mer tag (unique k-mer or SNPmer pair) in the
above subset is a node in the k-mer graph. Nodes are con-
nected when the corresponding k-mers appear consecutively
in at least one read of the input (any intervening k-mers
having been skipped due to sampling or ambiguity). The
relative orientation, distance and number of supporting
reads of the k-mers is stored in the edge. When conflicting
distance or relative orientation is observed among different
reads for the same pair of k-mer nodes, all edges from both
nodes in the corresponding direction are ignored in
contigging.
The nodes of the k-mer graph represent DNA tags and

have distinct upstream and downstream ends. One edge
at each end of a node is identified as robust if supported
by a supermajority of the reads for all edges in that direc-
tion: the number of supporting reads is greater than or
equal to both (1) two plus the sum of the read counts for
all other edges in that direction and (2) twice the read
count of the next-most supported edge in the same direc-
tion. By this construction, a node has at most one robust
edge on each end.
A mutually robust edge is defined as one that is robust

going in both directions between the two nodes it
connects.
Contigs are the connected components of the subgraph

consisting of mutually robust edges. Singleton and circular
contigs are reported for diagnostic purposes, but ignored
in subsequent analysis. Each retained “k-mer contig” of
Table 1 therefore represents a chain of nodes for SNPmers
and unique k-mers not shared with other contigs.
After assembly of k-mer contigs, we connect them in

longer structures using the Bambus scaffolder [26]. Be-
cause the contigs do not contain detailed read informa-
tion, we map templates (read pairs) to contigs based on
shared k-mer content, and dividing the resulting graph
of contigs linked by templates into batches small enough
for Bambus to process. Batches are divided so that no
contigs in different batches share no templates.
We present templates linking contigs to Bambus using

AMOS format [46] for the reads (template ends) mapped
to each contig. Reads are included only for the contig
with which it shares the most k-mers, if the span of
those k-mers is ≥ k and the other read-end of the template
similarly qualifies in a different contig. Bambus infers links
between contigs by matching template identifiers shared
by reads in different “linkable contigs”, then produces
scaffolds as chains of contigs that are linked with consist-
ent order and orientation.
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Contiguous consensus representations for k-mer contigs
and scaffolds were generated in two phases. In the first
phase, sequence spanned by selected SNPmers and subset
k-mers (see sections above) are joined together, separated
by a number of Ns corresponding to the number of bases
not spanned by k-mers in the subset. In the second phase,
a single pass is made through the read data set, and
stretches of Ns that are spanned by single reads are
replaced by the sequence of the read.
SNP phase and genotype inference
Each scaffold of the k-mer assembly constitutes a candi-
date marker for mapping. While the depth of sequence
coverage on each member of the mapping panel is too
low (~1X) to directly infer the genotype of individual
members of the mapping pannel at individual SNPs, the
tight linkage between SNPs within markers means that
learning a sample’s genotype at any one reveals it at the
others, effectively amplifying the sequence coverage by a
factor proportional to the number of SNPs within the
marker. This is the same principle exploited in genotype
by sequencing (GBS) approaches to genetic mapping in
the presence of reference genomes, for example in recom-
binant inbred lines of reference rice strains [16], and in
crosses between Drosophila species with sequenced
genomes Here we genotype offspring in the context of a
cross between two outbred individuals, simultaneously in-
ferring the phases of the SNPs (i.e., which bases appears
on each of the four parental chromosomes in the cross).
While the data will be insufficient to infer genotypes at
many markers, all those where confident inferences can
be made can be used to build the linkage map.
For the purposes of genotype inference, a marker is

treated as a collection of m SNPs (indexed in the following
by i∈{1,2,…,m}), that have been inferred to be closely
linked on the genome via the k-mer assembly step. If the
four parental chromosomes are labeled a,b in one parent
and c,d in the other, then the genotyping problem is to
infer which of the four possible segregation states or geno-
types ac,ad,bc,bd describes each sample at each marker
locus. We index samples with j, and denote a sample
genotype by gj.
We assume that markers are very small compared to a

chromosome, and ignore the possibility of a recombin-
ation event within individual markers. The data used for
inference of the offspring genotypes consist of the num-
ber of reads from each barcoded sample j showing each
of the four possible DNA bases b at each variable SNP
position i, which we denote nbij.

If the phase ϕi of SNP i were known, i.e. which base is
present in each of the four parental chromosomes, then
a choice of genotype gj implies a specific homozygous or
heterozygous state sij ∈ S = {AA,CC,TT,GG, AC, AT, AG,
CT,CG,TG} for SNP i in sample j. For a given phase and
genotype, the likelihood function for a given SNP pos-
ition in a given sample is given by either a binomial (for
homozygous states) or trinomial probability mass func-
tion of the read counts, base-calling error rate ∈, and the
site genotype sij:
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where n is the total number of reads at SNP i; m is the
number of observations of bases not in σij (i.e., mis-
matches); k and l are the counts for each of the two bases
of σij for heterozygous sites.

Likelihood maximization
Searching for an optimal choice of SNP phases ϕi and
sample genotypes gj is made difficult by the exponential
size of the search space: for segregating bi-allelic SNP
sites there are 14 possible phases to consider at each
SNP site, so for a mapping panel of only 20 siblings and
a marker containing only 10 SNPs, there are combina-
tions to consider. In simulation tests, we found that a
variant of expectation maximization (EM), an iterative
likelihood maximization method can accurately infer a
large proportion of marker genotypes.
To initialize the iteration, the parental samples and a

randomly selected offspring are, without loss of gener-
ality, assigned genotypes (a,b), (c,d) and (a,c). At each
step, we calculate the conditional probability distribu-
tions over the possible SNP phases p(ϕi) given the
genotype assignments according to:

p tð Þ ϕið Þ ¼ p ϕijg tð Þ
� �

¼
Y
σ∈S

p nbiσ jϕi; g
tð Þ

� �
=
X
k

Y
τ∈S

p nbkτjϕk ; g
tð Þ

� � !

where we have labeled the chosen values for the geno-
types at iteration t collectively by g(t) g(t) nbiσ is the com-
bined total number of observations of base b at
polymorphic SNP i for all samples included at iteration
step t which have genotype s(ϕi, gj) = σ.
On each iteration until all samples have been in-

cluded, a randomly selected sample is added to the set
after calculating p(t)(ϕi). Then the next set of genotype
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assignments g(t + 1) are determined by choosing those
that maximize the expected value of the log likelihood:

Eϕjn;gj ½ log Lðgj; n;ϕÞ� ¼
X
i

p ϕið Þ log pðnbijjgj;ϕiÞ

These steps are repeated until genotypes are being se-
lected for all samples, and the expected log likelihood
stops increasing. At the end of the iteration, the
likelihood-maximizing genotypes are reported, along with
the log likelihood difference between the best and second
best choice of genotype for each sample, which provides
an indicator of the confidence in genotype call. To gauge
convergence, this procedure is repeated 5 times for each
marker, with different random choices of initial condi-
tions. Markers which do not identify the same ML geno-
type multiple times in independent runs are not included
among the high confidence genotype calls.

Map bins
Unique marker segregation patterns were included in
the set of map bins if they met one of two criteria: (1) at
least three independent markers were inferred to have
the pattern independently, or (2) the pattern was in-
ferred from at least one marker with at least 20 SNPs
such that the mean of the estimated probabilities of the
inferred SNP phases was greater than 0.9.

Error model calibration
The sequence of 14 Ciona intestinalis autosomes were
downloaded from Ensembl [55]. These 14 chromosomes
were used as the template in our genome simulation.
Based on their sequence length, We used a markovian co-
alescent simulator macs [56] to generate four haploid
samples drawn from a population under neutral Wright-
Fisher model with population mutation rate of 0.012 and
population recombination rate of 0.0085. Using the C.
intestinalis genome as the reference sequence, two diploid
parental genomes were constructed based on the macs
output with realistic SNP and Indel models inferred by
several previous studies on the Ciona genome [57-59]. We
wrote a perl script to simulate the genomes of offspring
generated by the cross of the two simulated parents. The
software package dwgsim [60] was used to generate Illu-
mina paired-end reads based on our simulated genomes
of both parents and offsprings, with the coverage of 20X
and 5X respectively.
To estimate the frequency of incorrect genotype calls as a

function of the log likelihood difference between the called
and alternative genotype, including contributions from un-
certainty in SNP-mer identification, assembly, and sampling
noise, we carried out a simulation of the k-mer assembly
and genotype inference protocols Among high-confidence
genotype calls, the observed error frequency was a function
of call confidence score was well-fit by a sum of two
stretched exponential functions, allowing assignment of
error probabilities to individual genotype calls.

Linkage group construction
We use the linkage p-value pab between pairs of map
bins a and b defined as the minimum over the four pos-
sible relabelings r of the maternal and paternal chromo-
somes of the Binomial p-value for the number of
matching genotypes:

pab ¼ min
r

1−
Xmr−1

i

n
i

� �
1
2n

" #

where n is the total number of sample genotype calls
(68 in the present case, or 34 in each parent) and mr is
the number of matching genotypes under relabeling r.
We identified map bins with segregation patterns indi-

cating either inconsistent placement in the maternal and
paternal maps or genotyping error with a double thresh-
old procedure as follows:

1. Map bins were partitioned into linkage groups by
single linkage clustering at a threshold of . pab < p1.

2. Within each partition, map bins which formed
articulation points(i.e., nodes which, if removed,
would cause the linkage group to fall apart into two
disconnected subgraphs;) in the graph of, pab < p2,
where p2 > p1.

This procedure identifies map bins which alone account
for the merging of what would otherwise be two distinct
partitions. We used the following pairs of thresholds p1,
p2 to identify a total of 20 map bins for exclusion from
the map: 10,10; 10,10; 10,10. The remaining markers form
locally consistent linkage groups in which all linkages de-
fined at threshold p1 are corroborated by multiple linkages
at p2, for the above values of p1 and p2.

Marker ordering
Markers were ordered within each linkage group using
the following protocol. Within each linkage group a con-
sistent labeling of the four parental chromosomes was
achieved by constructing a graph G in which nodes cor-
respond to map bins and edges are weighted by linkage
p-value pab (as defined above). The local chromosome
labels are updated at each map bin as it is reached in a
traversal of the minimum spanning tree of G to the la-
beling r that maximizes pab along the incident of G used
in the traversal. Markers within each linkage group were
clustered by hierarchical clustering (marker-marker dis-
tance metric: cosine of the angle between the vectors of
recombination distances to the other map bins; distance
updating method: average linkage) into a binary tree data



Figure 8 Unrooted phylogenetic tree of homeobox sequences (part 1). Nodes are labeled with Bayesian posterior probabilities. Highly
supported partitions used to classify L. polyphemus sequences are drawn in red, with the abbreviation for the class shown in large letters. L.
polyphemus homeobox sequences not grouped into one of these highly supported partitions are assigned to class “? ”. For ease of display, a
large subtree consisting of HOX and parahox genes has been pruned at the position labeled “HOX”, and is shown in Figure 7.
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Figure 9 (See legend on next page.)
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(See figure on previous page.)
Figure 9 Phylogenetic tree of homeobox sequences, part 2. The rooted subtree pruned from the tree in Figure 8. Nodes are labeled with
Bayesian posterior probabilities. Highly supported partitions used to classify L. polyphemus sequences are drawn in red, with the abbreviation for
the class shown in large letters. L. polyphemus homeobox sequences not grouped into one of these highly supported partitions are assigned to
class “hox?”.

Nossa et al. GigaScience 2014, 3:9 Page 17 of 21
http://www.gigasciencejournal.com/content/3/1/9
structure with leaves representing map bins. A node in
the right subtree of the root node was rotated, inter-
changing its left and right subtrees if its left subtree was
not already closer (in average recombination distance) to
the markers of the left subtree of the global root; and
similarly for nodes in the left subtree of the root. An in-
order traversal of the tree generates an ordering of the
markers. Finally three reversals of the order of markers
in segments of the map were added based on visual
inspection of the recombination distance matrix. In the
final marker ordering, 51% of adjacent map bin pairs are
separated by a single recombination event in the cross,
and 94% are separated by three or fewer recombinants
in each parent.

Placement of markers on the map
To anchor additional markers to the map, we computed
the pab (see above) between marker a to be placed on
the map and each map bin b. Marker a is anchored to
the map at the position of the bin b which minimizes
pab if pab < 10

− 6.

SNP density estimation
Illumina reads were mapped to the assembled scaffold se-
quences with stampy [61] using default settings. For a
sample of 9,228 scaffolds with lengths ranging from 5.0-
5.5 kb, sequence variants were called with SAMtools [62]
using a variant quality score threshold of 50, and ignoring
indel positions.
A SNP density of 0.76% in four haplotypes corresponds

to a predicted rate of pairwise sequence differences per
site of Θ = 0.0042 under the finite sites model of mutation
and the neutral coalescent model of the relationships
among sampled alleles [63].

Estimation of local recombination rate
To estimate the local recombination rate for each map
bin, we computed the linear regression of map distance in
Table 3 Mixture model fits to Ks distribution

N k ln(L) BIC

1 2 −273.93 559.74

2 5 −259.32 548.31

3 8 −253.36 554.19

4 11 −251.41 568.11

N is the number of mixture components, k the number model parameters, ln(L) the
BIC, Bayesian information criterion; AIC,Akaike information criterion.
The BIC score of our selected model is shown in bold.
number of markers on physical distance using up to 10
neighboring map bins in each direction along the map (or
fewer for bins within 10 map bins of the end of the linkage
group). Map distance was calculated from recombination
fraction using Haldane’s map distance − 1

2 log 1−2rð Þ [64].
Ancestral linkage group conservation
To compare the genome organization in L. polyphemus to
the ancestral metazoan ALGs, we used the reciprocal best
blast hit (RBH) orthology criterion in an alignment of the
Ixodes scapularis predicted proteins [36] to the consensus
sequences for the marker scaffolds. L. polyphemus scaffolds
with RBH of e-value were assigned to the same ancestral
bilaterian gene orthology group as their I. scapularis ortho-
log, and thereby with human genes. Regions of the map
were tested for enrichment in genes from particular ances-
tral linkage groups with Fisher’s Exact Test, and break-
points in ancestral linkage group composition were
identified using a hidden Markov model, as previously
described [6,7].
Homeobox gene modeling
We identified 155 marker scaffolds with a tblastx alignment
of e-value to a set of chelicerate homeobox gene sequences
downloaded from Genbank using the NCBI online query
interface (genbank accessions AF071402.1, AF071403.1,
AF071405.1, AF071406.1, AF071407.1, AF085352.1, AF151
986.1, AF151987.1, AF151988.1, AF151989.1, AF151990.1,
AF151991.1, AF151992.1, AF151993.1, AF151994.1, AF151
995.1, AF151996.1, AF151997.1, AF151998.1, AF151999.1,
AF152000.1, AF237818.1, AJ005643.1, AJ007431.1, AJ00743
2.1, AJ007433.1, AJ007434.1, AJ007435.1, AJ007436.1, AJ007
437.1, AM419029.1, AM419030.1, AM419031.1, AM41903
2.1, DQ315728.1, DQ315729.1, DQ315730.1, DQ315731.1,
DQ315732.1, DQ315733.1, DQ315734.1, DQ315735.1, DQ3
15736.1, DQ315737.1, DQ315738.1, DQ315739.1, DQ31574
0.1, DQ315741.1, DQ315742.1, DQ315743.1, DQ315744.1,
AIC Mixture components

551.87 1.32 ± 0.50

528.64 0.70 ± 0.14 ; 1.45 ± 0.45

522.71 0.71 ± 0.17 ; 1.34 ± 0.29 ; 2.09 ± 0.19

524.82 0.74 ± 0.18 ; 1.34 ± 0.20 ; 1.70 ± 0.04 ; 2.02 ± 0.22

log likelihood of the data under the best fit model.
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EU870887.1, EU870888.1, EU870889.1, HE608680.1, HE608
681.1, HE608682.1, HE805493.1, HE805494.1, HE805495.1,
HE805496.1, HE805497.1, HE805498.1, HE805499.1, HE80
5500.1, HE805501.1, HE805502.1, S70005.1, S70006.1, S700
08.1, and S70010.1). The reads of each marker (those
with best stampy [61] alignment to the scaffold) were
reassembled with PHRAP [65], with default parameters. The
resulting contigs were aligned to a collection of homeobox-
containing protein sequences (genbank accessions NP
001034497.1, NP 001034510.1, AAL71874.1, NP 001034505.1,
NP 001036813.1, CAA66399.1, NP 001107762.1, NP 0011
07807.1, EEZ99256.1, NP 001034519.1, NP 476954.1, NP 032
840.1, NP 031699.2, AAI37770.1, EEN68949.1, NP 523700.2,
NP 001034511.2, AAK16421.1, and AAK16422.1) with
exonerate [66] in protein-to-genome mode. For each
contig, the amino acid sequence predicted by the
highest-scoring exonerate alignment was used in subse-
quent phylogenetic analysis, resulting in 104 putative
homeobox-containing markers ranging in length from
18 to 147 amino acids.

Phylogenetic analysis of homeobox genes
A multiple sequence alignment of the predicted homeo-
box sequences combined with a collection of representa-
tive sequences from various classes of homeobox genes
was constructed with muscle v3.8.31 [67] using default
settings. The resulting alignment was trimmed to a 63
amino acid segment spanning the conserved homeodo-
main, and sequences with more than 50% gaps were
removed, leaving 93 predicted L. polyphemus homeobox
genes in the analysis. Bayesian phylogenetic analysis was
Figure 10 Two component mixture model fit to the Ks peak on the ra
Information Criterion (Table 3). The component means are 0.7 and 1.45 substi
the addition of more mixture components.
carried out on the resulting 178 taxon, 63 amino acid
character matrix (See Additional file 1) using MrBayes
v3.2.1 [68] using a mixed model of amino acid substi-
tuions, gamma-distributed rate variation among sites with
fixed shape parameter α = 1.0, alignment gaps treated as
missing data, 2,000,000 Monte Carlo steps, two independ-
ent runs with four Monte Carlo chains, and the initial
25% of sampled trees were discarded as “burn-in”. Monte
Carlo appeared to reach convergence, with an average
standard deviation of the split frequencies of 0.022. The
majority-rule consensus of the sampled trees is shown in
Figures 8 and 9, and well-supported gene clades (posterior
probability greater than 0.95) were used to group the
predicted L. polyphemus genes into classes. The table in
Additional file 1 lists the reassembled marker contigs,
their inferred hox gene class, and maximum likelihood
map positions. Predicted genes were anchored to the map
as described above.

Genomic distribution of paralogs
We identified 2,716 pairs of Limulus markers that can both
be placed on the map and have their best translated align-
ment to the same Ixodes scapularis gene. (I. scapularis
genes with more than five best-hit markers were excluded
from seeding such pairs.) To estimate the synonymous se-
quence divergence between pairs of candidate L. polyphe-
mus paralogous gene pairs and L. polyphemus genes and
their T. tridentatus orthologs, we constructed codon align-
ments of predicted coding sequence for estimation of syn-
onymous sequence divergence. Conserved clusters of
paralogs were identified using a variant of the “max-gap”
nge 0 < =Ks < =2.5. The best-fitting model was selected by the Bayesian
tutions per site. The position of the peak at lowest Ks was not sensitive to
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criterion [3] in which two genes are placed in the same
cluster if they and their paralogs lie within threshold
distance.

Ka and Ks estimation for paralogs and T. tridentatus
orthologs
Figure 6 shows the distribution across the map of pairs of
candidate paralogs. To estimate the synonymous sequence
divergence between pairs of candidate L. polyphemus par-
alogous gene pairs, and between L. polyphemus genes and
their T. tridentatus orthologs, we followed the following
protocol.

1. Reassemble reads from each marker with PHRAP
[65] , and create a predicted coding sequence using
exonerate, as described for the annotation of
homeobox gene models (see above).

2. Combine the exonerate alignments of codons to
amino acids to create an alignment of codons for
either a pair of L. polyphemus sequences, or for a
L. polyphemus - T. tridentatus sequence pair.

3. Use the method of Yang and Nielsen [69] to
estimate the synonymous and non-synonymous
substitution rates Ka and Ks, as implemented in the
KaKsCalculator package [70].

4. Discard estimates based on fewer than 30 sites
(30 synonymous sites for estimates of Ks,
non-synonymous sites for Ka).

GenBank accessions for Tachypleus tridentatus mRNA
clones: JQ966943, AB353281, AB353280, HM156111, HQ22
1882, HQ221883, HQ221881, HQ386702, HM852953, TAT
TPP, TATPROCLOT, FN582225, FN582226, AF467804, AF
227150, GQ260127, AF264067, AF264068, AB353279, AB0
05542, TATLICI, TATTGL, TATCFGB, TATLFC1, TATLF
C2, AB201713, TATCFGA, TATLICI2, CS423581, CS423579,
AB028144, AB201778, AB201776, AB201774, AB201772, AB
201770, AB201768, AB201766, AB201779, AB201777, AB20
1775, AB201773, AB201771, AB201769, AB201767, AB201
765, AB105059, AB002814, AX763473, TATCFBP, AB076
186, AB076185, X04192, TATHCLL, AB037394, AB019116,
AB019114, AB019112, AB019110, AB019108, AB019106, AB
019104, AB019102, AB019100, AB019098, AB019096, AB
019117, AB019115, AB019113, AB019111, AB019109, AB
019107, AB019105, AB019103, AB019101, AB019099, AB
019097, AB023783, AB024738, AB024739, AB024737, AB0
17484, D87214, D85756, D85341.
Figure 7 shows the distribution of Ka and Ks for paralogs

and T. tridentatus orthologs. To estimate the number and
age of peaks in the un-saturated range [37] of the Ks dis-
tribution (and of putative WGD events), we fit a series of
univariate normal mixture models, with 1, 2, 3, and 4
components to the paralog Ks distribution in the range
0 < = Ks < =2.5 and selected the best model on the basis
of Bayesian Information Criterion (BIC) (Table 3). The
best model had two components, with means at 0.7 and
1.45 substitutions per site. The position of the peak at
lowest Ks was not sensitive to the addition of more
mixture components. Figure 10 shows comparison of
the distribution and the components of the best-fitting
model. Gaussian mixture models were estimated in R
with mixtools [71].

Availability of supporting data
The raw sequencing reads are currently being submit-
ted through the NCBI SRA and are accessible via NCBI
BioProject accession PRJNA187356.
The data sets supporting the results of this article are

available in the GigaScience GigaDB repository [72].
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Additional file 1: The amino acid character matrix used for the
phylogenetic analysis of homeobox genes.
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