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Abstract

Severe critical illness is often complicated by intensive
care unit-acquired weakness (ICU-AW), which is
associated with increased ICU and post-ICU mortality,
delayed weaning from mechanical ventilation and long-
term functional disability. Several mechanisms have
been implicated in the pathophysiology of

ICU-AW, but muscle regeneration has not been
investigated to any extent in this context, even though
its involvement is suggested by the protracted
functional consequences of ICU-AW. Recent data
suggest that muscle regeneration could be impaired
after sepsis, and that mesenchymal stem cell treatment
could improve the post-injury muscle recovery.

The primary functions of skeletal musculature are loco-
motor activity, postural behavior, and breathing. Severe
critical illness is often complicated by intensive care unit-
acquired weakness (ICU-AW), which is clinically charac-
terized by bilateral and symmetrical limb weakness and is
related to a myopathy and/or axonal polyneuropathy.
ICU-AW affects between 25 % and 60 % of patients mech-
anically ventilated for more than 7 days [1], and is associ-
ated with increased ICU and post-ICU mortality, delayed
weaning from mechanical ventilation and long-term func-
tional disability [2]. Most patients who develop ICU-AW
have been admitted for a sepsis episode, and the main risk
factors for ICU-AW include the severity of critical illness,
immobilization, hyperglycemia, and the use of some medi-
cations, including steroids and neuromuscular agents, al-
though this is somewhat controversial.

The pathophysiology of critical illness myopathy is
thought to involve the following mechanisms: 1) im-
pairment of muscular membrane excitability, second-
ary to a dysregulation of sodium channel gating [3];
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2) mitochondrial dysfunction leading to bioenergetic fail-
ure and oxidative stress [4]; and 3) proteolysis, mainly
related to an activation of the ubiquitin-proteasome path-
way [5]. These mechanisms can be triggered by various
factors, notably systemic inflammatory mediators, endo-
crine dysfunction, immobilization, some drugs, and electro-
lyte disturbances. The protracted functional consequences
of ICU-AW indicate that muscle regeneration is also im-
paired. Surprisingly, muscle regeneration, which essentially
depends on the muscle stem cells (also called satellite cells
(SC)), has not been extensively investigated in the context
of critical illness. SC that are located at the periphery of the
muscle fiber [6] are activated in response to any
muscle injury and then proliferate and differentiate to
repair or replace the damaged fibers, and also self-renew
to replenish the muscle stem cell reservoir [7].

It was recently demonstrated in a murine model of
polymicrobial peritonitis that SC activation, prolifera-
tion, and expression of myogenic markers were impaired
after sepsis, leading to impaired muscle regeneration;
however, the post-sepsis intramuscular administration of
exogenous mesenchymal stem cells (MSCs) could re-
verse this SC dysfunction [8]. MSC treatment signifi-
cantly improved the post-injury muscle recovery with
decreasing necrosis and fibrosis but also increased the
force of isolated single fibers. It is conceivable that a sys-
temic anti-inflammatory effect of MSCs is involved, as
their administration induced a decrease in the plasma
levels of pro-inflammatory cytokines and procalcitonin.
MSCs were previously shown to possess immunomodu-
latory effects via interaction with immune cells [9-11],
the MSC secretome [12], and transfer of mitochondrial
material [13]. Furthermore, MSC treatment enhances
bacterial clearance during infections [14]. These different
capabilities led researchers to test this treatment in two
severe conditions frequently encountered in the ICU:
acute respiratory distress syndrome (ARDS) and sepsis.
A recently published review on 54 pre-clinical studies
reported that treatment with MSCs could significantly
decrease mortality in animals with acute respiratory failure
[15]. MSC treatment has been tested in phase 1 trials [16],
and clinical trials are on the way. Likewise, experimental
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studies in sepsis showed that MSC treatment after polymi-
crobial sepsis could reduce mortality and improve organ
function [17], but also prevent the occurrence of muscle
weakness or accelerate muscle recovery. One may argue
that, beforehand, we need to: 1) make sure that critical
illness myopathy is associated with SC dysfunction in pa-
tients; 2) understand why the sepsis has such a sustainable
impact on SC which have been shown to resist anoxia up
to 17 days after death [18]; and 3) investigate comprehen-
sively the interactions between SC and MSCs, notably in
the context of sepsis. The route and time of administra-
tion in patients must be addressed. Only a stepwise and
comprehensive approach would allow us to determine
whether or not MSCs are truly efficient, and also would
enable us to identify new therapeutic targets.
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