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Abstract: Wireless Underground Sensor Networks (WUSNs) that collect geospatial in situ sensor
data are a backbone of internet-of-things (IoT) applications for agriculture and terrestrial ecology. In
this paper, we first show how WUSNs can operate reliably under field conditions year-round and at
the same time be used for determining and mapping soil conditions from the buried sensor nodes.
We demonstrate the design and deployment of a 23-node WUSN installed at an agricultural field site
that covers an area with a 530 m radius. The WUSN has continuously operated since September 2019,
enabling real-time monitoring of soil volumetric water content (VWC), soil temperature (ST), and soil
electrical conductivity. Secondly, we present data collected over a nine-month period across three
seasons. We evaluate the performance of a deep learning algorithm in predicting soil VWC using
various combinations of the received signal strength (RSSI) from each buried wireless node, above-
ground pathloss, the distance between wireless node and receive antenna (D), ST, air temperature
(AT), relative humidity (RH), and precipitation as input parameters to the model. The AT, RH, and
precipitation were obtained from a nearby weather station. We find that a model with RSSI, D, AT, ST,
and RH as inputs was able to predict soil VWC with an R2 of 0.82 for test datasets, with a Root Mean
Square Error of ±0.012 (m3/m3). Hence, a combination of deep learning and other easily available
soil and climatic parameters can be a viable candidate for replacing expensive soil VWC sensors
in WUSNs.

Keywords: deep learning; RSSI; radio frequency attenuation; wireless underground sensor network system

1. Introduction

Wireless Underground Sensor Networks (WUSNs) have been increasingly studied
over the past two decades for terrestrial, agricultural, and ecological applications [1–9],
including the demonstration of a fully buried, spatially distributed sensor node network
that will not disrupt agricultural and/or industrial processes [10–17]. Such sensor networks
have been explored as the backbone for geospatial internet-of-things (IoT) for agricultural
applications [18]. Data gathered from such networks, combined with data curation and
artificial intelligence-based analysis, is anticipated to be a significant component of future
digital farming and ecological practices provided challenges in cost and scalability are
met [18–22]. There are two important areas of WUSN applicability in agriculture and land
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ecology that require further examination. First, there is the need to test WUSN performance
under field conditions over an extended period to examine robustness and scalability. The
second area relates to the potential use of the electromagnetic wireless signal, currently only
used for data transmission, to become an indicator of the soil environmental conditions, as
the signal strength has been shown to be sensitive to variations in soil water content and
other soil factors [10,11].

Soil volumetric water content (VWC) is a crucial parameter of interest for many appli-
cations in ecology, soil science, and agriculture [23,24]. Methods available for capturing
the soil–hydrological system’s natural heterogeneity are unsatisfactory at the 1 to 1000 m2

scales. For instance, remote sensing measurements are limited to low spatial and temporal
resolutions [25], while point measurement sensors sample small volumes, are relatively
expensive (typically a few hundred US dollars each), and individually do not reflect the
heterogeneity of the soil. Thus, there is a need for soil VWC sensor systems that can operate
in this intermediate spatial scale at high temporal resolutions.

The primary goal of our work reported in this paper is to show that a WUSN-based IoT
system with soil data sensing, curation, and mapping can be successfully and continuously
operated in farms under “real-life” conditions. We demonstrate this by presenting results
from a nine-months pilot experiment in which we have designed and operated a 23-sensor
WUSN over a 130-acre site in an active soy/corn farm. An additional goal of our work has
been to show that using a combination of RSSI data and machine learning makes it possible
to map the soil VWC without the need for in-ground point moisture sensors, which can be
cost prohibitive for large networks.

1.1. Related Work

In WUSNs, the communication hardware within the buried sensor nodes commu-
nicates with a base station through a combination of transmission through the soil and
the atmosphere. Akyildiz and Stuntebeck have described the opportunities and chal-
lenges in WUSN technology [2]. Different types of topologies (e.g., underground-to-
underground and underground-to-aboveground) have been modeled and tested exper-
imentally [2,5,15,26,27], and the effect of soil properties on wireless underground sig-
nal propagation is well-studied [5,28–32]. Studies have included examining power con-
sumption [30,33–35], as well as the deployment of communication protocols such as
Mica [14], Zigbee [36], Wi-Fi [37,38], RFID [39], cellular [37], Sigfox [10], and Lora [12,35]
for WUSNs. While experimental WUSN evaluations have been carried out in laboratory
testbeds [9,22,40–42] and in some outdoor environments [10,12,43–46] and agricultural
farms [14,19,32,43,47–50], testing has been limited, often with one or a few sensor nodes.
There are no studies of WUSNs deployed deep in the vadose zone and tested under “real-
life” conditions, long time periods, including multiple seasons, and over large areas of
active agricultural management.

Soil moisture is an important input for flood and drought forecasting, in soil ecological
studies, and in precision agriculture for effective nutrient management [51–57]. For this
purpose—as noted earlier—it is important to be able to measure soil moisture at high
resolutions (1–1000 m2), and efficient techniques for this are lacking.

Different machine learning-based models have been developed with varying degrees
of success for soil moisture estimation using a variety of environmental inputs (such as
air and soil temperature, relative humidity, etc.), with some requiring initial soil moisture
measurements as inputs [25,58–66]. In addition, it has been pointed out that the Relative
Signal Strength Indicator (RSSI) parameter, which quantifies signal attenuation through
soil, is an easily measurable variable for any WUSN and can be a powerful input for soil
moisture measurement. Microwave propagation through soil is strongly affected by the
soil’s dielectric properties [67], which in turn is affected by the soil texture, and the amount
of organic matter and water present in the soil. This latter effect can be strong, since water
and soil have significantly different dielectric constants of ~80 and 3–5, respectively. Small
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changes in soil moisture can therefore affect the propagation of the WUSN signal [68] and
can be detected via changes in RSSI.

Several researchers have studied the relationship between attenuation of the electro-
magnetic signal and soil moisture [10,11,36,38,69]. Soil moisture determination via RSSI
changes would enable high resolution measurements without relying upon expensive soil
sensors. Aroca et al. [70] used a buried passive RFID network and calibrated a neural net-
work model for soil moisture prediction using RSSI as an input. However, due to a limited
transmission range, the technique needs proximal signal reception via a mobile robot and
can therefore be limited in scalability and resolution. Rodic et al. [33] installed a low-power,
LoRa-based, underground sensor node and two above-ground gateways, and optimized
deep learning techniques to predict soil moisture from the RSSI at one buried location. All
these experiments were carried out under limited and controlled conditions or did not
explore the mapping of moisture using RSSI across large areas enabled by multiple-sensor
WUSNs. Since signal attenuation can also depend upon the field’s topology, seasonal con-
ditions, various other field conditions (such as crop coverage), and the system’s physical
parameters [1,10,17]), the relationship between RSSI and VWC requires field validation
under realistic operating conditions—such work has been lacking so far.

1.2. Contribution of This Work

In the present study we offer two contributions pursuant to our research goals noted
in the introduction section. Firstly, we demonstrate the design and deployment of a
WUSN and then examine the results of 9 months of continuous operation of a fully
buried, non-intrusive WUSN at an agricultural field located at Fermi National Labora-
tory (Fermilab, Batavia, IL, USA). Through this demonstration, we show that a WUSN
can operate under all-season, realistic field conditions. The wireless network is based on
the increasingly used unlicensed ISM band, deployed around 900 MHz (in the USA) and
made popular through low-power IoT wireless networks such as LoRa and Sigfox. The
WUSN collects and maps soil VWC, electrical conductivity (EC), and soil temperature (ST)
simultaneously, and the data can be visualized in near real-time through a web-based user
interface. We discuss the performance of the WUSN through seasonal weather variations
(fall, winter, and spring) and the impacts of climate, soil, and site characteristics affecting
the sensor module transmissions.

Secondly, we ask the question: Can attenuation of the wireless signal in-ground be used
as a robust predictor of soil VWC under real-life conditions in a field and over changing
seasonal climatic conditions? In doing so, we examine whether the RSSI, which is used to
transmit the sensor measurements to the base antenna, could also be used to predict and
spatially map soil VWC under long-term field testing. We found that, while RSSI alone was
not able to predict soil VWC accurately over time, the addition of site-specific physical, soil,
and climatic factors as input parameters along with the use of available, off-the-self machine
learning algorithms significantly improves predictive performance for VWC. We evaluate
three well-known machine learning techniques: support vector regression (SVR) [59,60],
extreme learning machine (ELM) [61], and artificial neural network–multilayer perceptron
(ANN–MLP) [59,66]. Among the tested models, ANN–MLP greatly increased the predictive
capability for VWC. We propose this machine learning-based approach as an alternative
method for estimating soil VWC with WUSNs, thereby obviating the need for expensive
point sensors for VWC measurement (which can limit geographical scalability). We note
that the scope of the paper is limited to exploring the efficacy of readily available machine
learning algorithms in extracting soil moisture from our sensor network data, and not to
carry out detailed research on the algorithms themselves.

The rest of the paper is organized as follows. Section 2 explains the sensor node
development, WUSN architecture, and the experimental setup used in the work. Section 3
shows the preliminary results from the WUSN, wireless transmission, and effects of soil
moisture and elevation and describes the performance results of soil moisture prediction
using different machine learning techniques. The paper’s conclusion is in Section 4.
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2. Materials and Methods
2.1. Sensor Node Development

Thoreau 2.0 is a modified version of an earlier system developed and operated at the
University of Chicago campus described in Zhang et al. (2017) [11]. The wireless backbone
of the Thoreau 2.0 system is a Sigfox 901.2 MHz low-power IoT wireless network, and the
architecture contains three components: (1) the buried sensor nodes, (2) a base station, and
(3) a user interface (Figure 1).
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Figure 1. The wireless underground sensor network Thoreau 2.0 design. Inset shows sensor node
and water submersion test conducted in the laboratory prior to field deployment.

Each sensor node consists of a sealed carbonate casing (16 cm × 8 cm × 8.5 cm) that
contains the electronics, power source, and a transmitting antenna (Figure 1 inset shows the
electronic components and antenna, while the power rack is housed beneath the electronics
and cannot be seen in the picture). Each node is connected to an external sensor that simul-
taneously measures soil VWC, ST, and EC (TEROS12, Meter Environment, Pullman, Wash-
ington, DC, USA) in the vicinity of the box. The mechanical design of the sensor node box is
critical. Building upon our experience from the first-generation WUSN (Thoreau 1.0, [11]),
a hermetically sealed box was designed (Windy City Lab, Chicago, IL, USA) that could
withstand extreme water and temperature fluctuations. We used O-rings around the lid to
prevent leaks and silicone sealant to waterproof the encasing. A watertight, nylon cable
gland was used for cable connection to the external sensor. Additionally, a conformal
coating was applied to all electronics inside the box. A humidity sensor inside the box
transmits the sensor node internal humidity status of the box. The nodes have been running
for more than 29 months (6 September 2019, to the time of paper submission) and have
withstood high heat and cold conditions in the field.

The sensor node electronics consist of a micro controller unit (MCU) (Xenon, MCU
V001) that manages the sensor node core functions, such as data acquisition, radio frequency
(RF) transmission, and power use; and an RF transceiver (Sigfox Thinxtra board) that is
integrated with an RF trace antenna and a power amplifier (transmission power ~22 dBm).
Each sensor node is powered by a battery rack containing 4 AA lithium batteries. Power
usage analysis indicates that each sensor node can be active for up to 4.5 years with one set
of batteries.

In the sensor nodes, as a way to conserve power, a watchdog timer awakens the MCU
from sleep mode every 30 min. The MCU subsequently wakes up the sensor, collects a
measurement, and encodes the data prior to transmitting to the base station through the RF
transceiver. The RF transceiver initiates a transmission by sending three uplink packages
in sequence on three random carrier frequencies to the base station. However, in order
to conserve power, and based upon our experience with Thoreau 1.0, we modified the
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firmware to produce only two uplink packet transmissions for this project. A single, base
station (Sigfox Macro, SBS-T-902v3) is installed in the center of the field, with an antenna
mounted at a height of 10 m from the ground. The base station receives transmissions from
nodes located anywhere in an approximately 530 m radius from the antenna. The base
station is powered via a photovoltaic array with battery backup. The location of the base
station antenna and the sensors are shown in Figure 2. The Sigfox IoT Network receives the
signal from the base station. RSSI is then calculated by SigFox based on the average radio
signal intensity of the packets correctly received per transmission. The RSSI varies over
time as soil parameters change, and it is these natural variations that our machine learning
algorithms identify during training to determine soil moisture from RSSI values.
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Figure 2. Sensor node locations (yellow pins), base station location (flag), weather station (purple
pin), and soil types (orange lines and numbers denote USDA soil type assessment). Inserts show a
sensor node deployed in the soil.

The base station antenna receives the data packets from the sensor nodes and trans-
mits them (via the internet) to a cloud-based backend operated by Sigfox. The data is
then accessed (using a callback API, curated, and visualized on Thoreau (Thoreau-Home
(uchicago.edu)) in near real-time. Thoreau is a cloud-based, open web interface [71] where
all data is easily accessible and available for download by the public.

2.2. Experimental Setup

Thoreau 2.0 WUSN was installed in an agricultural field located at Fermilab. The field
is cultivated utilizing corn–soybean crop rotation management, and the soil is tilled to
a ~25 cm depth every other year after the corn is harvested. Twenty-three sensor nodes
were deployed within a ~530 m radius area from the base station and were buried ~40 cm
deep. The sensors deployed with each node were also buried at a ~40 cm depth, coplanar
with the tops of the sensor node boxes. This depth was chosen to avoid interference with
farming activities and to avoid sensor displacement and damage due to plowing (plowing
depth is typically ~25 cm). Being a noninvasive system is an important consideration
and requirement for many buried agricultural network applications. Soil motion can also
occur due to “frost heave”, which occurs when ice lenses form in the soil, usually in cold
environments with fine-textured soils. As the ice lenses grow, the soil can move upward
due to pressure. In our study, the majority of the soils were of the Markham series. The
sensors were buried 40 cm deep in the “B horizon”, which is classified as silty clay loam soil
with 35–45% clay content and moderately textured. The amount of clay in our soils leads
to lower hydraulic conductivity and small void volume. The resultant drop in capillary
flow with clay content tends to reduce the severity of frost heave because it impedes
ice lens formation [72]. Because of the moderate clay content in our soils, as well as the
moderate texture, we do not expect significant frost heave over the time period of our
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experiments (~9 months). In addition, the antennas contained within the rugged sensor
boxes are omnidirectional dipole antennas, and small motions in the soil cannot alter the
RSSI readings significantly.

As mentioned in the previous section, each sensor node is integrated with sensors that
simultaneously measure soil VWC, ST, and EC. Additionally, weather parameters, including
air temperature (AT), relative humidity (RH), and precipitation (P) were obtained from a
weather station located at Fermilab near the field site that collected measurements every
5 min (https://wwwesh.fnal.gov/pls/default/weather.html (accessed on 25 June 2020))
(Figure 2). We determined the soil type adjacent to each of the sensor nodes by using
the Natural Resources Conservation Services Online Soil Survey (https://www.nrcs.usda.
gov/wps/portal/nrcs/main/soils/survey/ (accessed on 15 December 2019)) to map the
soil types within the field area. We superimposed this map and the sensors’ geographical
coordinates onto a Google Earth (https://www.google.com/earth/ (accessed on 10 January
2020)) image of the field site area (Figure 2). Sensor nodes were adjacent to five soil
types, Elliott (146A), Drummer (152A), Peotone (330A), Mundelein (442A), and Markham
(531B) (Figure 2).

3. Results
3.1. Temporal Variation of Soil Properties

Measurements were collected over 289 days from 6 September 2019 through 20 June
2020. During this time, the WUSN operated continuously and produced 112,000 mea-
surements after data curation and QA/QC. Descriptive statistics for soil VWC, EC, and
ST, and weather variables AT, RH, and P averaged for the three seasons comprising the
study time are shown in Table 1. Figure 3 shows daily means for these variables and
precipitation events.

Table 1. Season descriptive parameter statistics.

Fall-2019 Winter-2019 Spring-2020 **

Min Avg Max Min Avg Max Min Avg Max

VWC 0.27 0.38 0.45 0.34 0.39 0.45 0.33 0.39 0.45
EC 2.13 5.34 7.24 2.44 5.23 8.2 3.83 5.62 8.56
ST 0.3 8.7 26.0 0.0 2.4 5.9 1.5 12.2 23.9
AT −15 4.7 29.5 −21.8 0.3 18.2 −4.7 10.7 31.9
RH 34.8 80.6 103.1 23.1 79.4 103.2 23.6 68.2 102.7
P 247 149 304

VWC: volumetric water content (m3/m3), EC: soil electrical conductivity (dS/m), ST: soil temperature (◦C), AT: air
temperature (◦C), RH: relative humidity (%), and P: cumulative precipitation (mm) ** Spring-2020 statistics for AT,
RH, and cumulative precipitation are for 65 days.

The overall high average soil EC values of the field site indicate good soil fertility.
The site is composed of silt loam and silty clay loam soils that are prime farmland soils.
Nevertheless, the soils have a tendency of being too wet, potentially creating nutrient build
up, as indicated by high maximum soil EC and VWC, particularly in the spring, as shown
in Table 1. As expected, soil VWC increases after each precipitation event (Figure 3a).
A positive correlation of soil VWC with EC was observed throughout the study time
(R = 0.47; Pearson correlation analysis, MATLAB R2020b). Analyzing the data by season,
the correlation coefficients of soil VWC with EC are 0.54, 0.45, and 0.29 in fall, spring, and
winter, respectively (Pearson correlation analysis, MATLAB R2020b). This correlation is
not surprising, as it is known that the more water there is in the soil the more cations are
in solution and the soils’ capacity to conduct electricity increases, resulting in higher EC
values. Weather variations in RH, ST, and AT occurred throughout the study time, with
cold winter and warmer spring temperatures, and frequent fluctuations in air temperature
and relative humidity typical of continental climates (Figure 3c,d).

https://wwwesh.fnal.gov/pls/default/weather.html
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.google.com/earth/
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Figure 3. Daily mean averages ± standard deviation of soil volumetric water content (VWC) (a),
electrical conductivity (EC) (b), relative humidity (c), and soil and air temperature (d). Relative
humidity and air temperature measurements were collected from the weather station shown in
Figure 2. Blue bars are cumulative daily precipitation events. Shadows indicates the ± standard
deviation of the mean for VWC, EC, and RH.

3.2. System Performance

Electromagnetic wave transmissions can be attenuated by several factors, including
distance between a sensor node and the base station [2,10]. Figure 4a,b show the percentage
of data packets received by the base station from the sensors during the 9 months of the
study. Results indicate that there is a substantial loss of data packets from the sensor nodes
that are farthest away from the base station (Figure 4a). In addition, we found that the
amount of data received is not equal across sensors installed the same distance from the
base antenna. Analysis of the data packets received from each sensor superimposed onto
a topographic map (Figure 4b,c) suggests that the percentage of data packets received is
a function of sensor node distance to the base station, terrain elevation, and the localized
concentration of soil moisture. For instance, sensors B3S20, B2S8, B2S11, B2S12, B2S13, and
B2S21; and B3S19, B3S17, and B2S6 are installed approximately equidistant to the base
station, but they differ in the number of data packets received by the base station. Sensor
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B2S8 (green pins in Figure 4b) is in a floodplain, leading to fewer data packets received
compared to the nearest sensors B2S11 and B3S20, while sensors B2S7, B2S12, and B2S13
(red pins in Figure 4b) only differ in their topographic position and elevation yet have
different data packet percentages (Figure 4b).
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Figure 4. The average percentage of data packets received by the base station from the sensor nodes
as a function of the horizontal distance from the base station (a) and from each sensor as they were
located in the field (b). The size and color of the filled circles represents the percentage of data packets
received. The flag indicates the base station location; yellow, red, and green pins represent sensors
installed at 740 and 735 feet elevation and those installed in the flood plain zone of the study area,
respectively (b). The soil topographic map (c) used to determine site elevation is retrieved from:
https://www.usgs.gov/search-map?search=3DEP (accessed on 25 November 2020).

3.3. Spatial Variation of Volumetric Water Content Before, During, and after a Precipitation Event

Soil chemistry attributes vary from site to site due to the soil’s heterogenic nature, and
are influenced by the water-holding capacity of soils and water availability. For instance,
some soils dry faster than others because of their high porosity. Soils in northern Illinois are
generally high in silt and clay, somewhat poorly drained, and have high soil water holding
capacity because of high organic matter content. Humid climate conditions prevail in this
area, which receives an average of 900 mm of rainfall per year, plus a variable amount of
snowmelt in winter and spring. For farmers in this area, one of the most important needs is
to know when the soil conditions are adequate for planting, since spring planting in overly
wet conditions can result in surface compaction, leading to, in turn, poor plant emergence
and root development (and reduced yield). WUSNs have the capability to determine the
spatial distribution of soil moisture at any given time. For example, heatmaps on Figure 5
show the spatial distribution of soil VWC daily mean before and after a rainfall event.
The heatmaps were generated by linearly interpolating between measured datapoints,
as in Harris et al. (2020) [73], and overlaying the results over a base map obtained from
the OpenStreet map API from MapBox [74]. Rain began on 9 March 2020, resulting in a
24.6 mm precipitation event. Although before it rained the soil VWC was already high, this
event elevated soil VWC content from 0.36 to 0.41 m3/m3 ± 0.03 sensor accuracy for the
next 3–4 days, after which soil VWC levels dropped back to 0.37 m3/m3 ± in situ sensor
accuracy. Interpolation of measurements and mapping of soil conditions and attributes in
almost near real-time is important and can inform agricultural management decisions, one
of the many new applications for WUSN technologies.

https://www.usgs.gov/search-map?search=3DEP
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Figure 5. Volumetric water content (m3/m3) daily average intensity maps before and after 24.6 mm
precipitation. Brown dots indicate sensor location and brown lines/numbers indicate soil types
(brown lines and numbers denote USDA soil type assessment). Intensity maps were generated by
linear interpolation between measured points.

3.4. Estimation of VWC from Received Signal Strength Indicator (RSSI)

The RSSI value received by the base station is generally lower than the original
sensor node transmission. This signal attenuation is the result of the electromagnetic wave
traveling through the soil medium and the free-space path in the air and intervening
vegetation. Variations in soil moisture also affect RSSI values because the presence of
moisture alters the soil’s dielectric response to the propagation of the signal [10]. Figure 6
denotes RSSI values typically received by the base station, plotted against the soil VWC and
the amount of precipitation at that time. As Figure 6 indicates, soil VWC rises following
precipitation, sometimes reaching the upper detection limit of the sensor, and then decreases
within a few hours to days due to soil water drainage and evaporation (when the soil is
bare) or evapotranspiration (when plants are present). Correlation of soil VWC with RSSI
is not present in winter, but it appears over the course of spring and early fall (Figure 6).
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Figure 6. Measured RSSI (red line) and VWC (black line) by a sensor node buried 40 cm below the
ground and located at 5 m to the base station during fall 2019 (a), winter 2019 (b), and spring 2020 (c)
(from 6 September 2019 to 20 June 2020). Blue bars represent cumulative daily precipitation.

A correlation analysis using all data indicates a weak significant negative correlation
(R = −0.25, p-value = <0.005) of soil VWC with RSSI. This analysis was conducted with
a total of 92,000 datapoints, obtained after removal of soil VWC values that were above
the maximum detection limit of the sensors, 0.45 m3/m3 (removal of 4000 datapoints),
and of incomplete datasets due to temporary malfunction of the weather station that led
to the removal of another 12,000 datapoints from our dataset. Because electromagnetic
signal propagation is also impacted by other factors, such as terrain elevation and distance
of the sensor node to the base station, as shown in Figure 4, and other factors identified
in the literature, including climatic and weather factors [75,76], we investigated whether
a nonlinear approach using standard machine learning algorithms could improve the
prediction of soil VWC by taking into consideration RSSI and the various factors that might
affect signal transmission from the sensors.

As noted earlier, we used an Artificial Neural Network with Multilayer Perceptron
(ANN–MLP) algorithm (details in [58,77–80]) for constructing soil VWC predictive models.
MATLAB R2020b was used for the neural network development, training, and simula-
tions [81]. The total dataset was randomly classified into 70% for training (64,000 data-
points), 15% for validation (13,500 datapoints), and 15% for testing (13,500 datapoints). Soil
VWC in situ measurements (collected by the external soil sensor) were used as ground
truth data and target parameters for the model. Available input parameters that could be
used to train the model included WUSN site parameters (RSSI and hypotenuse distance
(D) between the buried sensor node and base station antenna) and soil (ST) and weather
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parameters (P, AT, and RH). Weather parameters were averaged at 30 min intervals to
harmonize all data to that time interval for the model.

WUSN/site parameters are those that can be obtained directly from the deployment
of the WUSN in the field. Because the signal transmitted from a buried node first travels
through the soil, the power (PT (in dB)) at the soil surface depends on the moisture content
in the soil. After traveling through the air with a free space pathloss proportional to
20 × log(D), where D is the hypotenuse distance of the buried sensor to the antenna,
the signal is received at the base station antenna with a certain RSSI. Hence, one can
approximate PT as being proportional to the sum of 20 × log(D) and RSSI. The distance (D)
appears as a separate parameter in addition to the 20 × log(D) factor in the estimate of PT
in order to capture propagation effects, such as multipath, which are not accounted for in
the free space pathloss. These site parameters along with the measured weather and soil
variables were used as input parameters for evaluating the machine learning algorithm.

Trial and error was used to select the optimum number of hidden layers and number
of neurons. Table A1 in Appendix A shows the performance matrix of different combi-
nations of hidden layers and number of neurons. Ultimately, a five-layer feed-forward
neural network including three hidden layers, one input layer, and one output layer, with
each hidden layer containing 55 neurons, was selected based upon performance in VWC
predictions. The Levenberg–Marquardt algorithm was used for network training. To avoid
overtraining, we used an early stopping training method. Model performance was assessed
by comparing the coefficient of determination (R2), root mean square error (RMSE), and
mean absolute error (MAE) of the estimated value of soil VWC to in situ, ground-truth
measurements. All input and target parameters were normalized to a range between
0.2 to 0.8, as suggested by Cigizoglu (2003) [82]. Table 2 shows the performance of this
model in training, validation, and testing with various combinations of input parameters.
The six-input parameter model, containing all site and climate input parameters, predicted
soil VWC with very good accuracy and low RMSE and MAE.

In contrast, running the model with only site input parameters, i.e., using only
RSSI + 20 × log(D) and D as input parameters, substantially reduced the performance
of the model, rendering unacceptable predictions (Table 2, two-parameter model). We
determined that ST is an important variable in determining the model’s predictive ability,
i.e., any model was substantially improved when ST was included as an input parameter
(Table 2, three-, four-, and five-parameter models). Similarly, but to a lesser extent, the
performance of the model could be further improved with the addition of AT and RH
as input parameters (in addition to RSSI + 20 × log(D), D, and ST as inputs) leading to
four- and five-parameter models (see Table 2). For example, Figure 7 shows measured and
predicted soil VWC when using the ANN–MLP model with RSSI + 20 × log(D), D, ST, AT,
and RH as input parameters. Including P in the model did not affect model performance
(Table 2). Since P is infrequent, there were fewer inputs into the algorithm, which might
have reduced its influence on model performance. Nevertheless, it is possible that the effect
of P might already have been accounted for, indirectly, by RSSI and RH variations.

While RSSI is expected to and has been previously shown to be affected by soil VWC
due to changes in the soil’s dielectric properties under limited testing conditions [10,36,38,69],
our results summarized in Table 2 (and the seasonal examples highlighted in Figure 6)
clearly show that RSSI alone is a poor consistent predictor of soil VWC, and we propose
the use of this algorithm as an alternative method for estimating soil VWC with WUSNs.
Indeed, dropping RH as an input parameter and using a four-parameter model also
leads to good prediction of soil VWC (R2 = 0.82). The approach described above, while
obviating the need for an expensive VWC sensor at every node, does require other soil and
weather data. However, many algorithms developed to predict ST from AT can render this
approach feasible [83–86].
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Table 2. Results of ANN–MLP model with different input parameter combinations.

Input Parameters
Training Validation Testing

R2 RMSE
(m3/m3)

MAE
(m3/m3) R2 RMSE

(m3/m3)
MAE

(m3/m3) R2 RMSE
(m3/m3)

MAE
(m3/m3)

Six-parameter model

RSSI + K, D, ST,
AT, P, RH 0.917 0.01 0.006 0.812 0.013 0.007 0.809 0.012 0.007

Two-parameter model

RSSI + K, D 0.249 0.026 0.016 0.259 0.026 0.016 0.237 0.026 0.016

Three-parameter models

RSSI + K, D, ST 0.783 0.014 0.008 0.726 0.016 0.009 0.726 0.016 0.009
RSSI + K, D, AT 0.498 0.021 0.014 0.465 0.022 0.014 0.457 0.022 0.014
RSSI + K, D, P 0.262 0.026 0.016 0.248 0.026 0.016 0.249 0.025 0.016

RSSI + K, D, RH 0.314 0.025 0.015 0.262 0.026 0.016 0.254 0.026 0.016

Four-parameter models

RSSI + K, D, ST, AT 0.821 0.013 0.008 0.764 0.015 0.009 0.742 0.015 0.009
RSSI + K, D, ST, RH 0.814 0.013 0.008 0.716 0.016 0.01 0.74 0.015 0.009
RSSI + K, D, ST, P 0.723 0.016 0.01 0.686 0.017 0.01 0.677 0.017 0.01

RSSI + K, D, AT, RH 0.65 0.018 0.012 0.593 0.019 0.013 0.536 0.02 0.013
RSSI + K, D, AT, P 0.483 0.022 0.014 0.47 0.022 0.014 0.431 0.022 0.015
RSSI + K, D, RH, P 0.306 0.025 0.016 0.254 0.026 0.016 0.257 0.025 0.016

ST, AT, P, RH 0.499 0.021 0.016 0.437 0.022 0.017 0.407 0.023 0.017

Five-parameter models

RSSI + K, D, ST, AT, P 0.807 0.013 0.008 0.762 0.015 0.009 0.734 0.015 0.009
RSSI + K, D,
ST, AT, RH * 0.889 0.01 0.006 0.833 0.012 0.008 0.82 0.012 0.008

RSSI + K, D, AT, RH, P 0.617 0.018 0.012 0.562 0.02 0.013 0.552 0.02 0.013
RSSI + K, D, ST, RH, P 0.745 0.015 0.01 0.697 0.016 0.01 0.697 0.016 0.01

D: Hypotenuse distance between sensor node and antenna, K: 20 × log(D), ST: soil temperature, AT: air tempera-
ture, P: precipitation, and RH: relative humidity. Stats: coefficient of determination (R2), root mean square error
(RMSE), and mean absolute error (MAE). * Best overall model performance.

We compared the performance of the six-parameter ANN–MLP model with two other
commonly used machine learning algorithms: Support Vector Regression (SVR) [87–89]
and Extreme Learning Machines (ELMs) [90,91]. We used these algorithms to predict soil
moisture in the same way as for our ANN–MLP model, and the implementation details
of the two models are described in Appendix B. The performance statistics of the two
models are presented in Table 3, showing the best results across a collection of SVR kernel
functions and ELM activation functions. Grid searches for these two models yielded poorer
results than the ANN–MLP model. The best SVR model was found with a radial basis
function (RBF) kernel which resulted in R2 = 0.56 and RMSE = 0.053 m3/m3 for the testing
stage; the best ELM model was found with a sigmoid activation function, which resulted in
R2 = 0.48 and RMSE = 0.06 m3/m3 for the testing stage. The reason for these models’ poor
performance in comparison to the ANN–MLP model is unclear and beyond the scope of
the current paper. We can conclude, however, that our deep learning approach surpasses
the other surveyed methods even without a thorough grid search, and that the ANN–MLP
model proves a useful tool in predicting geospatial VWC.

We now make a few comments regarding our analysis. Firstly, note that we did
not include the polarization and antenna gain for the sensor node transmitters as input
parameters. Polarization and antenna gains cannot be controlled precisely, especially in a
real-world field deployment such as described in this paper. With ML, if measurements
from each sensor are adequately represented in the training set, these, as well as other
hidden factors, such as differences in terrain, will be learned by the model during the
training phase. In the experiment, 92,000 datapoints were collected from 23 sensor nodes
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over 9 months, ensuring that measurements from each sensor node were well-represented
in the training data. Furthermore, in estimating soil moisture, the ML model utilizes the
relative difference in RSSI between wet soil and dry soil from each sensor, and hence,
the absolute effect of polarization, antenna gain, and terrain do not need to be modeled
accurately since these do not change with the level of moisture in the soil. Secondly, as
noted in Section 3.2, some sites can have lower number of successful transmissions due
to factors such as distance, topography, etc. To examine this effect, we tested the model
with data from the sites that had >50% and <50% data packet transmission rates, and the
difference in performance statistics during testing was not significant. However, this is a
parameter that will likely need to be examined and tested in other site installations.
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Figure 7. Measured and predicted soil volumetric water content (VWC) at training (a), validation (b),
and testing (c) stages of the ANN–MLP model using input parameters: distance of the sensor node to
the antenna (D), RSSI + 20 × log(D), relative humidity (RH), and soil and atmospheric temperature.
Model is highlighted in bold on Table 2 as the best-performing model.
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Table 3. Results of Support Vector Regression (SVR) and Extreme Learning Machines (ELMs) for
training and testing stages.

Kernel/Activation
Training Testing

R2 RMSE
(m3/m3)

MAE
(m3/m3) R2 RMSE

(m3/m3)
MAE

(m3/m3)

SVR

Linear 0.17 0.072 0.0544 0.17 0.073 0.055
Sigmoid 0.17 0.072 0.055 0.18 0.073 0.054

Poly 0.25 0.069 0.055 0.25 0.069 0.054
RBF * 0.59 0.051 0.03 0.56 0.053 0.032

ELM

Sigmoid 0.47 0.058 0.0411 0.48 0.058 0.041
Sine 0.44 0.06 0.044 0.43 0.06 0.044
Tanh 0.42 0.061 0.045 0.39 0.062 0.045

Triangular basis 0.43 0.06 0.043 0.43 0.061 0.044
Hard limit 0.39 0.06 0.045 0.39 0.062 0.046

Relu 0.39 0.045 0.06 0.38 0.045 0.063
RBF * 0.43 0.044 0.06 0.41 0.045 0.062

* RBF: Radial Basis Function.

4. Conclusions

In this paper, we present the successful design and deployment of Thoreau 2.0, a
scalable, low-power WUSN for subterranean sensing. The WUSN has been operating
continuously in an agricultural field since September 2019, and we present data collected
over 9 months (three seasons). High temporal and spatial resolutions were accomplished
by measuring soil conditions at 30 min intervals and interpolating and mapping the sensor
results over an approximated 530 m radius area. We showcase the ability of our WUSN to
monitor and map real-time variations in soil VWC, ST, and EC. Our results show that such
WUSNs can be reliably operated under “real-world” conditions and are scalable. Using
the RSSI signal from the WUSN along with other inputs as proxies, we developed a deep
learning model that can accurately predict and map an important parameter for soil ecology
and agriculture: volumetric water content (or soil moisture). This enables soil moisture
determination without the need for expensive sensors for direct VWC measurement.
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Appendix A

Table A1 shows the performance statistics of different neural network architectures
tested for volumetric water content (VWC) predictions.

Table A1. Performance statistics of different neural network architectures tested for volumetric water
content (VWC) predictions.

S.No Model Ar-
chitecture

Training Testing Validation

R R2 RMSE
(m3/m3)

MAE
(m3/m3) R R2 RMSE

(m3/m3) MAE R R2 RMSE
(m3/m3)

MAE
(m3/m3)

1 6-5-1 0.605 0.367 0.024 0.017 0.604 0.365 0.024 0.017 0.594 0.353 0.024 0.017

2 6-10-1 0.669 0.448 0.022 0.016 0.680 0.462 0.022 0.016 0.664 0.441 0.022 0.016

3 6-15-1 0.686 0.471 0.022 0.015 0.697 0.485 0.022 0.015 0.683 0.467 0.022 0.015

4 6-20-1 0.733 0.537 0.020 0.014 0.720 0.519 0.020 0.014 0.722 0.521 0.021 0.015

5 6-25-1 0.737 0.543 0.020 0.014 0.723 0.522 0.020 0.014 0.730 0.532 0.020 0.014

6 6-30-1 0.739 0.546 0.020 0.014 0.738 0.545 0.020 0.014 0.746 0.556 0.020 0.014

7 6-35-1 0.732 0.535 0.020 0.014 0.714 0.510 0.021 0.014 0.714 0.508 0.020 0.014

8 6-40-1 0.756 0.572 0.019 0.014 0.758 0.575 0.019 0.014 0.758 0.574 0.020 0.014

9 6-45-1 0.789 0.622 0.018 0.013 0.777 0.603 0.019 0.013 0.774 0.599 0.019 0.013

10 6-50-1 0.792 0.628 0.018 0.013 0.781 0.610 0.019 0.013 0.784 0.614 0.018 0.013

11 6-55-1 0.786 0.618 0.018 0.013 0.776 0.603 0.019 0.013 0.773 0.598 0.019 0.013

12 6-60-1 0.794 0.630 0.018 0.013 0.785 0.617 0.019 0.013 0.781 0.610 0.019 0.013

13 6-65-1 0.789 0.623 0.018 0.013 0.781 0.610 0.018 0.013 0.784 0.614 0.018 0.013

14 6-70-1 0.802 0.643 0.018 0.013 0.787 0.619 0.018 0.013 0.769 0.590 0.019 0.013

21 6-5-5-1 0.613 0.376 0.024 0.017 0.611 0.374 0.023 0.016 0.608 0.370 0.024 0.017

22 6-10-10-1 0.766 0.586 0.019 0.014 0.752 0.566 0.019 0.014 0.771 0.594 0.019 0.013

23 6-15-15-1 0.817 0.668 0.017 0.012 0.809 0.654 0.018 0.012 0.805 0.648 0.017 0.012

24 6-20-20-1 0.841 0.708 0.016 0.011 0.825 0.681 0.017 0.011 0.835 0.698 0.017 0.011

25 6-25-25-1 0.867 0.751 0.015 0.010 0.848 0.718 0.016 0.011 0.852 0.726 0.015 0.010

26 6-30-30-1 0.875 0.765 0.014 0.010 0.859 0.737 0.015 0.010 0.870 0.757 0.015 0.010

27 6-35-35-1 0.888 0.788 0.014 0.009 0.880 0.775 0.014 0.010 0.877 0.768 0.014 0.010

28 6-40-40-1 0.857 0.734 0.015 0.010 0.843 0.710 0.016 0.011 0.837 0.699 0.016 0.011

29 6-45-45-1 0.909 0.827 0.012 0.008 0.882 0.778 0.014 0.009 0.891 0.794 0.014 0.009

30 6-50-50-1 0.887 0.786 0.014 0.009 0.861 0.740 0.015 0.010 0.863 0.744 0.015 0.010

31 6-55-55-1 0.883 0.780 0.014 0.009 0.847 0.714 0.016 0.010 0.849 0.718 0.016 0.010

32 6-60-60-1 0.904 0.817 0.013 0.008 0.871 0.758 0.015 0.009 0.872 0.758 0.015 0.009

33 6-65-65-1 0.934 0.872 0.011 0.007 0.886 0.779 0.014 0.008 0.892 0.794 0.013 0.008

34 6-70-70-1 0.916 0.838 0.012 0.008 0.872 0.758 0.015 0.009 0.875 0.762 0.014 0.009

35 6-5-5-5-1 0.718 0.516 0.021 0.015 0.707 0.499 0.021 0.015 0.707 0.499 0.021 0.015

36 6-10-10-10-1 0.828 0.686 0.017 0.011 0.817 0.667 0.017 0.012 0.822 0.676 0.017 0.012

37 6-15-15-15-1 0.850 0.723 0.016 0.011 0.826 0.682 0.017 0.011 0.835 0.697 0.016 0.011

38 6-20-20-20-1 0.883 0.781 0.014 0.009 0.867 0.752 0.015 0.010 0.867 0.751 0.015 0.010

39 6-25-25-25-1 0.898 0.806 0.013 0.009 0.875 0.765 0.014 0.009 0.881 0.776 0.014 0.009

40 6-30-30-30-1 0.910 0.828 0.012 0.008 0.883 0.780 0.014 0.009 0.891 0.794 0.014 0.009

41 6-35-35-35-1 0.908 0.825 0.012 0.008 0.879 0.770 0.014 0.009 0.885 0.782 0.014 0.009

42 6-40-40-40-1 0.917 0.840 0.012 0.008 0.890 0.791 0.014 0.009 0.883 0.778 0.014 0.009

43 6-45-45-45-1 0.934 0.872 0.011 0.007 0.898 0.805 0.013 0.008 0.897 0.803 0.013 0.008
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Table A1. Cont.

S.No Model Ar-
chitecture

Training Testing Validation

R R2 RMSE
(m3/m3)

MAE
(m3/m3) R R2 RMSE

(m3/m3) MAE R R2 RMSE
(m3/m3)

MAE
(m3/m3)

44 6-50-50-50-1 0.918 0.842 0.012 0.008 0.883 0.778 0.014 0.009 0.896 0.802 0.013 0.009

45 6-55-55-55-1 0.958 0.917 0.01 0.006 0.904 0.812 0.013 0.007 0.899 0.809 0.012 0.007

46 6-60-60-601 0.926 0.858 0.011 0.007 0.884 0.777 0.014 0.009 0.893 0.795 0.014 0.008

47 6-65-65-65-1 0.916 0.839 0.012 0.008 0.887 0.786 0.014 0.009 0.886 0.784 0.014 0.009

48 6-70-70-70-1 0.915 0.838 0.012 0.008 0.882 0.776 0.014 0.009 0.882 0.776 0.014 0.009

Appendix B

We implemented our SVR models using the out-off-the-box SVR function in Python’s
scikit-learn package [88,90]. The SVR function in Python’s scikit-learn package imple-
ments epsilon-supported SVR wherein no penalty is associated with training loss within
a certain distance ε from the target data. A randomized grid search was used for hyper-
parameter tuning 89, using scikit-learn’s GridSearchCV function. The search is defined
for the regularization parameter C = {0.001, 0.1, 1, 10, 100, 500, 1000, 2500}; the epsilon-
support region size ε = {0.00001, 0.0001, 0.001, 0.005, 0.01, 0.1, 1}; and the kernel coefficient
γ = {0.0001, 0.001, 0.01, 0.1, 1, 2, 10, 20}; γ was also allowed the values ‘auto’ and ‘scale’ ac-
cording to scikit-learn’s implementation, which, respectively, use the inverse of the number
of input features and the inverse of the number of input features times the variance of the
input data. Table A2 shows the optimal C, ε, γ, and degree values for the respective kernel
functions for VWC prediction.

Table A2. Optimal training constants and kernel functions for developing SVM models.

Kernel Function C Epsilon Gamma Degree

Linear 0.1 0.1 - -

Sigmoid 100 0.1 0.001 -

Poly 10 0.1 2 3

RBF 10 0.01 20 -

For soil moisture prediction, the associated ELM neural network involved an input
layer with six neurons (one per input parameter), one hidden layer, and one output layer
with one neuron. MATLAB was used to develop an ELM model with a specified number of
hidden neurons with a specified activation function (tested sigmoid, sine, tanh, triangular
basis, hard limit, ReLu, and RBFs). The number of neurons between 5 and 1000 with an
increment of five were tested in the hidden layer of the ELM models. Table A3 shows the
optimal hidden neurons for different activation functions.

Table A3. Optimal hidden neurons for developing ELM model.

Activation Function Number of Neurons in the Hidden Layer

Sigmoid 385

Sine 270

Tanh 180

Triangular basis 265

Hard limit 970

Relu 465

RBF 210



Sensors 2022, 22, 3913 17 of 20

References
1. Akyildiz, I.F.; Sun, Z.; Vuran, M.C. Signal propagation techniques for wireless underground communication networks. Phys.

Commun. 2009, 2, 167–183. [CrossRef]
2. Akyildiz, I.F.; Stuntebeck, E.P. Wireless underground sensor networks: Research challenges. Ad Hoc Netw. 2006, 4, 669–686.

[CrossRef]
3. Cardell-Oliver, R.; Kranz, M.; Smettem, K.; Mayer, K. A Reactive Soil Moisture Sensor Network: Design and Field Evaluation. Int.

J. Distrib. Sens. Netw. 2005, 1, 149–162. [CrossRef]
4. Dong, X.; Vuran, M.C. A Channel Model for Wireless Underground Sensor Networks Using Lateral Waves. In Proceedings of the

2011 IEEE Global Telecommunications Conference—GLOBECOM, Houston, TX, USA, 5–9 December 2011; pp. 1–6. [CrossRef]
5. Dong, X.; Vuran, M.C. Impacts of Soil Moisture on Cognitive Radio Underground Networks. In Proceedings of the First Interna-

tional Black Sea Conference on Communications and Networking (BlackSeaCom), Batumi, Georgia, 3–5 July 2013; pp. 222–227.
[CrossRef]

6. Elleithy, A.; Liu, G.; Elrashidi, A. Underground Wireless Sensor Network Communication Using Electromagnetic Waves Resonates
at 2.5 GHz. J. Wirel. Netw. Commun. 2013, 2, 158–167. [CrossRef]

7. Salam, A.; Vuran, M.C.; Irmak, S. Pulses in the Sand: Impulse Response Analysis of Wireless Underground Channel. In
Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, San
Francisco, CA, USA, 10–14 April 2016; pp. 1–9. [CrossRef]

8. Li, L.; Vuran, M.C.; Akyildiz, I.F. Characteristics of Underground Channel for Wireless Underground Sensor Networks. In
Proceedings of the Sixth Annual Mediterranean Ad Hoc Networking WorkShop, Corfu, Greece, 12–15 June 2007; pp. 92–99.
Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.5310&rep=rep1&type=pdf (accessed on
20 June 2020).

9. Vuran, M.C.; Salam, A.; Wong, R.; Irmak, S. Internet of underground things: Sensing and communications on the field for
precision agriculture. In Proceedings of the 2018 IEEE 4th World Forum Internet Things (WF-IoT), Singapore, 5–8 February 2018;
pp. 586–591. [CrossRef]

10. Zhang, X.; Andreyev, A.; Zumpf, C.; Negri, M.C.; Guha, S.; Ghosh, M. Thoreau: A Fully-Buried Wireless Underground Sensor
Network in an Urban Environment. In Proceedings of the 2019 11th International Conference on Communication Systems &
Networks (COMSNETS), Bengaluru, India, 7–11 January 2019; pp. 239–250. [CrossRef]

11. Zhang, X.; Andreyev, A.; Zumpf, C.; Negri, M.C.; Guha, S.; Ghosh, M. Thoreau: A Subterranean Wireless Sensing Network
for Agriculture and the Environment. In Proceedings of the 2017 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Atlanta, GA, USA, 1–4 May 2017; pp. 78–84. [CrossRef]

12. Hardie, M.; Hoyle, D. Underground Wireless Data Transmission Using 433-MHz LoRa for Agriculture. Sensors 2019, 19, 4232.
[CrossRef]
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