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Electroencephalography (EEG) signals collected from human scalps are often polluted by diverse artifacts, for instance electro-
myogram (EMG), electrooculogram (EOG), and electrocardiogram (ECG) artifacts. Muscle artifacts are particularly difficult to
eliminate among all kinds of artifacts due to their complexity. At present, several researchers have proved the superiority of combining
single-channel decomposition algorithms with blind source separation (BSS) to make multichannel EEG recordings free from EMG
contamination. In our study, we come up with a novel and validmethod to accomplishmuscle artifact removal from EEG by using the
combination of singular spectrum analysis (SSA) and canonical correlation analysis (CCA), which is named as SSA-CCA. Unlike the
traditional single-channel decompositionmethods, for example, ensemble empirical mode decomposition (EEMD), SSA algorithm is a
technique based on principles of multivariate statistics. Our proposed approach can take advantage of SSA as well as cross-channel
information. The performance of SSA-CCA is evaluated on semisimulated and real data. The results demonstrate that this method
outperforms the state-of-the-art technique, EEMD-CCA, and the classic technique, CCA, under multichannel circumstances.

1. Introduction

As a representatively noninvasive technique of reflecting
electrical activities generated by the cerebral cortex, elec-
troencephalography (EEG) is widely used for numerous
practical applications in the biomedical engineering field. It
owns the benefits of low cost, easy usability, and high
temporal resolution. For example, EEG recordings are im-
portant for the description of the irritant and ictal onset
zones in the presurgical evaluation of refractory partial
epilepsy [1]; motor imagery EEG signals provide an im-
portant basis for designing a way to communicate between
the brain and computer [2]; by making use of sparse EEG
compressive sensing, person identification is possible [3];
and EEG can be utilized with other physiological data of

different types to make a study of brain functions [4].
Nevertheless, with relatively low amplitudes, EEG is often
polluted by many kinds of nonbrain artifacts mainly from
the electromyogram (EMG), electrooculogram (EOG), and
electrocardiogram (ECG) interferences.Thus, it is difficult to
continue subsequent signal analysis. If the pollution is very
heavy, the EEG waves may be completely masked so that we
cannot interpret the brain activity contained in EEG signals
[5].Therefore, it has been attracting increasing attention that
how to effectively eliminate these artifacts in the last few
decades [6, 7].

Compared with EOG and ECG artifacts, there are more
troubles in the domain of removing EMG artifacts [8, 9]. As
we all know, many kinds of movements involving but not
limited to eye movement, mastication, and facial expression
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are generated by a number of muscles around the head. EEG
can be easily influenced anywhere on the human scalp by the
activity of each muscle via volume conduction. EMG arti-
facts have the characteristics of high amplitude, non-
stereotyped scalp topographies, and extensive frequency
domain distributions, which increase the difficulty in
denoising.

In previous studies, researchers have successfully ex-
plored blind source separation (BSS) approaches to handle
multichannel EEG data for accomplishing artifact elimi-
nation. Both independent component analysis (ICA) and
canonical correlation analysis (CCA) belong to the most
classic methods. ICA exploits higher-order statistics (HOS)
of data to decompose the multichannel signals into in-
dependent components (ICs). The ICs representing the
underlying sources are reserved, but artifact-related ICs are
identified and discarded; hence, we can reconstruct relatively
artifact-free EEG subsequently. As a well-known and ef-
fective BSS method, ICA is widely adopted for artifact re-
moval from EEG since its first application in the field of
brain electrical noise reduction [10, 11]. A study comparing
fifteen diverse algorithms of ICA for denoising muscle ar-
tifacts has been published, which provides us with a helpful
reference [12]. However, when it comes to the EMG removal
problem of EEG, ICAmight not performwell [9]. By making
use of HOS information, ICA is better at eliminating the
artifacts whose scalp topographies are stereotyped such as
EOG. Muscle artifacts usually own a lot of different scalp
topographies involving the activities of a group of muscles.
Moreover, ICA does not exploit the temporal structure of
muscle activities. Later on, canonical correlation analysis
(CCA) has been advised to achieve EMG artifact removal
[13]. By utilizing second-order statistics (SOS) information,
CCA is able to obtain sources which are autocorrelated to the
great extent and mutually uncorrelated. Since EMG artifacts
have a broad frequency spectrum, their autocorrelation is
low while the autocorrelation of EEG rhythms is high rel-
atively. CCA can utilize this obvious characteristic to
eliminate EMG artifacts. Simulation studies [13–15] and
clinical studies [16, 17] have proved the superiority of CCA
beyond ICA frequently for suppressing muscle artifacts in
EEG.

However, with low signal-to-noise ratio (SNR) and
complex contamination, ICA and CCA cannot perform well
enough when denoising noisy EEG [6, 15]. As application
scenarios of EEG devices tend to change from the traditional
experimental condition to the realistic complex dynamic
environment, muscle artifacts are inevitably generated due
to the head movement and they are often pretty heavy. In
recent years, studies show that combining more than one
algorithm might obtain optimal results for removing arti-
facts from the EEG signals [7, 18, 19]. Usually, combining
single-channel decomposition methods with BSS is highly
recommended.

It is common that the combination mentioned above is
applied to process single-channel EEG [20]. Since BSS
implicitly has the limitation that potential sources must be
not more than utilizable channels in number, the single-
channel EEG can be decomposed into multidimensional

data sets by single-channel decompositionmethods to satisfy
the requirements of BSS. For example, the combination of
the wavelet transform (WT) with ICA [21], ensemble em-
pirical mode decomposition (EEMD) with multiset CCA
(MCCA) [22], and so on. In order to eliminate muscle
artifacts from multichannel EEG recordings, if we process
the multichannel EEG by means of channel by channel using
the combination mentioned above, the relationship between
channels may be ignored. To overcome this shortcoming, an
EEMD-ICA approach has been suggested to improve the
artifact elimination effect for multichannel EEG signals [23].
The EEMD-ICA approach employs ensemble empirical
mode decomposition (EEMD) [24] to firstly obtain a
number of intrinsic mode functions (IMFs) from each
channel of EEG data. Then, the acquired IMFs relating to
EMG artifacts are selected according to predefined rules.
When applied to the chosen IMFs, ICA has the ability of
concentrating the contents involving artifacts into several
specific ICs. By discarding the ICs related to artifacts, we can
obtain the relatively artifact-free data ultimately in the re-
construction step. It has been proved that this EEMD-ICA
approach outperforms ICA and wavelet-ICA [25]. The su-
perior performance over ICA demonstrates that exploring
the information of every signal channel by single-channel
decomposition methods first is of great significance to the
contaminated multichannel EEG.The superior performance
over wavelet-ICA is not hard to explain. While wavelet
transform (WT) decomposes a signal adopting the method
of determining in advance, and it is not easy in practice to
select the best mother wavelets, EEMD is an entirely data-
drivenmethod, where no prior knowledge is required during
decomposition. As we have discussed, CCA is better suited
to eliminate muscle artifacts with complex and multiform
scalp topographies. Very recently, replacing ICA with CCA,
the EEMD-CCA method outperforms different techniques,
including ICA, CCA, and EEMD-ICA, for eliminating
muscle artifacts from EEG with multiple channels [26]. As
far as we know, it gets the best results on multichannel EEG
denoising. But EEMD decomposes the signal merely in
terms of the amplitude and frequency information [15], and
it cannot separate EEG contents from EMG artifacts over-
lapping in the relatively higher-frequency band. The IMFs
relating to EMG artifacts usually represent high-frequency
bands. Since the amplitude of EEG contents in the IMFs
mainly containing muscle artifacts is much lower than the
amplitude of EMG artifacts, it is extremely difficult to extract
brain activity drowned in artifacts. Therefore in this article,
we utilize singular spectrum analysis (SSA) to accomplish
single-channel decomposition and propose a new archi-
tecture to process multichannel EEG data.

Singular spectrum analysis (SSA) is a kind of spectrum
estimation technique with no need for parameters to do the
decomposition for the raw signal according to the co-
variance property of data [27] and the characteristic of
original signal [28]. In addition to its great success in terms
of handling climatic, meteorological, and geophysical data
[29], the SSA-based algorithm has been used to analyse EEG
signals. Maddirala and Shaik made use of the method based
on SSA to eliminate EOG [30] andmotion artifacts [31] from
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EEG in the case of only one channel; Teixeira et al. presented
an approach to extract high-amplitude artifacts [32]; Hu
et al. suggested utilizing the method derived from SSA to
extract desired brain rhythms [33]. On the basis of these
studies, we know that SSA can succeed in separating EEG
composed of different sources, which are mixed with each
other in the time-frequency domain. Cheng et al. have
demonstrated that SSA is more powerful than EEMD in
decomposing single-channel EEG [34].

In our proposed method, with the goal of eliminating
EMG artifacts from multichannel EEG data, SSA algorithm
is utilized twice. It decomposes each channel of multi-
channel EEG signals to acquire a collection of interpretable
components. The two data sets of relatively clean EEG
reconstructed from the process of two-time SSA de-
composition are handled with CCA to get further noise
reduction. Here, we set a suitable threshold value for the
autocorrelation to select the components containing EEG
information automatically. Our proposed SSA-CCA ap-
proach is applied to semisimulated data and real-life data,
respectively; meanwhile, we make a comparison with the
most effective technique, EEMD-CCA, and the classic
technique, CCA.

The main contribution of our study is that we suc-
cessfully solved the problem for removing EMG artifacts
from EEG data in the multichannel situation. Our proposed
technique is novel and performs very well. This scheme not
only takes advantage of SSA to conduct time series analysis
better than EEMD, but also utilizes a new framework to seek
crosschannel interdependence with the help of BSS. It is also
novel that we distinguished components of different content
types by calculating the autocorrelation coefficients of SSA
components.

The organization of the remaining paper is as follows: the
proposed method and the methods used to do the com-
parison are described in Section 2. In Section 3, the synthetic
and real-life data are briefly introduced. Section 4 presents
the denoising results. Section 5 offers an intensive discussion
and summarizes the work in this paper in the end.

2. Methods

We will introduce the suggested SSA-CCA method and the
methods used to compare, i.e., CCA and EEMD-CCA in
the following text of this section. The notations will be
employed throughout the article as follows: lowercase italic
letters (x, y, . . .) are on behalf of scalars, lowercase boldface
letters (x, y, . . .) take the place of vectors, boldface capitals
(X, Y, . . .) represent matrices, and furthermore italic capitals
(C, T, . . .) are on behalf of the number of rows and columns.
Vector or matrix transposition can be represented by the
uppercase superscript T (e.g., xT as well as YT). In our study,
the multichannel EEG signal is written as a matrix X whose
size is C × T. It means that this signal includes C channels
and T sampling points. The time course is represented as
X(t) � [x1(t), x2(t), . . . , xC(t)]

T (t � 1, 2, . . . , T).
The entire flow diagram of the suggested SSA-CCA

scheme is as shown in Figure 1. As it can be seen, SSA-CCA
contains the following five steps: (1) utilizing SSA to

decompose each channel into a collection of reconstructed
components (RCs); (2) selecting RCs related to EEG ac-
tivity to reconstruct a multichannel relatively clean EEG,
mrcEEG, and the multichannel relatively clean EMG,
mrcEMG, in the meanwhile; (3) decomposing mrcEMG by
SSA again to extract possible EEG content just like step (1)
and step (2); (4) applying CCA to the two data sets of
mrcEEG from step (1) and step (3) for removing artifacts
and obtaining cleaned mrcEEG; and (5) adding the two
cleaned mrcEEG data up to get the desired artifact-free
EEG. The description of details about our proposed ap-
proach is provided as follows.

2.1. Decomposition of Each Channel Using SSA. SSA is a very
effective approach for analyzing time series. Considering aN
sampled signal of one dimension as x(t) � (x1, x2, . . . , xN),
the SSA algorithm is composed of two stages, which are
named as decomposition and reconstruction, respectively.
There are also two independent steps at each stage. To be
more specific, the decomposition stage involves time-delay
embedding and singular value decomposition (SVD). First,
when conducting the embedding step, the original one-di-
mensional signal x can be mapped into a trajectory matrix X
whose size is L ×K:

X � x1, x2, . . . , xK(  �

x1 x2 · · · xK

x2 x3 · · · xK+1

⋮ ⋮ ⋱ ⋮

xL xL+1 · · · xN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where L is on behalf of the window length for segmenting the
data and xi(1≤ i≤K) denotes the lagged vector as one
column in the matrix X and here, we define K � N − L + 1.
In the obtained trajectory matrix, all the antidiagonal ele-
ments are the same, and the matrix of this type is called
Hankel matrix.Then, with the purpose of calculating SVD of
matrix X, the SVD step can be accomplished by utilizing the
eigenvalue decomposition (EVD) of the covariance matrix
C, where C � XXT. Here, all eigenvalues and eigenvectors of
the covariance matrix C are denoted as λ1, λ2, . . . , λL and
v1, v2, . . . , vL, respectively. It must be pointed out that the
eigenvalues and corresponding eigenvectors are sorted in-
herently following the order of magnitude decrease, i.e.,
λ1 ≥ λ2 ≥ , . . . , ≥ λL ≥ 0. The elementary matrices are defined
as

Xi �
��

λi


viui, (i � 1, 2, . . . , L), (2)

where ui � XTvi/
��
λi


. Now, the trajectory matrix X can be
expressed as

X �
L

i�1
Xi �

L

i�1

��

λi


viui. (3)

Reconstruction consists of grouping and diagonal av-
eraging.The SSA grouping involves dividing the indices In �
1, 2, . . . , L intoG different groups.The trajectorymatrix after
the grouping step is denoted by
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X �
G

j�1
XIj, (4)

where XIj is the trajectory matrix and Ij is an ensemble of
indices for the jth group, j � 1, . . . , G. In the condition of
G � L, grouping of this type is known as elementary
grouping. We conduct elementary grouping in this paper,
i.e., j � 1, . . . , L. In the final step called diagonal averaging
since each submatrix XIj is hankelized, we can transform the
acquired Hankel matrix into a new series through the op-
eration of changing the antidiagonal elements of the matrix.
The element values on the opposite diagonal of the Hankel
matrix will be replaced with their mean value, which will be
used to generate the signal of one dimension later. The
reconstructed time series are referred to as reconstructed
components (RCs) or SSA components in general. Thus, the
original N sampled signal x(t) can be presented by

x(t) �
L

j�1
xrcj (t), (5)

where xrcj (t) denotes the j
th RC with elementary grouping.

2.2. RCs Selection. According to our introduction to the SSA
decomposition principle, it can be seen that there is no
difference between choosing indices one wants at the
grouping step and selecting proper RCs after elementary
grouping while extracting a desired signal. However, there is
no general criterion for indices or RCs selection [35]. When
the energy of our expected signal is high enough and the
signal that we need can be well defined in advance, the
minimum description length (MDL) criterion works well for
automatic grouping of trajectory matrices according to the

magnitude of the eigenvalues [32]. Besides, in order to
extract the dominating rhythms contained in EEG, re-
searchers group the eigenvectors by exploring the charac-
teristic of the eigenvalue pairs [36].

As we all know, muscle artifacts have a wide spectrum in
the frequency domain and they behave very much like white
noise, whose autocorrelation ismuch lower in comparison.The
group rules above have a bad performance when applied to
EMG artifact removal. Here, we recommend calculating the
autocorrelation coefficient of each RC. The autocorrelation
coefficient is a widely adopted indicator for the muscle artifact
removal issue to select artifact-related components generated
by EEMD [26]. Picking out RCs with relatively higher auto-
correlation values can ensure that the useful information of
EEG signals is reserved. We set an appropriate threshold value
for the autocorrelation to identify and pick out RCs related to
EEG rhythms before reconstruction automatically. Suppose
one RC is represented as c(t), let c1(t) equal to c(t) and c2(t)
be the time-delayed version, i.e., c2(t) � c(t − 1). The calcu-
lation formula of autocorrelation R is as follows:

R �
E c1(t) − E c1(t)( (  c2(t) − E c2(t)( (  

��������������������������������������

E c1(t) − E c1(t)( ( 
2

 E c2(t) − E c2(t)( ( 
2

 

 ,

(6)

where E is the operator that computes the expectation.
The RCs with autocorrelation values less than the

threshold are picked out to generate relatively clean EEG.
When one has finished this process channel by channel, the
multichannel relatively clean EEG, denoted as mrcEEG, is
obtained. And the multichannel relatively clean EMG,
denoted as mrcEMG, can be obtained by subtracting
mrcEEG from the original mixed EEG. Here, a relatively

Channel N

Channel 2

Channel 1

…

…
…

…
…

…

…
…

…
…

…
…

…

Contaminated EEG

RCs decomposed by
SSA for all channels

Reconstruction based on
the autocorrelation

coefficient of each RC

mrcEEG and mrcEMG

RCs decomposed by
SSA for mrcEMG

Only reconstruct
the EEG-related RCs

Further processed by CCA,
obtain CCA sources

…
Channel 1

Channel 2

Channel N

…

Sum …

Artifact-free
EEG

Figure 1: A flow diagram for the SSA-CCA approach. Here, the grey rectangles represent artifact-related components.
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lower threshold is suggested in order to avoid too much loss
of brain activity information.

2.3. Further Treatment of Muscle Artifact with CCA. The
mrcEEG is processed by CCA to achieve further artifact
elimination. Let Z1(t) be equal to the mrcEEG matrix Z(t),
which includes C channels and T sampling points, mean-
while Z2(t) be the time-delayed version, i.e.,
Z2(t) � Z(t − 1). CCA maximizes the correlation coefficient
(CC) between the related sources generated from Z1(t) and
Z2(t). This results in an objective function as follows, which
aims at strengthening the correlation as best as it can be-
tween the mixtures of the variates from Z1 and Z2:

max
w1 ,w2

wT112w2��������

wT111w1

 ��������

wT222w2

 , (7)

where 11 the autocovariance matrices of Z1, 22 is the
autocovariance matrices of Z2, and 12 is the cross-
covariance matrix of Z1 and Z2, in addition w1 and w2 are
the weight vectors. In our definition, S1 denotes the whole
canonical variates generated from Z1 and S2 denotes those
generated from Z2. Traditionally, CCA is considered as a BSS
technique by making the estimated sources highly correlated
between S1 and S2 and mutually uncorrelated within each
respective matrix. By this means, the rows in S1 are arranged
in the decreasing order of autocorrelation. In comparison to
EEG content, the autocorrelation of EMG artifacts is rela-
tively lower. Therefore, CCA has the ability to concentrate
these artifacts into the last several sources. Finally, we can set
sources relating to artifacts to zero in the reconstruction step
to achieve further artifact elimination.

2.4. Artifact Removal and Signal Reconstruction. In this part,
by letting the artifact-related sources to be zero and oper-
ating the inverse process of CCA, the denoised mrcEEG data
can be acquired. Then, the mrcEMG in Section 2.2 should be
processed the same way as the original mixed EEG using the
combination of SSA and CCA. We find that twice is enough
for applying this combination. Finally, add the two cleaned
mrcEEG data up. The desired artifact-free multichannnel
EEG is done.

2.5. Introduction to State-of-the-Art Methods

2.5.1. CCA for Muscle Artifact Elimination. The CCA
method has been described in Section 2.3. One can also
consult the original work [13].

2.5.2. EEMD-CCA Method for Muscle Artifact Elimination.
First, there is an introduction to EEMD. Empirical mode
decomposition (EMD), as one well-known decomposition
method firstly suggested by Huang et al., is suitable to
process many kinds of time variable and complex signals.
EMD can decompose a one-dimensional signal into a
number of intrinsic mode functions (IMFs), refer to [37] for

decomposition details. A single-channel signal x(t) can be
decomposed in the form of

x(t) �
N

j�1
cj + rn, (8)

where cj denotes the jth IMF, j � 1, 2, . . . , N and rn denotes
the residual component after extracting all N IMFs. But the
original EMD algorithm has its own inherent disadvantage.
It is easily influenced by noise, and the phenomenon of
mode-mixing is possible to occur among diverse IMFs.
Therefore, Wu and Huang [24] came up with a noise-
assisted method for data analysis, known as ensemble EMD
(EEMD), to solve this problem. EEMD independently adds
white noise to the raw signal with a number of individual
trials when applying the original EMD. At last, EEMD takes
the mean of a collection of IMFs as the definition of its IMFs.
In this paper, we have tried different ensemble numbers
when utilizing EEMD (i.e., 10, 50, and 100) and there is no
significant difference when the number of ensembles is not
less than 50. Considering the computational cost and to get
the best possible result, 50 ensembles were used. The noise
standard deviation was determined as 0.2 times the standard
deviation of the raw data according to experience as rec-
ommended [24]. The implementation of EEMD-CCA in-
cludes six steps. The details of this algorithm are provided in
the work [26].

3. Data Generation and Description

In order to conduct performance evaluation of different
techniques appearing in this article, we made use of semi-
simulated data and real-life data. The semisimulated EEG
signals are derived by mixing real pure EEG with pure EMG,
both collected from different subjects. The real-life data set
comes from a patient suffering from epileptic seizures. The
details of these data are shown as follows.

3.1. Semisimulated Data. The semisimulated data set was
generated from real EEG and EMG data, which were derived
from different people. The 19-channel pure EEG data were
recorded when 20 subjects in good health participated in the
experiment, whose sampling rate was 500Hz and processed
by a high-passed filter with 1Hz cutoff frequency to elim-
inate the baseline noise. The original EMG signals acting as
muscle artifact sources were collected with 23 healthy vol-
unteers involved, whose sampling rate was also 500Hz to
match with EEG data. The length of data is 10 seconds for
both types of data. The instrument and details of data ac-
quisition can be found in [26].

To make sure that the sources were independent with
each other and randomly chosen, each EMG source was
selected among diverse EMG recordings across different
subjects. Thus, an independent EMG source matrix SEMG
could be formed, and it includes 19 channels with 10 seconds
of data in each channel. By multiplying a 19 × 19 mixing
matrix A with the EMG source matrix SEMG, a simulated
EMGmatrixXEMG containing 19 channels was generated. To
ensure sufficient spatial structure, there were 5 to 8 nonzero
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elements in each column of the matrix A. Thus, each EMG
source from the source matrix S synchronously exists in 5 to
8 channels of the simulated EMGmatrixXEMG.The number,
values, and positions of nonzero entries in each column of
thematrixAwere decided at random on the basis of uniform
distribution [6]. At last, the data generated above were
utilized to form the mixed EEG signal X as follows:

X � XEEG + λ · XEMG, (9)

where λ determines the contribution of EMG artifacts. The
contamination levels can be controlled by adjusting the SNR
values. SNR is calculated as

SNR �
RMS XEEG( 

RMS λ · XEMG( 
, (10)

where we define the root mean square (RMS) as

RMS(X) �

����������������

1
C · T



C

c�1


T

t�1
X2
(c, t)




, (11)

where C represents how many channels there are and T
represents how many time sampling points there exist. The
values of SNR were within a range from 0.5 to 4.5, which are
changed taking 0.5 as the step length. As an example, data of
pure EEG, pure simulated EMG, and mixed EEG are pre-
sented in Figure 2.

In our study, two evaluation indexes were adopted for
the semisimulated experiment. The first evaluation indicator
was called the relative root mean squared error (RRMSE),
which was expressed as

RRMSE �
RMS XEEG −

XEEG( 

RMS XEEG( 
, (12)

where XEEG is the EEG data after being processed to
eliminate artifacts. The second evaluation measure was the
correlation coefficient (CC) between the pure EEG served as
ground truth in each channel and its denoised version. We
calculated the average CC (ACC) values over all channels to
estimate the ability of the methods for preserving true brain
activity. Note that these two indicators were applied to
mean-removed signals.

3.2.RealData. An available real-life ictal EEG recording was
utilized to evaluate the performance between our proposed
method and the other two methods on data of the real
person. As shown in Figure 3, these data are scalp EEG
signal, which contains 21 channels, lasts for 10 s, and has a
sampling rate of 250Hz. It was processed by a band-pass
filter from 0.3 to 35Hz. Muscle artifacts can be found in
channels F7, T3, T5, C3, and T1 between 0 and 4 s and in
channels F8, T4, F4, C4, and P4 between 5 and 10 s.

Since real data lacks the ground truth to serve as a
reference, both RRMSE and ACC cannot be utilized to
perform evaluation. Power spectral density (PSD) is an
effective and well-known way to describe the energy

distribution of time series in the frequency domain. Dif-
ferent from muscle artifacts, the EEG components are
mainly at a lower frequency. Hence, the values of PSD
belong to a well-denoised EEG signal which have a tendency
to decrease at high frequencies (e.g., above 30Hz) and at the
same time they followmore closely the PSD values of the raw
EEG signal at low frequencies (e.g., below 25Hz).

4. Results

4.1. SemisimulatedData. Tomake a quantitative comparison,
the semisimulated data were handled by all themethods in this
paper to automatically eliminate EMG artifacts. There were a
total of 20 collected EEG recordings generated from 20 dif-
ferent subjects. In order to sufficiently utilize each EEG re-
cording, 10 independent results were obtained by adding 10
respective simulated EMG matrices, which were randomly
produced by the recorded EMG signals. Thus, there were 200
mutually independent results in all per SNR value, and the
mean as well as standard deviation at the corresponding SNR
value were calculated. According to the method description in
Section 2, CCA can isolate the final obtained components
related to muscle artifacts into the last several components.
Since we own the ground truth here, all the methods will
definitely receive their best performance by discarding the
optimal number of components at each SNR value. The
meaning of the optimal number is that removing fewer or
more last components cannot get better results than removing
the last components of this number.

Thewindow length L for SSA is empirically recommended
as 200. At the SNR value of 1, after the raw mixed EEG signal
is decomposed by SSA, the autocorrelation coefficients of
reconstructed components (RCs) are shown in Figure 4(a).
We recommend setting the threshold to be 0.82. The RCs
whose autocorrelation coefficients are above the threshold are
selected to reconstruct multichannel relatively clean EEG,
mrcEEG. The left RCs generate multichannel relatively clean
EMG, mrcEMG. Then, mrcEMG is also decomposed by SSA
and the autocorrelation coefficients of RCs are described in
Figure 4(b). Now, the RCs related to EEG are isolated rela-
tively behind. With eigenvalues and the corresponding RCs
arranged in the decreasing order of magnitude, according to
reference [38], the SSA algorithm can be regarded as a bank of
finite impulse response (FIR) filters. The filters are data
adaptive, and the filter corresponding to the higher-energy
component is located in the relatively front position of the RC
sequence. In Figure 4(b), the sum of eigenvalues corre-
sponding to EEG-related RCs accounts for 3.13% of the sum
of all eigenvalues, which means that after picking out EEG-
related RCs, the reconstructed EMG signal contains almost no
EEG information. Thus, there is no need to further de-
compose the EMG signal reconstructed from mrcEMG,
considering the time cost of the SSA algorithm.

The final obtained results are displayed in Figure 5. The
threshold of EEMD-CCA at step (2) in Section 2.5.2 is 0.95 as
recommended [26]. It can be seen that SSA-CCA performs
best per SNR value in terms of RRMSE and ACC. EEMD-
CCA has a better performance than CCA, reproducing the
results in [26].
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Figure 2: (a) Pure EEG data XEEG, (b) pure simulated EMG data XEMG, and (c) mixed EEG data X contaminated with SNR� 1.5. The
horizontal axis is on behalf of time variation with the second as the unit.
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Figure 3: Real EEG data polluted by muscle artifacts. The horizontal axis is on behalf of time variation with the second as the unit.
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4.2. Real-Life Data. When it comes to the real data, without
the ground truth, the two evaluation indexes of RRMSE and
ACC cannot be employed to illustrate the denoising effects of
these methods. Here, the comparative results on qualitative
time domain waveforms and the PSD values before and after

artifact removal are applied. In order to get a closer look, a
channel lightly polluted and a channel heavily contaminated by
muscle artifacts were picked out, they were T2 and T5, re-
spectively. The temporal waveforms after applying three dif-
ferentmethods to the real EEG are described in Figures 6 and 7.
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Figure 4: (a) The autocorrelation coefficients of RCs for the original mixed EEG signal at SNR 1, and (b) the autocorrelation coefficients of
RCs for the mrcEMG. The blue line is threshold 0.82.
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Figure 5: For the semisimulated experiment, the quantitative comparison of methods per different SNR value of (a) RRMSE and (b) ACC.
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The grey color denotes the original real-life data, and the red
color denotes the cleaned data. From Figure 6, EEMD-CCA
and SSA-CCA could perfectly deal with lightly contaminated
EEG since the artifacts appearing at around 5.3 s and 9.2 s were
removed and the seizure activity was reserved very well. The
resulting signal of CCA could also follow the original wave-
form, but the artifacts were not eliminated very cleanly. From
Figure 7, when EEGwas corruptedwith heavy artifacts, it could
be seen that there were still a lot of visible artifacts in the result
of CCA. In addition, the cleaned signal failed to go after the raw
signal at the segment free from artifacts between 4 s and 10 s.
But EEMD-CCA and SSA-CCA can deal with this situation
successfully. The denoised signals closely followed the raw
signal segments where there were no artifacts and visible ar-
tifacts could not be found. By carefully examining the wave-
form details in Figures 6 and 7, we are able to conclude that
SSA-CCA is more powerful than EEMD-CCA in preserving
brain activity. There are more details in the waveform of SSA-
CCA, meaning that more EEG information can be preserved.
For further illustration of this point, we also computed the
values of PSD for the raw EEG data and the artifact-attenuated
EEG data processed by these three methods. The PSD values
are plotted channel by channel in Figure 8.

As it can be seen in Figure 8, the EEG signals in channels
Fz, Cz, and Pz are merely lightly polluted.Therefore, the PSD
values (black) of these channels are relatively higher at low
frequencies and lower at high frequencies. Noticing the
characteristics of the spectrum distribution in Fz, Cz, and Pz,
we can note that true EEG contents in the raw EEG are
originally concentrated at low frequencies (e.g., 1–25Hz).
There are obvious EEG rhythms at about 10Hz and between
1 and 5Hz. For the channels polluted by heavy artifacts, such
as T4, C4, T3, and C3, the PSD values at high frequencies are
relatively higher. The goal of denoising is to maximally
suppress the effects of muscle activity and meanwhile
minimally cause a loss to brain activity.

From Figure 8, the performance of CCA is un-
satisfactory. CCA does not have enough effect on removing
muscle artifacts (e.g., F7 and P4), causing the insufficient
energy decrease in the high-frequency band, or removes
both brain and muscle contents, resulting in the energy
decrease in almost all frequency bands (e.g., T3 and C4).This
is because the sources decomposed by CCA are mainly the
mixture of muscle artifacts and ongoing EEG signals. On the
contrary, both EEMD-CCA and SSA-CCA can largely
remove muscle artifacts, comparing the PSD values at high
frequencies with those of the original EEG signal. And the
PSD values between 1 and 5HZ and around 10Hz are nearly
unchanged from the raw EEG signal in almost all channels,
demonstrating the ability of retaining EEG content for the
two methods. However, when observing the results between
EEMD-CCA and SSA-CCA more closely, we are able to see
that the PSD values in terms of EEMD-CCA decrease
sharply from about 15Hz while the PSD values in terms of
SSA-CCA tend to keep relatively higher between 15 and
25Hz in almost all channels. Thus, SSA-CCA can preserve
EEG information not only in the low-frequency band but
also in the relatively higher frequency band. To be more
specific, in the frequency band of 15–25Hz, the PSD values
of SSA-CCA are very close to those of the original EEG
signal with little contamination in channels Fz, Cz, Pz, T6,
and O2, indicating that EEG information is well retained;
meanwhile, taking the PSDs of the original EEG signal
heavily contaminated in channels T3, C3, C4, and T4 as a
reference, the PSD values of SSA-CCA are lower, indicating
that muscle artifacts are removed. EEMD-CCA thought-
lessly ignores the brain activity in the frequency band of
15–25Hz. Hence, SSA-CCA is more powerful than EEMD-
CCA in extracting EEG information of higher frequency.

In addition, by using the proposed SSA-CCA method,
the final denoised EEG data are shown in Figure 9. As we can
see, compared with the raw EEG data, muscle artifacts
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Figure 6: The denoised EEG (red) of channel T2 presented together with the raw EEG (grey) by applying (a) CCA, (b) EEMD-CCA, and
(c) SSA-CCA. The horizontal axis is on behalf of time variation with the second as the unit.

0 1 2 3 4 5 6 7 8 9 10

CCA

EEMD-CCA

SSA-CCA

Figure 7: The denoised EEG (red) of channel T5 presented together with the raw EEG (grey) by applying (a) CCA, (b) EEMD-CCA, and
(c) SSA-CCA. The horizontal axis is on behalf of time variation with the second as the unit.
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Figure 8: Continued.
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completely disappeared while the EEG content was well
reserved.

5. Discussion and Conclusion

According to the relevant discussions in [26, 39], it is
crucially important to guarantee the signal quality of EEG by
means of muscle artifact removal. Different from ocular and
cardiac artifacts, muscle artifacts with highly nonstereotyped
scalp topographies are especially challenging to be elimi-
nated. This may be the reason why ICA, a well-known and
widely used tool, does not perform well for removing muscle
artifacts. Although ICA has a good effect on ocular and
cardiac artifact removal, based on previous studies
[9, 13–17, 23, 26], there is no need to apply ICA for com-
parison in the multichannel EMG artifact removal task in
this paper. Instead, CCA makes use of the unique charac-
teristics of muscle activity such as low autocorrelation,
resulting in an improved performance. However, the tra-
ditional multichannel BSS techniques, like CCA, are capable
of extracting the underlying myogenic sources as many as
the number of EEG channels at most. When the SNR is very
low with complex and severe contamination, the potential
sources might be more than utilizable channels in number.

Under these circumstances, combining single-channel de-
composition methods with BSS is recommended, for ex-
ample, EEMD-CCA.

As we all know, the architecture of the human head is
often regarded as a volume conductor, so that the in-
terference of each muscle can readily appear anywhere on
the scalp.Thus, the signal in each channel generates from the
mixture of different underlying sources, bringing in cross-
channel dependence. The main advantage of single-channel
decomposition may be that this technique fully explores
single-channel information to discover independent EEG
sources. The subsequent division of sources in each channel
reduces the complexity of the EEG signal, and the following
BBS method is applied to conduct further noise reduction
with the crosschannel information. The algorithm archi-
tectures of EEMD-CCA and SSA-CCA are different, but they
both take advantage of combining single-channel de-
composition with BSS. Since EEMD decomposes signals
merely according to amplitude and frequency, the frequency
spectrum of the artifact sources derived from EEMD often
overlaps with that of EEG sources. The identified artifact-
related IMFs absolutely contain EEG content, which is
drowned in the artifacts. Even CCA cannot completely
extract the EEG content from the artifact-related IMFs. The
high-frequency EEG is mixed with the last sources aban-
doned by CCA.This explains why a lot of loss was caused by
EEMD-CCA in the frequency band of 15–25Hz processing
the real data. However, taking advantage of the information
of eigenvalues, SSA is able to distinguish diverse sources
even mixed in the time-frequency domain. It can be seen
that EEG-related RCs with low eigenvalues, accounting for a
small portion of EEG contents, are nicely separated by SSA
in Figure 4.The high-frequency EEG part is not dominant in
the pure EEG; thus, it tends to be the EEG-related RCs with
low eigenvalues and is well retained by SSA. As for muscle
artifacts owning extensive frequency domain distributions,
SSA can get better results than EEMD.

The window length L of SSA is selected according to the
condition, i.e., L>fs/fl, where fl is the lowest frequency of
the desired component and fs is the sampling frequency
[40]. This choice can make sure that the size of L is large
enough to include one period of the desired source at least.
Therefore, we set the L to be 200 and 100 for semisimulated
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Figure 8: Power spectral density of the raw EEG and the denoised EEG processed by different methods in our study. The horizontal axis is
frequency with unit Hz, and the vertical axis is PSD with unit dB: (a) Fp1; (b) Fp2; (c) F7; (d) F3; (e) Fz; (f ) F4; (g) F8; (h) T1; (i) T2; (j) T3;
(k) C3; (l) Cz; (m) C4; (n) T4; (o) T5; (p) P3; (q) Pz; (r) P4; (s) T6; (t) O1; (u) O2.
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Figure 9: The reconstructed EEG (red) after eliminating EMG
artifacts presented together with the raw EEG (grey).
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data and real data, respectively. In practical applications, the
real data recordings are complicated and it is hard to select a
proper window length. Fortunately, we tested different
window length values (i.e., 200, 150, 100, and 50) with all
other parameters unchanged. The results on semisimulated
data and real data were very similar, all leading to advantages
over EEMD-CCA. It demonstrates that in our proposed
method, SSA is not sensitive to L, showing the generality of
the method. We recommend choosing the window length L
according to the condition L>fs/fl if one wants to obtain a
detailed decomposition by SSA. But in practice, L is pro-
posed to be between 50 and 100, considering the good
decomposition effect and low time cost. It must be men-
tioned that Maddirala et al. grouped the eigenvectors on the
basis of the local mobility of the eigenvectors to eliminate
muscle artifacts from EEG [41]. We also used the local
mobility to distinguish RCs and found the results were
totally consistent with the criterion of calculating the au-
tocorrelation. In our proposed method, two thresholds of
the autocorrelation coefficient should be determined, one for
choosing EEG-related RCs and the other for CCA discarding
artifact-related sources. In [26] for EEMD, to preserving
EEG content as much as possible in the early processing step,
the first threshold is relatively higher (0.95 used in our study)
for selecting artifact-related IMFs. While in our proposed
method, the first threshold is set to be lower, in order to pick
out EEG-related RCs as possible. Through experiments, the
thresholds around 0.8 are recommended (0.82 used in our
study). In the semisimulation study, with ground truth, the
optimally selected number of abandoned components can be
determined for all the methods, thus the second threshold is
not needed. In the real-life data study, the second threshold
values ranged from 0.80 to 0.99 were examined through
direct visual inspection of both temporal and spectral
contents before and after muscle artifact elimination. All the
methods adopt 0.9 as the second threshold for a fair
comparison.

For practical applications, we tested the time cost of
conducting CCA, EEMD-CCA, and SSA-CCA. In SSA, cal-
culating the eigenvalues of the trajectory matrix is time-
consuming work. On the premise of not affecting the effect of
denoising, L was set to be 50 for comparison. The realization
was completed in MATLAB (MathWorks Inc., Novi, MI,
USA) and operated under Microsoft Windows 10× 64 on a
computer with Intel(R) and Core(TM) i5-8400 2.80GHz
CPU and 16.0GB RAM. At each SNR from 0.5 to 4.5
changing with a 0.5 step, there were 200 independent
implementations for semisimulated data mentioned above.
The average time costs for CCA, EEMD-CCA, and SSA-CCA
over the EEG data with 19 channels and the length of
10 seconds were 0.0118 s, 4.4469 s, and 3.6665 s with standard
deviations 0.0007, 0.1529, and 0.0218. As you can see, the
computational cost of SSA-CCA can be completely accepted.

We have proved that SSA-CCA is a satisfactory tool for
muscle artifact elimination when processing the multichannel
EEG signals. Nowadays, with portable or wearable EEG de-
vices for long-termmobile monitoring becoming increasingly
prevalent, the present EEG devices have a tendency to own
only a small number of channels [18]. Unfortunately, our

method might not be the optimal choice due to the channel
limitation in the few-channel situation [39]. Thus, we might
improve the current processing architecture of SSA-CCA to
satisfy the needs of removing muscle artifacts from few-
channel EEG signals in the near future.
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