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Brains and algorithms partially converge in natural
language processing
Charlotte Caucheteux1,2✉ & Jean-Rémi King 1,3✉

Deep learning algorithms trained to predict masked words from large amount of text have

recently been shown to generate activations similar to those of the human brain. However,

what drives this similarity remains currently unknown. Here, we systematically compare a

variety of deep language models to identify the computational principles that lead them to

generate brain-like representations of sentences. Specifically, we analyze the brain responses

to 400 isolated sentences in a large cohort of 102 subjects, each recorded for two hours with

functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). We

then test where and when each of these algorithms maps onto the brain responses. Finally,

we estimate how the architecture, training, and performance of these models independently

account for the generation of brain-like representations. Our analyses reveal two main

findings. First, the similarity between the algorithms and the brain primarily depends on their

ability to predict words from context. Second, this similarity reveals the rise and maintenance

of perceptual, lexical, and compositional representations within each cortical region. Overall,

this study shows that modern language algorithms partially converge towards brain-like

solutions, and thus delineates a promising path to unravel the foundations of natural language

processing.

https://doi.org/10.1038/s42003-022-03036-1 OPEN

1 Facebook AI Research, Paris, France. 2 Université Paris-Saclay, Inria, CEA, Palaiseau, France. 3 École normale supérieure, PSL University, CNRS, Paris, France.
✉email: ccaucheteux@fb.com; jeanremi@fb.com

COMMUNICATIONS BIOLOGY |           (2022) 5:134 | https://doi.org/10.1038/s42003-022-03036-1 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03036-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03036-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03036-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03036-1&domain=pdf
http://orcid.org/0000-0002-2121-170X
http://orcid.org/0000-0002-2121-170X
http://orcid.org/0000-0002-2121-170X
http://orcid.org/0000-0002-2121-170X
http://orcid.org/0000-0002-2121-170X
mailto:ccaucheteux@fb.com
mailto:jeanremi@fb.com
www.nature.com/commsbio
www.nature.com/commsbio


Deep learning algorithms have recently made considerable
progress in developing abilities generally considered
unique to the human species1–3. Language transformers,

in particular, can complete, translate, and summarize texts with
an unprecedented accuracy4–7. These advances raise a major
question: do these algorithms process words and sentences like
the human brain?

Recent neuroimaging studies suggest that they might—at least
partially8–12. First, word embeddings—high dimensional dense
vectors trained to predict lexical neighborhood13–16—have been
shown to linearly map onto the brain responses elicited by words
presented either in isolation17–19 or within narratives20–30. Sec-
ond, the contextualized activations of language transformers
improve the precision of this mapping, especially in the pre-
frontal, temporal and parietal cortices31–33. Third, specific com-
putations of deep language models, such as the estimations of
word surprisal (i.e., the probability of a word given its context)
and the parsing of syntactic constituents have been shown to
correlate with evoked related potentials30,34–36 and functional
magnetic resonance imaging (fMRI)28,36. However, the above
studies remain fragmentary: first, most only analyze a small
number of subjects (although see refs. 20,28,29). Second, most
studies only explore the spatial but not the temporal properties of
the brain responses to language (although see refs. 30,33).

More critically, the principles that lead a deep language models
to generate brain-like representations remain largely unknown.
Indeed, past studies only investigated a small set of pretrained
language models that typically vary in dimensionality, archi-
tecture, training objective, and training corpus. The inherent
correlations between these multiple factors thus prevent identi-
fying those that lead algorithms to generate brain-like
representations.

To address this issue, we systematically compare a wide variety
of deep language models in light of human brain responses to
sentences (Fig. 1). Specifically, we analyze the brain activity of 102
healthy adults, recorded with both fMRI and source-localized

magneto-encephalography (MEG). During these two 1 h-long
sessions the subjects read isolated Dutch sentences composed of
9–15 words37. After quantifying the signal-to-noise ratio of the
brain responses (Fig. 2), we train a variety of deep learning
algorithms, extract their responses to the very same sentences and
compare their ability to linearly map onto the fMRI and MEG
brain recordings. Finally, we assess how the training, the archi-
tecture, and the word-prediction performance independently
explains the brain-similarity of these algorithms and localize this
convergence in both space and time.

We find that (1) a variety of deep learning algorithms linearly
map onto the brain areas associated with reading (Fig. 3), (2) the
best brain-mapping are obtained from the middle layers of deep
language models and, critically, we show that (3) whether an
algorithm maps onto the brain primarily depends on its ability to
predict words context (Fig. 4).

Results
Shared brain responses to words and sentences across subjects.
Before comparing deep language models to brain activity, we first
aim to identify the brain regions recruited during the reading of
sentences. To this end, we (i) analyze the average fMRI and MEG
responses to sentences across subjects and (ii) quantify the signal-
to-noise ratio of these responses, at the single-trial single-voxel/
sensor level.

As expected38–41, the average fMRI and MEG responses to
words reveals a hierarchy of neural responses originating in V1
around 100 ms and continuing within the left posterior fusiform
gyrus around 200 ms, the superior and middle temporal gyri, as
well as the pre-motor and infero-frontal cortices between 150 and
500 ms after word onset (Supplementary Movie 1 and Supple-
mentary Note 1 and Fig. 2a).

To quantify the proportion of these brain responses that
depend on the specific content of sentences, we fit, for each
subject separately, a shared response model across subjects

Fig. 1 Approach. a Subjects read isolated sentences while their brain activity was recorded with fMRI and MEG37. b To compute the similarity between a
deep language model and the brain, we (1) fit a linear regression W from the model’s activations X to predict brain responses Y and (2) evaluate this
mapping with a correlation between the predicted and true brain responses to held-out sentences Ytest. c We consider different types of embedding
depending on whether they vary with neighboring words during training and/or during inference. Visual embeddings refer, here, to the activations of a deep
convolutional neural network trained on character recognition. Lexical embeddings refer, here, to the non-contextualized activations associated with a word
independently of its context. Here, we use the word-embedding layer of language transformers (bottom green), as opposed to algorithms like Word2Vec93

(middle, green). Compositional embeddings refer, here, to the context-dependent activations of a deep language model (see SI.4 for a discussion of our
terminology). d The three panels represent three hypotheses on the link between deep language models and the brain. Each dot represents one embedding.
Algorithm are said to converge to brain-like computations if their performance (x-axis: i.e., accuracy at predicting a word from its previous context) indexes
their ability to map onto brain responses to the same stimuli (i.e., y-axis: brain score). High-dimensional neural networks can, in principle, capture relevant
information94,95 and thus lead to a fortunate similarity with brain responses, and event a systematic divergence.
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(or noise-ceiling, see “Methods” section, Supplementary Note 2
and Supplementary Table 1 and Fig. 2b–d). We then assess the
accuracy of this model with a Pearson R correlation (hereafter
referred to as “brain score” following42) between the true and the
predicted brain responses to held-out sentences, using a five-fold
cross-validation. Finally, we assess the statistical significance of
these brain scores with a two-sided Wilcoxon test across subjects,
after testing for multiple comparison using false discovery rate
(FDR) across voxels (see “Methods” section). Our shared
response model confirms that the brain network classically

associated with language processing elicits representations
specific to words and sentences17,43,44.

Deep language models reveal the hierarchical generation of
language representations in the brain. Where and when are the
language representations of the brain similar to those of deep
language models? To address this issue, we extract the activations
(X) of a visual, a word and a compositional embedding (Fig. 1d)
and evaluate the extent to which each of them maps onto the
brain responses (Y) to the same stimuli. To this end, we fit, for
each subject independently, an ℓ2-penalized regression (W) to
predict single-sample fMRI and MEG responses for each voxel/
sensor independently. We then assess the accuracy of this map-
ping with a brain-score similar to the one used to evaluate the
shared response model.

Overall, the brain scores of these trained models are largely
above chance (all p < 10−9, Fig. 4a, e). The modest correlation
values are consistent with the high level of noise in single-sample
single-voxel/channel neuroimaging data (Fig. 2b–d). For example,
fMRI and MEG scores reach R= 0.048 and R= 0.041, respec-
tively, for the compositional embedding, which is close to and
even exceeds our shared response model (fMRI: R= 0.060, MEG:
R= 0.020, Fig. 2).

In fMRI, the brain scores of the visual embedding peak in the
early visual cortex (V1) (mean brain scores across voxels:
R= 0.022 ± 0.003, p < 10−11). By contrast, the brain scores of
lexical embedding peak in the left superior temporal gyrus
(R= 0.052 ± 0.004, p < 10−13) as well as in the inferior temporal
cortex and middle frontal gyrus (R= 0.053 ± 0.003, p < 10−15)
and are significant across the entire language and reading
network (Fig. 3b). Finally, the brain scores of the compositional
embedding are significantly higher than those of lexical of
embeddings in the superior temporal gyrus (ΔR= 0.012 ± 0.001,
p < 10−16), the angular gyrus (ΔR= 0.010 ± 0.001, p < 10−16), the
infero-frontal cortex (ΔR= 0.016 ± 0.001, p < 10−16) and the
dorsolateral prefrontal cortex (ΔR= 0.012 ± 0.001, p < 10−13).
While these effects are lateralized (left hemisphere versus right
hemisphere: ΔR= 0.010 ± 0.001, p < 10−14), they are significant
across a remarkably large number of bilateral areas (Fig. 3b).
Lexical and compositional embeddings accurately predict brain
responses in the early visual cortex. This result is not necessarily
surprising: language embeddings encode features (e.g., position of
words in the sentence, beginning/end of the sentence) that
correlate with visual information (words are flashed at a screen,
and the sentences are separated by pauses). Critically, the gain
(ΔR) of these embeddings remain very small, suggesting that this
effect is mainly driven by the covariance between low-level and
high-level representations of words.

Tracking the sequential generation of language representations
over time and space. To characterize the dynamics of these brain
representations, we perform the same analysis using source-
localized MEG recordings. The resulting brain scores are con-
sistent with—although less spatially precise than—the above
fMRI results (Fig. 3c, average brain score between 0 and 2 s). For
clarity, Fig. 3d and Supplementary Movie 2 plot the gain in MEG
scores: i.e., the difference of prediction performance between i)
word and visual embeddings (green) and ii) the difference
between compositional and word embedding (red). The brain
scores of the visual embedding peak around 100ms in V1
(R= 0.008 ± 0.002, p < 10−3), and rapidly propagate to higher-
level areas (Fig. 3d and Supplementary Movie 2). The gain
achieved by the word embedding can be observed in the left
posterior fusiform gyrus around 200ms and peaks around 400 ms
and in the left temporal and frontal cortices. Finally, the gain

Average response

Noise ceiling

a

b

c

d

Fig. 2 Average and shared response modeling (or noise ceiling). a Grand
average MEG source estimates to word onset (t= 0ms) for seven regions
typically associated with reading (V1: purple, M1: green, fusiform gyrus:
dark blue, supramarginal gyrus: light blue, superior temporal gyrus: orange,
infero-frontal gyrus: yellow and fronto-polar gyrus: red), normalized to their
peak response. Vertical bars indicate the peak time of each region. The full
(not normalized) spatio-temporal time course of the whole-brain activity is
displayed in Supplementary Movie 1. b MEG shared response model (or
noise ceilings), approximated by predicting brain responses of a given
subject from those of all other subjects. Colored lines depict the mean noise
ceiling in each region of interest. The gray line depicts the best noise ceiling
across sources. c Same as b in sensor space. d Shared response model of
fMRI recordings.
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achieved by the compositional embedding is observed in a large
number of bilateral brain regions, and peaks around 1 s after
word onset (Fig. 3c, d).

After that period, brain areas outside the language network,
such as area V1, appear to be better predicted by word and
compositional embeddings than by visual ones (e.g., between
visual and word in V1: ΔR= 0.016 ± 0.002, p < 10−10). These
effects could thus reflect feedback activity45 and explain why the
corresponding fMRI responses are better accounted for by word
and compositional embeddings than by visual ones.

Together with Supplementary Fig. 1, these results show with
unprecedented spatio-temporal precision, that the brain-mapping
of our three representative embeddings automatically recovers the
hierarchy of visual, lexical, and compositional representations of
language in each cortical region.

Compositional embeddings best predict brain responses. What
computational principle leads these deep language models to
generate brain-like activations? To address this issue, we gen-
eralize the above analyses and evaluate the brain scores of 36
transformer architectures (varying from 4 to 12 layers, each
ranging from 128 to 512 dimensions, and each benefiting from 4
to 8 attention heads), trained on the same Wikipedia dataset
either with a causal language modeling (CLM) or a masked
language modeling task (MLM). While causal language models
are trained to predict a word from its previous context, masked
language models are trained to predict a randomly masked word
from its both left and right context.

Overall, we observe that the corresponding brain scores largely
vary as a function of the relative depth of the embedding within
the language transformer. Specifically, both MEG and fMRI
scores follow an inverted U-shaped pattern across layers for all
architectures (Fig. 4a, e): the middle layers systematically
outperform the output (fMRI: ΔR= 0.011 ± 0.001, p < 10−18,
MEG: ΔR= 0.003 ± 0.0005, p < 10−13) and the input layers

(fMRI: ΔR=.031 ± .001, p < 10−18, MEG: ΔR=.009 ± .001,
p < 10−17). For simplicity, we refer to “middle layers” as the
layers l∈ [nlayers/2, 3nlayers/4] in Fig. 4a, e. This result confirms
that the intermediary representations of deep language transfor-
mers are more brain-like than those of the input and output
layers33.

The emergence of brain-like representations predominantly
depends on the algorithm’s ability to predict missing words.
The above findings result from trained neural networks. However,
recent studies suggest that random (i.e., untrained) networks can
significantly map onto brain responses27,46,47. To test whether
brain mapping specifically and systematically depends on the
language proficiency of the model, we assess the brain scores of
each of the 32 architectures trained with 100 distinct amounts of
data. For each of these training steps, we compute the top-1
accuracy of the model at predicting masked or incoming words
from their contexts. This analysis results in 32,400 embeddings,
whose brain scores can be evaluated as a function of language
performance, i.e., the ability to predict words from context
(Fig. 4b, f).

We observe three main findings. First, random embeddings
systematically lead to significant brain scores across subjects and
architectures. The mean fMRI score across voxels is
R= 0.019 ± 0.001, p < 10−16. The mean MEG score across
channels and time sample is R= 0.018 ± 0.0008, p < 10−16. This
result suggests that language transformers partially map onto
brain responses independently of their language abilities.

Second, brain scores strongly correlate with language accuracy
in both MEG (R= 0.77 Pearson’s correlation on average ± 0.01
across subjects) and fMRI (R= 0.57 ± 0.02, Fig. 4b, c). The
correlation is highest for middle (fMRI: R= 0.81 ± 0.02; MEG:
R= 0.86 ± 0.01) than input (fMRI: R= 0.39 ± 0.03; MEG:
R= 0.73 ± 0.02) and output layers (fMRI: R= 0.63 ± 0.03;
MEG:R= 0.78 ± 0.02). Beta coefficients for each particular layer

Lexical 
word 

embedding

Compositional 
middle layer

Visual 
CNN

a b c

d

Fig. 3 Brain-score comparison across embeddings. Lexical and compositional representations (see Supplementary Note 4 for the definition of
compositionality) can be isolated from (i) the word embedding layer (green) and (ii) one middle layer (red) of a typical language transformer (here, the
ninth layer of a 12-layer causal transformer), respectively. We also report the brain scores of a convolutional neural network trained on visual character
recognition (blue) to account for low-level visual representations. a Mean (across subjects) fMRI scores obtained with the visual, word, and compositional
embeddings. All colored regions display significant fMRI scores across subjects (n= 100) after false discovery rate (FDR) correction. b Mean MEG scores
averaged across all time samples and subjects (n= 95 subjects). c Left: mean MEG scores averaged across all sensors. Right: mean MEG gains averaged
across all sensors: i.e., the gain in MEG score of one level relative to the level below (blue: R[visual]; green: R[word] − R[visual]; red: R[compositional] −
R[word]). d Mean MEG gains in four regions of interest. For a whole-brain depiction of the MEG gains, see Supplementary Movie 2. For the raw scores
(without subtraction), see Supplementary Fig. 6. For the distribution of scores across channels and voxels, see Supplementary Fig. 4.
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and architecture are displayed in Supplementary Fig. 1a, b.
Furthermore, single-voxel analyses show that this correlation
between brain score and language performance is driven mainly
by the superior temporal sulcus and gyrus for the embedding
layer (mean R= 0.52 ± 0.06) and is widespread for the middle
layers, exceeding a correlation of R= 0.85 in the superior
temporal sulcus, infero-frontal, fusiform and angular gyri
(Supplementary Fig. 1c). Overall, this result suggests that the
better language models are at predicting words from context, the
more their activations linearly map onto those of the brain.

Third, the highest brain scores are not achieved by the very
best language transformers (Fig. 4c, g). For instance, CLM
transformers best map onto MEG (R= 0.039) and fMRI
(R= 0.056) when they reach a language performance of 43%
and 32%, respectively. By contrast, the very best transformers
reach a language accuracy of 46%, but have significantly smaller
brain scores (Fig. 4c, g).

Architectural and training factors impact brain scores too.
Language performance co-varies with the amount of training as

well as with several architectural variables. To disentangle the
contribution of each of these variables to the brain scores,
we perform a permutation feature importance analysis.
Specifically, we train a Random Forest estimator48 to predict the
average brain scores (across voxels or MEG sensors) of each
subject independently, given the layer of the representation, the
architectural properties (number of layers, dimensionality, and
attention head), task (CLM and MLM), amount of training
(number of steps) and language performance (top-1 accuracy)
of the transformer. Permutation feature importance then esti-
mates the unique contribution of each feature in explaining the
variability of brain scores across models48,49. The results confirm
that language performance is the most important factor that
drives brain scores (Fig. 4d–h). This factor supersedes other
covarying factors such as the amount of training, and the relative
position of the embedding with regard to the architecture (“layer
position”): ΔR= 0.56 ± 0.01 for fMRI, ΔR= 0.51 ± 0.02 for MEG.
Nevertheless, these other factors contribute significantly to
the prediction of brain scores (p < 10−16 across subjects for all
variables).

Fig. 4 Language transformers tend to converge towards brain-like representations. a Bar plots display the average MEG score (across time and
channels) of six representative transformers varying in tasks (causal vs. masked language modeling) and depth (4–12 layers). The green and red bars
correspond to the word-embedding and middle layers, respectively. The star indicates the layer with the highest MEG score. b Average MEG scores
(across subjects, time, and channels) of each of the embeddings (dots) extracted from 18 causal architectures, separately for the input layer (word
embedding, green) and the middle layers (red). c Zoom of b, focusing on the best neural networks (i.e., word-prediction accuracy >35%). The results reveal
a plateau and/or a divergence of the middle and input layers. d Permutation importance quantifies the extent to which each property of the language
transformers specifically contribute to making its embeddings more-or-less similar to brain activity (ΔR). All properties (training task. dimensionality etc.)
significantly contribute to the brain scores (ΔR > 0, all p < 0.0001 across subjects). Ordered pairwise comparisons of the permutation scores are marked
with a star (*p < 0.05, **p < 0.01, ***p < 0.001). e–h Same as a–d, but evaluated on fMRI recordings. All error bars are the 95% confidence intervals across
subjects (n= 95 for MEG, n= 100 for fMRI).
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Overall, these results show that the ability of deep language
models to map onto the brain primarily depends on their ability
to predict words from the context, and is best supported by the
representations of their middle layers.

Discussion
Do deep language models and the human brain process sentences
in the same way? Following a recent methodology33,42,44,46,46,50–56,
we address this issue by evaluating whether the activations of a large
variety of deep language models linearly map onto those of 102
human brains. Our study provides two main contributions.

First, our work complements previous studies26,27,30–34 and
confirms that the activations of deep language models sig-
nificantly map onto the brain responses to written sentences
(Fig. 3). This mapping peaks in a distributed and bilateral brain
network (Fig. 3a, b) and is best estimated by the middle layers of
language transformers (Fig. 4a, e). The notion of representation
underlying this mapping is formally defined as linearly-readable
information. This operational definition helps identify brain
responses that any neuron can differentiate—as opposed to
entangled information, which would necessitate several layers
before being usable57–61.

Furthermore, the comparison between visual, lexical, and
compositional embeddings precise the nature and dynamics of
these cortical representations. In particular, our results shows
with unprecedented spatio-temporal precision that early visual
responses (<150 ms) are quasi-entirely accounted for by visual
embeddings, and then transmitted to the posterior fusiform
gyrus, which switches from visual to lexical representations
around 200ms (Movie 2). This finding strengthens the claim that
this area is responsible for orthographic and morphemic
computations39,62,63. Then, around 400 ms, word embeddings
predict a large fronto-temporo-parietal network which peaks in
the left temporal gyrus; these word representations are then
maintained for several seconds17,19,31,33. This result not only
confirms the wide spread distribution of meaning in the
brain44,64, but also reveals its remarkably long-lasting nature.

Finally, compositional embeddings peak in the brain regions
associated with high-level language processing such as the infero-
frontal and the anterior temporal cortices as well as the superior
temporal cortex and the temporal-parietal junction35,41,65. We
confirm that these left-lateralized representations are significant
in both hemispheres66,67. Critically, MEG suggests that these
compositional effects become dominant and clearly bilateral long
after word onset (>800 ms). We speculate that this surprisingly
late responses may be due to the complexity of the sentences used
in the present study, which may slow down compositional
computations.

At this stage, however, these three levels representations
remain coarsely defined. Further inspection of artificial8,68 and
biological networks10,28,69 remains necessary to further decom-
pose them into interpretable features. In particular, it will be
important to test whether the converging representations pre-
sently identified solely correspond to well-known linguistics
phenomena as our supplementary analyses suggest (Supplemen-
tary Fig. 2 and Supplementary Note 3), or, on the contrary,
whether they correspond to unknown language structures.

Second, our study shows that the similarity between deep
language models and the brain primarily depends on their ability
to predict words from their context. Specifically, we show that
language performance is the most contributing factor explaining
the variability of brain scores across embeddings (Fig. 4d, h).
Analogous results have been reported in both vision and audition
research, where best deep learning models tend to best map onto
brain responses27,42,55,70,71. In addition, our results are consistent

with the findings of Schrimpf et al.27 reported simultaneously to
ours. Together, these results suggest that deep learning algorithms
converge—at least partially—to brain-like representations during
their training. This result is not trivial: the representations that
are optimal to predict masked or future words from large
amounts of text could have been very distinct from those the
brain learns to generate.

The mapping between deep language models and brain
recordings reaches very low correlation values. This phenomenon
is expected: i) neuroimaging is notoriously noisy and ii) we
analyze and model here single-sample responses of single-voxel/
sensor. However, the resulting brain scores are i) highly sig-
nificant (all p < 10−9 on average across both all fMRI voxels and
MEG sensors), including when compared to a permutation
baseline (Supplementary Fig. 3), and ii) in the same order of
magnitude than a baseline shared-response model (or noise
ceiling, Fig. 2) as well as previous reports (see e.g., 44 before
correcting for the noise ceiling). Besides, we generally report brain
scores averaged across all voxels or MEG channels, even though
many brain areas do not strongly respond to language (Fig. 2).
Critically, the link between brain scores and language perfor-
mance is strong: the correlation between the language perfor-
mance and brain scores is above R= 0.90 for MEG and R= 0.80
for fMRI (Supplementary Fig. 1). Nevertheless, it is clear that
improving the the signal-to-noise ratio, for instance by using
increasingly large datasets20,29,47,72 will be critical to precisely
characterize the nature of brain representations.

Permutation feature importance shows that several factors such
as the amount of training and the architecture significantly
impact brain scores. This finding contributes to a growing list of
variables that lead deep language models to behave more-or-less
similarly to the brain. For example, Hale et al.36 showed that the
amount and the type of corpus impact the ability of deep lan-
guage parsers to linearly correlate with EEG responses. The
present work complements this finding by evaluating the full set
of activations of deep language models. It further demonstrates
that the key ingredient to make a model more brain-like is, for
now, to improve its language performance.

The conclusion that deep networks converge towards brain-
like representations should be qualified: we show that the brain
scores of the very best models tend to ultimately decrease with
language performance, especially in fMRI (Fig. 4g). We speculate
that this phenomenon (also observed in vision70) may rise
because transformers overfit an inappropriate objective. Specifi-
cally, while there is growing evidence that the human brain does
predict words from context30,73,74, this learning rule may not
fully account for the complex (and potentially various) tasks
performed by the brain (e.g., long-range75,76 and hierarchical
predictions77).

This discrepancy adds to the long-list of differences between
deep language models and the brain: whereas the brain is trained
(i) with a recurrent architecture and (ii) on a relatively small
amount of grounded sentences, transformers are trained (i) with a
massively feedforward architecture and (ii) on huge text
databases7 (note that, given large-enough spaces, feedforward
transformers may actually implement computations similar to
recurrent networks78). Consequently, while the similarity between
deep networks and the brain provide a stepping stone to unravel
the foundation of natural language processing, identifying the
remaining differences between these two systems remains, by far,
the major challenge to build algorithms that learn and think like
humans7,9,79,80

Methods
Deep language transformers. To model word and sentence representations, we
trained a variety of transformers4, and input them with the same sentences that the
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subject read. Transformers consist of multiple contextual transformer layers
stacked onto one non-contextualized word embedding layer (a look-up table).
Following the standard implementation4,81,82, the word embedding layer is trained
simultaneously with the contextual layers: the weights of the word embedding vary
with the training, and so do their activations in response to fixed inputs. Thus, one
representation can be extracted from each (contextual or non-contextual) layer. We
always extract the activations in a causal way: for example, given the sentence
“THE CAT IS ON THE MAT”, the brain response to “ON” would be solely
compared to the activations of the transformer input with “THE CAT IS ON”, and
extracted from the “ON” contextualized embeddings. Word embeddings and
contextualized embeddings were generated for every word, by generating word
sequences from the three previous sentences. We did not observe qualitatively
different results when using shorter or longer contexts. It is to be noted that the
sentences were isolated, and were not part of a narrative.

In total, we investigated 32 distinct architectures varying in their dimensionality
(∈ [128, 256, 512]), number of layers (∈ [4, 8, 12]), attention heads (∈ [4, 8]), and
training task (causal language modeling and masked language modeling). While
causal language transformers are trained to predict a word from its previous
context, masked language transformers predict randomly masked words from a
surrounding context. We froze the networks at ≈100 training stages (log distributed
between 0 and 4, 5 M gradient updates, which corresponds to ≈35 passes over the
full corpus), resulting in 3600 networks in total, and 32,400 word representations
(one per layer). The training was early-stopped when the networks’ performance
did not improve after five epochs on a validation set. Therefore, the number of
frozen steps varied between 96 and 103 depending on the training length.

The algorithms were trained using XLM implementation6. No hyper-parameter
tuning was performed. Following 6, each algorithm was trained on eight GPUs
using early stopping with training perplexity criteria, 16 streams per batch, 128
words per stream, epoch size of 200,000 streams, 0.1 dropout, 0.1 attention
dropout, gelu activation, inverse (sqrt) adam optimizer with learning rate 0.0001,
0.01 weight decay, on the same Wikipedia corpus of 278,386,651 words (in Dutch)
extracted using WikiExtractor83 and pre-processed using Moses tokenizer84, with
punctuation. We restricted the vocabulary to the 50,000 most frequent words,
concatenated with all words used in the study (50,341 vocabulary words in total).
These design choices enforce that the difference in brain scores observed across
models cannot be explained by differences in corpora and text preprocessing.

To evaluate the language processing performance of the networks, we computed
their performance (top-1 accuracy on word prediction given the context) using a
test dataset of 180,883 words from Dutch Wikipedia. The list of architectures and
their final performance at next-word prerdiction is provided in Supplementary
Table 2.

For clarity, we dissociate:

● The architectures (e.g., one transformer with 12 layers): there are 36
transformer architectures here (18 CLM and 18 MLM).

● The models: one architecture, frozen at one particular learning step. Since
we use 100 learning steps, there are 36 × 100 = 3600 networks here.

● The embeddings: one word representation extracted from a network, at one
particular layer. Since the number of layers varies with the architecture
(twelve networks with 5, twelve networks with 9 and twelve networks with
13 twelve layers, including the non contextualized word embedding), there
are 12 × (5+ 9+ 13)= 324 representations per step, so 324 × 100= 3400
word embeddings in total.

Visual convolutional neural network. To model visual representations, every
word presented to the subjects was rendered on a gray 100 × 32 pixel background
with a centered black Arial font, and input to a VGG network pretrained to
recognize words from images85, resulting in an 888-dimensional embedding.
Specifically, this model was trained on real pictures of single words taken in nat-
uralistic settings (e.g., ad, banner).

This embedding was used to replicate and extend previous work on the
similarity between visual neural network activations and brain responses to the
same images (e.g., 42,52,53).

Neuroimaging protocol. For all the analyses, we used the open-source dataset
released by Schoffelen and colleagues37, gathering the functional magnetic reso-
nance imaging (fMRI) and magneto-encephalography (MEG) recordings of 204
native Dutch speakers (100 males), aged from 18 to 33 years. Here, we focused on
the 102 right-handed speakers who performed a reading task while being recorded
by a CTF magneto-encephalography (MEG) and, in a separate session, with a
SIEMENS Trio 3T Magnetic Resonance scanner37.

Words (in Dutch) were flashed one at a time with a mean duration of 351 ms
(ranging from 300 to 1400 ms), separated with a 300 ms blank screen, and grouped
into sequences of 9–15 words, for a total of approximately 2700 words per subject.
Sequences were separated by a 5 s-long blank screen. We restricted our study to
meaningful sentences (400 distinct sentences in total, 120 per subject). The exact
syntactic structures of sentences varied across all sentences. Roughly, sentences
were either composed of a main clause and a simple subordinate clause, or

contained a relative clause. Twenty percent of the sentences were followed by a yes/
no question (e.g., “Did grandma give a cookie to the girl?”) to ensure that subjects
were paying attention. Questions were not included in the dataset, and thus
excluded from our analyses. Sentences were grouped into blocks of five sequences.
This grouping was used for cross-validation to avoid information leakage between
the train and test sets.

Magnetic resonance imaging (MRI). Structural images were acquired with a T1-
weighted magnetization-prepared rapid gradient-echo (MP-RAGE) pulse
sequence. The full acquisition details, available in ref. 37, are summarized here
simplicity: TR= 2300 ms, TE= 3.03 ms, 8 degree flip-angle, 1 slab, slice-matrix
size= 256 × 256, slice thickness= 1 mm, field of view= 256 mm, isotropic voxel-
size= 1.0 × 1.0 × 1.0 mm. Structural images were defaced by Schoffelen and col-
leagues. Preprocessing of the structural MRI was performed with Freesurfer86,
using the recon-all pipeline and a manual inspection of the cortical segmen-
tations, realigned to “fsaverage”. Region-of-interest analyses were selected from the
PALS Brodmann’s Area atlas87 and the Destrieux atlas88.

Functional images were acquired with a T2*-weighted functional echo-planar
blood oxygenation level-dependent (EPI-BOLD) sequence. The full acquisition
details, available in ref. 37, are summarized here for simplicity: TR= 2.0 s,
TE= 35 ms, flip angle= 90 degrees, anisotropic voxel size= 3.5 × 3.5 × 3.0 mm
extracted from 29 oblique slices. fMRI was preprocessed with fMRIPrep with
default parameters89. The resulting BOLD times series were detrended and de-
confounded from 18 variables (the six estimated head-motion parameters
(transx,y,z, rotx,y,z) and the first six noise components calculated using
anatomical CompCorr90 and six DCT-basis regressors using nilearn’s clean_img
pipeline and otherwise default parameters91. The resulting volumetric data lying
along a 3 mm line orthogonal to the mid-thickness surface were linearly projected
to the corresponding vertices. The resulting surface projections were spatially
decimated by 10, and are hereafter referred to as voxels, for simplicity. Finally, each
group of five sentences was separately and linearly detrended. It is noteworthy that
our cross-validation never splits such groups of five consecutive sentences between
the train and test sets. Two subjects were excluded from the fMRI analyses because
of difficulties in processing the metadata, resulting in 100 fMRI subjects.

Magneto-encephalography (MEG). The MEG time series were preprocessed
using MNE-Python and its default parameters except when specified92. Signals
were band-passed filtered between 0.1 and 40 Hz filtered, spatially corrected with a
Maxwell Filter, clipped between the 0.01st and 99.99th percentiles, segmented
between −500 ms to +2000 ms relative to word onset and baseline-corrected
before t= 0. Reference channels and non-MEG channels were excluded from
subsequent analyses, leading to 273 MEG channels per subject. We manually co-
referenced (i) the skull segmentation of subjects’ anatomical MRI with (ii) the head
markers digitized before MEG acquisition. A single-layer forward model was
generated with the Freesurfer-wrapper implemented in MNE-Python92. Due to the
lack of empty-room recordings, the noise covariance matrix used for the inverse
operator was estimated from the zero-centered 200 ms of baseline MEG activity
preceding word onset. Subjects’ source space inverse operators were computed
using a dSPRM. The average brain responses displayed in Fig. 1d were computed as
the square of the average evoked related field across all words for each subject
separately, averaged across subjects, and finally divided by their respective maxima,
to highlight temporal differences. Supplementary Movie 1 displays the average
sources without normalization. Seven subjects were excluded from the MEG
analyses because of difficulties in processing the metadata, resulting in 92 usable
MEG recordings.

Shared response model: Brain→ Brain mapping. To estimate the amount of
explainable signal in each MEG and fMRI recording, we trained and evaluated,
through cross-validation, a linear mapping model W to predict the brain responses
of a given subject to each sentence Y from the aggregated brain responses of all
other subjects who read the same sentence X. Specifically, five cross-validation
splits were implemented across 5-sentence blocks with scikit-learn GroupKFold49.
For each word of each sentence i, all but one subject who read the corresponding
sentence were averaged with one another to form a template brain response: xi 2
Rn with n the number of MEG channels or fMRI voxels, as well as a target brain
response yi 2 Rn corresponding to the remaining subject. X and Y were normal-
ized (mean= 0, std= 1) across sentences for each spatio-temporal dimension,
using a robust scaler clipping below and above the 0.01st and 99.99th percentiles,
respectively. A linear mapping W 2 Rn ´ n was then fit with a ridge regression to
best predict Y from X on the train set:

W ¼ ðXT
trainXtrain þ λIÞ�1

XT
trainY train; ð1Þ

with λ the l2 regularization parameter, chosen amongst 20 values log-spaced
between 10−3 and 108 with nested leave-one-out cross-validation for each
dimension separately (as implemented in ref. 49). Brain predictions Ŷ ¼ WX were
evaluated with a Pearson correlation on the test set:

R ¼ CorrðY test; Ŷ testÞ: ð2Þ
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For the MEG source noise estimate, the correlation was also performed after
source projection:

R ¼ CorrðKY test;KŶ testÞ ð3Þ

with K 2 Rn ´m the inverse operator projecting the nMEG sensors onto m sources.
Correlation scores were finally averaged across cross-validation splits for each
subject, resulting in one correlation score (“brain score”) per voxel (or per MEG
sensor/time sample) per subject.

Brain score and similarity: Network→ Brain mapping. To estimate the func-
tional similarity between each artificial neural network and each brain, we followed
the same analytical pipeline used for noise ceiling, but replaced X with the acti-
vations of the deep learning models. Specifically, using the same cross-validation,
and for each subject separately, we trained a linear mapping W 2 Ro;n with o the
number of activations, to predict brain responses Y from the network activations X.
X was normalized across words (mean= 0, std= 1).

To account for the hemodynamic delay between word onset and the BOLD
response recorded in fMRI, we used a finite impulse response (FIR) model with five
delays (from 2 to 10 s) to build X* from X. W was found using the same ridge
regression described above, and evaluated with the same correlation scoring
procedure. The resulting brain correlation scores measure the linear relationship
between the brain signals of one subject (measured either by MEG or fMRI) and
the activations of one artificial neural network (e.g., a word embedding). For MEG,
we simply fit and evaluated the model activations X at each time sample
independently.

In principle, one may orthogonalize low-level representations (e.g., visual
features) from high-level network models (e.g., language model), to separate the
specific contribution of each type of model. This is because middle layers have
access to the word-embedding layer, and can, in principle, simply copy some of its
activations. Similarly, word embedding can implicitly contain visual information:
e.g., frequent words tend to be visually smaller than rare ones. In our case, however,
the middle layers of transformers were much better than word embeddings, which
were much better than visual embeddings. To quantify the gain ΔR achieved by a
higher-level model M1 (e.g., the middle layers of a transformer) and a lower level
model M2 (e.g., a word embedding) we thus simply compared the difference of
their encoding scores:

ΔRM1
¼ RM1

� RM2
ð4Þ

Results are consistent when using different orthogonalization methods
(Supplementary Fig. 5).

Convergence analysis. All neural networks but the visual CNN were trained from
scratch on the same corpus (as detailed in the first “Methods” section). We sys-
tematically computed the brain scores of their activations on each subject, sensor
(and time sample in the case of MEG) independently. For computational reasons,
we restricted model comparison on MEG encoding scores to ten time samples
regularly distributed between [0, 2]s. Brain scores were then averaged across spatial
dimensions (i.e., MEG channels or fMRI surface voxels), time samples, and subjects
to obtain the results in Fig. 4. To evaluate the convergence of a model, we com-
puted, for each subject separately, the correlation between (1) the average brain
score of each network and (2) its performance or its training step (Fig. 4 and
Supplementary Fig. 1). Positive and negative correlations indicate convergence and
divergence, respectively. Brain scores above 0 before training indicate a fortuitous
relationship between the activations of the brain and those of the networks.

Permutation feature importance. To systematically quantify how the archi-
tecture, language accuracy, and training of the language transformers impacted
their ability to linearly map onto brain activity, we fitted, for each subject sepa-
rately, a Random Forest across the models’ properties to predict their brain scores,
using scikit-learn’s RandomForest48,49. Specifically, we input the following
features to the random forest: the training task (causal language modeling “CLM”
vs. masked language modeling “MLM”), the number of attention heads ∈ [4, 8], the
total number of layers∈ [4, 8, 12], dimensionality ∈ [128, 256, 512], training step
(number of gradient updates,∈ [0, 4.5M]), language modeling accuracy (top-1
accuracy at predicting a masked word) and the relative position of the repre-
sentation (a.k.a “layer position”, between 0 for the word-embedding layer, and 1 for
the last layer). The performance of the Random Forest was evaluated for each
subject separately with a Pearson correlation R using five-split cross-validation
across models.

“Permutation feature importance” summarizes how each of the covarying
properties of the models (their task, architecture, etc.) specifically impacts the brain
scores48. Permutation feature importance was implemented with scikit-learn49 and
is summarized with ΔR: the decrease in R when shuffling one feature (using 50
repetitions). For each subject, we reported the average decrease across the cross-
validation splits (Fig. 4). The resulting scores (ΔR) are expected to be centered
around 0 if the corresponding feature does not impact the brain scores, and
positive otherwise.

Statistics and reproducibility. To estimate the robustness of our results, we
systematically performed second-level analyses across subjects. Specifically, we
applied Wilcoxon signed-rank tests across subjects’ estimates to evaluate whether
the effect under consideration was systematically different from the chance level.
The p-values of individual voxel/source/time samples were corrected for multiple
comparisons, using a False Discovery Rate (Benjamini/Hochberg) as implemented
in MNE-Python92 (we use the default parameters). Error bars and ± refer to the
standard error of the mean (SEM) interval across subjects.

Brain parcellation. In Fig. 3, we focus on particular regions of interest using the
Brodmann’s areas from the PALS parcellation of freesurfer86. The superior tem-
poral gyrus (BA22) is split into its anterior, middle and posterior parts to increase
granularity. For clarity, we rename certain areas as specified in Table 1.

Ethics. These data were provided (in part) by the Donders Institute for Brain,
Cognition, and Behavior after having been approved by the local ethics committee
(CMO—the local “Committee on Research Involving Human Subjects” in the
Arnhem-Nijmegen region). As stated in the original paper37, “In the informed
consent procedure, [the subjects] explicitly consented for the anonymized collected
data to be used for research purposes by other researchers. [..] The study was
approved by the local ethics committee (CMO—the local “Committee on Research
Involving Human Subjects” in the Arnhem-Nijmegen region) and followed
guidelines of the Helsinki declaration.”

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data are publicly available on request. They were provided by the Donders Institute
for Brain, Cognition and Behavior after having been approved by the local ethics
committee (CMO—the local “Committee on Research Involving Human Subjects” in the
Arnhem-Nijmegen region). Link: https://data.donders.ru.nl/collections/di/dccn/
DSC_3011020.09_236. The aggregated data used to generate Fig. 2 (Supplementary
Data 1), Fig. 4 (Supplementary Data 2), and Fig. 3 (Supplementary Data 3) are available
jointly with the manuscript. In particular, to generate Fig. 3, one needs Supplementary
Data 3a (scores across layers for MEG, Fig. 3a), Supplementary Data 3b (scores across
training for MEG, Figure Fig. 3b), Supplementary Data 3c (permutation importance for
MEG, Fig. 3e), Supplementary Data 3d (scores across layers for fMRI, Fig. 3e),
Supplementary Data 3e (scores across training for fMRI, Fig. 3f), and Supplementary
Data 3f (permutation importance for fMRI, Fig. 3h).

Code availability
The code is available upon request. Data analysis was performed in Python using the
scikit-learn open source library49. The MEG and fMRI data were processed using MNE-
Python92, nilearn91 and freesurfer86. The natural language processing algorithms were
trained using the implementation from the XLM github repository (https://github.com/
facebookresearch/XLM,6).
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