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Abstract

The rapid accumulation of single-cell chromatin accessibility data offers a unique opportunity to investigate common and
specific regulatory mechanisms across different cell types. However, existing methods for cis-regulatory network
reconstruction using single-cell chromatin accessibility data were only designed for cells belonging to one cell type, and
resulting networks may be incomparable directly due to diverse cell numbers of different cell types. Here, we adopt a
computational method to jointly reconstruct cis-regulatory interaction maps (JRIM) of multiple cell populations based on
patterns of co-accessibility in single-cell data. We applied JRIM to explore common and specific regulatory interactions
across multiple tissues from single-cell ATAC-seq dataset containing ∼80 000 cells across 13 mouse tissues. Reconstructed
common interactions among 13 tissues indeed relate to basic biological functions, and individual cis-regulatory networks
show strong tissue specificity and functional relevance. More importantly, tissue-specific regulatory interactions are
mediated by coordination of histone modifications and tissue-related TFs, and many of them may reveal novel regulatory
mechanisms.
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Introduction
Cis-regulatory elements (CREs) are a key class of regulatory DNA
sequences and typically regulate the transcription of target
genes by binding to transcription factors (TFs) [1, 2]. Lots of
efforts have been made to characterize combinatorial patterns
and systematically define CREs [3–6]. Furthermore, interactions
between CREs are vital components of genetic regulatory net-
works, controlling cell type-specific biological processes [7–9].
However, linking CREs to their target genes is still a challenging
problem due to their distal distance (in some cases hundreds of
kilobases) and complicated regulatory mechanisms. Moreover,
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direct DNA contacts could be inferred using computational
methods (e.g. CHiCAGO [10]) from data of the chromosome
conformation capture (3C) technique and its variants such as
ChIA-PET [11], Hi-C [12] and capture Hi-C [13].

But thus far, these types of data are only available for a few
cell types. As a result, several computational methods have
been developed to estimate cis-regulatory DNA interactions
using epigenetic data [14–18]. For example, Corces et al. [14]
proposed a computational strategy based on the correlation
of transcriptional expression and chromatin accessibility
to identify promoter-enhancer interactions. Cao et al. [15]
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adopted a random forest model to reconstruct enhancer-target
networks using both histone modification data and chromatin
accessibility data. However, the above methods were all designed
to infer CREs interactions from bulk sequencing data. The
limited number of samples per cell type makes it hard to
generate robust genome-wide cis-regulatory interaction maps.

Fortunately, the advent of single-cell ATAC-seq technology
has enabled the genome-wide profiling of chromatin accessi-
bility at single-cell resolution [19, 20]. Chromatin accessibility
is a hallmark of active DNA regulatory elements, which delin-
eates the in vivo availability of binding sites to TFs [21, 22].
These large-scale datasets (104 ∼ 105 cells) provide a unique
opportunity to detect cell type-specific CREs, assess the gene
regulatory landscape, model the transcription factor regulatory
grammar and reconstruct CREs interaction maps robustly using
statistical models [23–26]. For example, Cicero [26] employs a
graphical lasso model to detect linkages between CREs based
on co-accessibility patterns in single-cell data. Co-accessible
DNA elements have been illustrated to be functionally related.
Specifically, they exhibit physical proximity, are mediated by
interacting TFs and undergo coordinated changes in histone
modifications.

When working with single-cell data, identifying the differ-
ences between different cell types or the dynamic changes dur-
ing cell development is a vital problem. Therefore, one might
want to compare cis-regulatory interaction networks estimated
from different cell types to investigate the common and specific
regulatory patterns. The strategy adopting Cicero to reconstruct
regulatory networks for each cell type, respectively, has sev-
eral deficiencies: (1) resulting networks may be incomparable
directly due to diverse numbers of cells as well as data sparsity
in different cell types; (2) estimating separate networks does not
exploit the similarity between multiple cell types, which will
cause inaccurate results for identifying common patterns; (3)
when we explore the cell type-specific cis-regulatory interac-
tions, the uncorrelated technology noises of single-cell data from
different cell types, which are caused by amplification process
and batch effects [27], could lead to many false positives. Conse-
quently, more accurate estimations are expected by considering
multiple cell types simultaneously and alleviating uncorrelated
technology noises.

To this end, we adopt a statistical method to jointly recon-
struct cis-regulatory interaction maps (JRIM) of multiple cell
populations based on patterns of co-accessibility in single-cell
chromatin accessibility data. JRIM employs a group lasso penalty
to encourage a similar pattern of sparsity across all the regu-
latory networks and alleviate uncorrelated technology noises.
We applied JRIM to explore common and specific regulatory
patterns across cis-regulatory interaction networks of different
tissues using single-cell ATAC-seq dataset generated in [23],
which profiled ∼80,000 cells across 13 adult mouse tissues.
Results show that common interactions of all tissues are sig-
nificantly enriched in housekeeping gene regions, and common
interactions of similar functional tissues are involved in regula-
tions of tissue-shared biological processes. Furthermore, tissue-
specific differential activity genes perform specific biological
functions and have higher transcriptional expressions in the
corresponding tissues. More interestingly, tissue-specific func-
tional peaks are enriched for histone modification marks and
motifs of TFs that are known to be important for tissue-specific
functions. Last but not least, the reconstructed cis-regulatory
interaction networks reveal distinct regulatory mechanisms of
the sodium channel gene Scn5a and identify a verified liver-
specific promoter-enhancer loop of clock-controlled gene Gys2.

Materials and methods
Materials

Chromatin accessibility profiles at single-cell resolution in 13
adult mouse tissues have been generated using single-cell ATAC-
seq technology in a recent study [23]. We downloaded this single-
cell ATAC-seq data from GSE111586. These 13 tissues include
bone marrow, cerebellum, large intestine (including cecum and
colon), heart, kidney, liver, lung, prefrontal cortex, small intestine
(including duodenum, jejunum, and ileum), spleen, testes, thy-
mus and whole brain. To avoid batch effects, we only selected
cells from one sample for each tissue. The processed single-
cell ATAC-seq dataset contains ∼80,000 cells and has called
∼400 000 differentially accessible peaks (potential CREs) using
MACS2 [28] as described in [23]. The total number of cells profiled
per tissue ranges widely from 2278 for cerebellum to 8991 for
heart (Supplementary Figure S1A).

We collected available single-cell RNA-seq datasets for 11
tissues (except prefrontal cortex and whole brain). The single-
cell RNA-seq data of cerebellum were collected from Dropviz
database [29]. Those of large intestine and heart were collected
from Tabula Muris database [30]. Those of other tissues were
obtained from [31]. We also collected available chromatin mod-
ification ChIP-seq datasets for 10 tissues, including H3K4me1,
H3K4me3, H3K27ac and CTCF (except large intestine, prefrontal
cortex and whole brain) from the ENCODE portal (https://www.e
ncodeproject.org/) [32]. And the genome-wide occupancy pro-
files of TBX3 in heart measured by ChIP-seq were collected
from [33]. In addition, we obtained mouse housekeeping gene
set and 27 consistently expressed genes from [34] and collected
tissue-specific differential expression genes of 12 tissues (except
prefrontal cortex) from two mouse tissue-specific gene datasets
[34, 35].

JRIM

Let Xk be a M × Nk matrix representing the binary accessibility
values of the k-th tissue (k = 1, . . . , K), where Xk

ij is 1 if one or
more reads are observed to overlap the accessible peak i in cell j
of tissue k, and 0 otherwise. JRIM takes the binary matrices of all
K tissues as input (Figure 1A) and consists of three main steps as
follows.

Step 1. Grouping similar cells per tissue. Sparsity of single-
cell epigenetic data is intrinsic due to the limited DNA copy
number, and the percentage of 0 in used single-cell ATAC-seq
data is >98% (Supplementary Figure S1B). The exceeding sparsity
may cause several computational issues. For example, sample
covariance matrix may be singular. To reduce the sparsity, con-
trol the technical variation and improve the stability of estima-
tion, JRIM adopts a similar grouping procedure used as Cicero.
This procedure can be regarded as a type of ‘bagging’ [36].

JRIM first maps cells in each tissue into low dimensional
space using a t-SNE map [37] and constructs a k-nearest neighbor
graph based on the two-dimensional t-SNE embedding via
the FNN package (https://CRAN.R-project.org/package=FNN)
(Supplementary Figure S2). Then, JRIM samples cells randomly
and clusters their k nearest neighbors (default k = 50). Binary
accessibility profiles of cells in a group are aggregated into
integer counts to construct the grouped matrix if a group
does not overlap any existing one with more than 80% cells (a
tunable parameter directly related to the number of groups).
This step will be performed for each tissue separately and
generates grouped matrices A1, A2, . . . , AK. Note that a cell
will sometimes belong to more than one group. The different
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Figure 1. Illustration of the workflow of JRIM. (A) The input is binary single-cell chromatin accessibility data of multiple tissues. (B) JRIM aggregates similar cells to

overlapping groups per tissue to overcome sparsity of single-cell data and calculates sample covariance matrices for local genomic windows. The purple diamond

represents peaks overlapped with gene promoter and the ellipse represents remaining peaks. (C) JRIM jointly estimates local partial correlation matrices of K tissues

and identifies co-accessible DNA element pairs, that is, cis-regulatory interactions. (D) Reconcile local regulatory interaction networks to achieve the reconstruction of

genome-wide cis-regulatory interaction networks of all K tissues.
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initializations of random selection will slightly influence the
results (Supplementary Methods).

We further normalize these grouped matrices A1, A2, . . . , AK

to alleviate the impact of heterogeneous sequencing depths.
Explicitly, each matrix Ak is divided by a group-wise scaling
factor computed by estimateSizeFactors() function of a R package
Monocle2 and then performs log-transformation with pseudo-
count 1.

Step 2: Adopting joint graphical lasso to compute co-
accessibility scores between accessible peaks in local genomic
windows. JRIM jointly estimates sparse inverse covariance
matrices, which encode partial correlations between variables,
to capture the co-accessibility structure of accessible peaks via
a joint graphical lasso model [38] (Figure 1C). Formally, JRIM
employs the joint graphical lasso to maximize the following
objective function:
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where �k is the inverse covariance matrix of the aggregated
count matrix Ak, which captures the conditional dependence
structure of accessible peaks in tissue k, and Sk is the sample
covariance matrix of Ak.nk is the number of cell groups in tissue
k, λ1 and λ2 are two nonnegative tuning parameters, the matrix
ρ encodes the distance penalty between accessible peaks and ∗
denotes component-wise multiplication.

The first term of this formula is the maximum likelihood of
estimating K graphical lasso models [39], respectively. To extract
meaningful networks, the joint graphical lasso model expects
only a small fraction of pairs to be partially correlated, i.e. to
be nonzero in the inverse covariance matrices. Therefore, the
second term is a l1-norm penalty to increase sparsity of the
resulting inverse covariance matrices. The matrix ρ is deter-
mined by the following equation to induce distance penalty such
that long-distance pairs have a relatively high penalty factor:

ρij = 1 − d−s
ij ,

where dij is the distance in the genome (in kilobases) between
sites i and j, and s is a constant (s is set to 0.75 by default as
suggested in Cicero).

The third term of this equation is the group lasso penalty
[40] across all K inverse covariance matrices. This group lasso
penalty encourages a similar pattern of sparsity across all the
inverse covariance matrices—i.e. an interaction is encouraged
to be 0s in all the K estimated inverse covariance matrices if
it only shows nonsignificant co-accessibility in a few tissues.
This penalty helps to remove uncorrelated technology noises
and exploit the similarity between multiple cell types.

Furthermore, as promoter capture Hi-C data suggested, >75%
of three-dimensional promoter-based interactions occur within
a 500 kb distance [41]. Therefore, JRIM pays more attention to
local cis-regulatory interactions and estimates co-accessibility
structure within overlapping 500 kb genomic windows (windows
are spaced by 250 kb such that any accessible site is covered by
two genomic windows).

Step 3: Constructing genome-wide cis-regulatory interac-
tion maps. JRIM calculates partial correlations between local
accessible peaks for every 500 kb genomic window. Then we

will reconcile local interaction networks to construct genome-
wide cis-regulatory interaction networks (Figure 1D). Note that
many pairs of peaks are covered by two local co-accessibility
networks and have two co-accessibility scores. In principle, these
two co-accessibility scores have the same sign (>95% in our
experiment). If so, the mean score of these two pairs is assigned
to the interaction in the resulting genome-wide cis-regulatory
interaction networks. If not, such pairs are considered undeter-
mined, and their co-accessibility values are set as zero. Finally,
JRIM reconstructs genome-wide cis-regulatory networks where
nodes are the accessible peaks, and edges link two co-accessible
DNA elements which have co-accessibility scores above a user-
defined threshold (set as 0 in this paper to avoid the impact of
different distribution of co-accessibility scores across tissues).

Selection of tuning parameters

The tuning parameters λ1, λ2 could control the sparsity and
similarity of regulatory networks across all K tissues. However,
both tuning parameters contribute to sparsity: λ1 encourages
an individual network to be sparse and λ2 drives interaction
intensity to be 0s in all K networks. Therefore, as joint graphical
lasso [38] recommended, we reparametrize λ1, λ2 as follows:

ω1 = λ1 + 1√
2

λ2,

ω2 = 1√
2

λ2/

(
λ1 + 1√

2
λ2

)
,

where ω1 and ω2, respectively, reflect the levels of sparsity and
similarity. To determine values of ω1 and ω2, JRIM first randomly
selects 50 random 500 kb genomic windows and calculates the
minimum ω1 with a fixed ω2 (a relatively small value) such that
nonzero entries in �1, . . . ,�K are less than 10% of all entries
and no more than 5% long-distance pairs (pairs of sites at a
distance greater than 250 kb) are nonzeros. As for parameter ω2,
we defined a similarity measurement as below:

S =
⎛
⎝∑

i �=j

cij

⎞
⎠ /

(
2 × C2

K × M
)

,

where cij denotes the number of common nonzero pairs in
tissues i and j, K is the number of tissues, C2

K is the number of
permutations and M is the mean number of nonzero pairs in all
tissues. Then in the same 50 genomic windows, we fix ω1 as the
mean of calculated values of ω1 and determine the minimum
ω2 value such that measurement S is more than 0.6. Finally, the
mean values of the calculated parameters are used for setting
the penalties for each of 500 kb genomic window sub-problem.

Mapping cis-regulatory interactions to various
genomic features

We obtained the genomic features including promoter regions
(200 bp upstream TSS and 100 bp downstream TSS), 5’ UTR,
3’ UTR, exons, introns and intergenic regions, which are located
further than 1 kb from any RefSeq gene, based on mm9
mouse reference genome from the UCSC Genome Browser [42].
Firstly, peaks were categorized into the six feature categories
if they overlap with any one genomic feature region. Then,
cis-regulatory interactions were assigned into the same six
feature categories according to accessible peaks they were
associated. Note that one peak may be mapped to more than one
features and so do the interactions. We also linked the regulatory
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regions to their target genes based on gene promoter-related
interactions.

Definition of tissue-specific differential activity
genes (DAGs)

We depicted the activity of genes in a given tissue by the number
of gene promoter-related interactions in the reconstructed cis-
regulatory interaction network. For gene l, we denoted the gene
activity score vector as GAl = {GA1

l , GA2
l , . . . , GA13

l }, where GAk
l

represents the number of promoter-related interactions of gene
l in the kth tissue. Then we normalized gene activity scores
through dividing them by the total number of interacting co-
accessible pairs in the corresponding tissue and calculated the
z-scores of normalized gene activity scores ˆGAl:

ZGAl = {z1
l , z2

l , . . . , z13
l }, where zk

l = ( ˆGAk
l − μ( ˆGAl))/σ ( ˆGAl),

The gene l is considered as the kth tissue-specific differential
activity one if zk

l > 2.

Exploring transcription and chromatin modification
levels of tissue-specific DAGs

To test the transcription regulation functions of estimated cis-
regulatory interactions, we investigated transcription levels and
transcription specificity of DAGs using single-cell RNA-seq data.
We first normalized the single-cell RNA-seq data of 11 tissues
using the R package Seurat [43]. For each tissue, genes were
divided into two groups: ‘tissue-specific DAGs’ and ‘other genes’.
We first calculated the mean expression of these two groups in
their corresponding tissue. To characterize transcription speci-
ficity of DAGs, we also calculated the mean expression of ‘tissue-
specific DAGs’ in other tissues.

We also investigated chromatin modification marks level
around TSSs of DAGs to access the regulatory mechanisms. We
calculated the mean signal of collected chromatin modification
marks (H3K4me1, H3K4me3, H3K27ac and CTCF) in the promoter
region of all genes and normalized these signals to have the
same mean value across all tissues. Then we grouped genes
into two groups as in the analysis of gene expression data and
compared their chromatin modification level.

Gene ontology enrichment analysis

To assess the functional relevance of reconstructed interaction
networks, we performed gene ontology (GO) enrichment analysis
for common interaction-related genes of similar functional tis-
sues and tissue-specific differential activity genes via R package
clusterProfile [44]. Common interactions of similar functional tis-
sues are defined as interactions that only detected in immune
tissues (spleen, thymus, bone marrow and lung) or nervous
tissues (cerebellum, prefrontal cortex and whole brain). We only
selected genes whose promoters are associated with more than
one common interaction of similar functional tissues to perform
GO enrichment analysis. In the enrichment analysis of DAGs,
we selected top 200 differential activity ones for each tissue
(gene number of kidney, prefrontal cortex and large intestine are
less than 200). The enrichment significance is corrected by the
Benjamini–Hochberg procedure.

Motif analysis in tissue-specific interaction-related
regions

We defined the peaks related to tissue-specific promoter-related
interactions as ‘tissue-specific functional ones’. To investigate

the regulatory mechanisms of tissue-specific interactions, we
employed the HOMER software (http://homer.salk.edu/homer/)
[45] to detect transcription factor motifs that are enriched in
‘tissue-specific functional peaks’ (Table 1 and Supplementary
Table S1). The background sequences were generated from all
accessible peaks. The brief description of TFs is obtained from
UniProtKB database (https://www.uniprot.org/).

Results
JRIM reconstructs comparable cis-regulatory networks
of multiple tissues

We applied JRIM to jointly reconstruct cis-regulatory interaction
maps of multiple mouse tissues from single-cell ATAC-seq data
generated in [23]. For the 436 206 accessible peaks, we identified
2.28 million regulatory interactions in each tissue on average
(ranging from 1.28 million in small intestine to 3.38 million in
prefrontal cortex) (Supplementary Figure S3A). Compared with
Cicero [26], JRIM generates tissue-specific networks with rela-
tively more comparable and balanced interactions (Supplemen-
tary Figure S3B). Proportions of tissue-specific interactions (only
detected in one tissue) by JRIM have significantly decreased
compared to those by Cicero, indicating JRIM characterize the
shared interactions well among multiple tissues. The interac-
tions frequency decreases with the increasing of genomic dis-
tance (Supplementary Figure S4).

Note that the number of peak-associated interactions is
higher in transcription-related genomic regions (especially
in promoters and 5’ UTR), indicating their transcriptional
regulation roles, and lower in intron as well as intergenic regions
(Figure 2A and Supplementary Figure S5). Moreover, we observed
the same order when comparing conservation of interactions
within different genomic regions, i.e. interactions associated
with 5’ UTRs and promoters showed the highest conservation
across tissues (Figure 2B and Supplementary Figure S6), which is
consistent with previous studies that DNA regulatory elements
far from TSS exhibited a greater tissue specificity and wide
dynamic range of activity [14, 26, 46].

The cis-regulatory networks reveal common interaction
patterns among tissues

The comparable cis-regulatory interaction networks generated
by JRIM enable direct identification of common or tissue-shared
interactions among tissues. Note that the genes whose promot-
ers are associated with common interactions of all 13 tissues
are significantly enriched in housekeeping gene set (Figure 2C;
P < 1e-65, Fisher’s exact test), suggesting that these common
interactions are involved in regulations of fundamental bio-
logical functions. We also observed that highly and constantly
expression genes are regulated by more regulatory elements
than remaining genes in all 13 tissues (Supplementary Figure S7).
Both observations suggest that the common patterns among all
tissues are related to basic biological functions.

We observed that similar functional tissues are clustered
together based on the overlapping ratio of their common inter-
actions, including nervous tissues (cerebellum, prefrontal cortex
and whole brain) and immune tissues (spleen, thymus, bone
marrow and lung) (Figure 2D). We also found that tissues within
these two clusters have more common interactions than ran-
dom selected ones (Figure 2E). GO enrichment analysis of genes
related to common interactions of similar functional tissues

http://homer.salk.edu/homer/
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Table 1. Examples of motifs enriched in the ‘tissue-specific functional peaks’. Examples are selected from the top two enriched motifs of
each tissue

(Materials and Methods) reveals distinct common biological pro-
cesses of these tissues (Figure 2F). For example, genes of com-
mon interactions for the nervous tissues are strongly enriched
in ‘synapse organization’, ‘cognition’ and ‘learning or memory’ func-
tional terms, and those of immune system are significantly
enriched in ‘T cell activation’, ‘myeloid leukocyte differentiation’ and
so on, indicating that the common interactions among tissues
play key roles in regulations of their sharing biological functions.

The reconstructed interaction networks show strong
tissue specificity and functional relevance

Similar sparsity of cis-regulatory interaction networks enables
quantification of the changes of gene activity in different tissues.
Tissue-specific differential expression genes from two datasets
[34, 35] both show higher activities in the corresponding tissue
except tissue-specific genes of small intestine as well as the
spleen-specific genes in TiSGeD dataset (Figure 3A; P < 0.001
by one-sample Wilcoxon tests). Interestingly, the overlapping
parts of two tissue-specific gene datasets tend to exhibit higher
activity specificity compared with tissue-specific genes from an
individual dataset. And the similar functional tissues (nervous
tissues and immune tissues) are also clustered together in terms
of gene activity scores (Supplementary Figure S8). These results
shed light on the underlying transcription regulation functions
of cis-regulatory interactions and imply that tissue-specific gene
expression is regulated by promoter-enhancer interactions.

Functional enrichment analysis for tissue-specific differen-
tial activity genes (DAGs) (Materials and Methods) reveals that,
except large intestine and small intestine, overrepresented GO

terms were indeed relevant to the distinct tissue-specific bio-
logical functions (Figure 3B). For example, tissue-specific DAGs
of heart are enriched in cardiac muscle development-related
GO terms, such as ‘cardiac muscle cell development’, ‘cardiac muscle
tissue development’ and so on. Those of testis are closely related to
‘spermatid development’ and ‘germ cell development’. Genes related
to metabolism terms such as ‘fatty acid metabolic process’ and
‘alcohol metabolic process’ are strongly enriched in liver. As for
nervous tissues, overrepresented GO terms are both related to
neuron development or cognition functions, such as ‘cognition’
and ‘learning’ terms in both cerebellum and whole brain. These
results highlight the underlying role of regulatory interactions in
performing tissue-specific biological functions.

Next, we investigated the transcriptional behavior of tissue-
specific DAGs and observed that tissue-specific DAGs have
significantly higher transcriptional levels than other genes in
all 11 tissues (Figure 4A; P < 0.001, two sample Wilcoxon tests),
highlighting the potential tissue-specific functions of DAGs.
Moreover, tissue-specific DAGs from all tissues except those
of small intestine exhibit strong transcriptional specificity
(Figure 4A; P < 0.01 for thymus and P < 0.001 for others, two
sample Wilcoxon tests). Thus, the reconstructed promoter-
enhancer interactions are involved in gene activation to perform
tissue-specific biological functions.

We also found that chromatin modification marks around
TSSs of tissue-specific DAGs in the corresponding tissue
exhibit strong difference compared with those in other tissues
(Figure 4B and Supplementary Figure S9). Specifically, the active
promoter mark H3K4me3 is strongly enriched in regions around
TSSs of DAGs in most tissues (except heart and lung) (Figure 4B).
And H3K4me3 also shows tissue-specific enrichment around

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa120#supplementary-data
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Figure 2. Basic characteristics of the reconstructed cis-regulatory interaction networks and the common interaction patterns across tissues. (A) Distribution of cis-

regulatory interactions in six different genomic regions, including 5’ UTR, promoter, exon, intron, 3’ UTR and intergenic regions. (B) Distribution of conservation of

genomic region-related interactions. Color reflects the number of tissues detecting corresponding regulatory interactions. (C) Venn diagram of the overlapping between

common interaction-related genes and housekeeping gene set. The statistical significance was evaluated with Fisher’s exact test. (D) Hierarchical clustering of 13 tissues

in terms of overlapping ratio of their cis-regulatory interactions. The two similar functional tissue clusters are marked by blue and red boxes. The values of heatmap

represent Pearson’s correlation coefficients about the overlap ratio of cis-regulatory interactions. Cere: cerebellum; PFC: prefrontal cortex; LI: large intestine; BM: bone

marrow; SI: small intestine. (E) Comparison of the number of common interactions of similar functional tissue clusters (nervous tissues and immune tissues) and

those of random selection tissues. The error bars indicate the standard deviation and ∗∗∗ indicates P < 0.001 using one-sample Wilcoxon test. (F) GO terms enrichment

in common interaction-related genes of similar functional tissues is associated with tissue sharing biological processes. Top 5 enriched GO terms of each cluster are

shown.

TSSs of tissue-specific DAGs, except those of small intestine
(Figure 4B), supporting the activity specificity of DAGs identified
in the reconstructed networks by JRIM. Meanwhile, the signals
of the architectural protein CTCF around TSSs of DAGs are also
significantly higher in the corresponding tissue than those in
other ones (Supplementary Figure S9A), indicating that the
promoter of tissue-specific DAGs tend to be related to chromatin
looping in the given tissues. Moreover, the H3K27ac mark, known
to be associated with the activation of transcription, is also
strongly enriched in promoter regions of tissue-specific DAGs
(Supplementary Figure S9B). These observations indicate that

epigenetic features may contribute to the regulation functions
of promoter-enhancer interactions.

Tissue-specific cis-regulatory interactions are mediated
by coordination of tissue-related TFs and histone
modifications

JRIM enables the identification of tissue-specific interactions
and investigation of tissue-specific regulatory mechanisms. The
tissue-specific functional peaks associated with tissue-specific

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa120#supplementary-data
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Figure 3. Tissue specificity and functional relevance of the reconstructed cis-regulatory interaction networks. (A) Boxplots of z-scores of two tissue-specific differential

expression gene datasets and their overlapping genes. The z-scores are calculated by the number of promoter-associated interactions in the reconstructed interaction

networks. The dashed line is the theoretical mean value of z-scores for randomly selected genes. (B) Differential activity genes for each tissue are enriched in tissue-

specific biological processes. Top 5 enriched GO terms with q-value<0.05 for each tissue are selected. −log10(q-value) is used to plot this heatmap.

interactions are enriched for motifs of TFs that are function-
ally associated with tissue functions (Materials and Methods;
Table 1 and Supplementary Table S1). For instance, motifs of ELF4
and ETS1 were significantly overrepresented in spleen-specific
functional peaks (P = 1e-136 and P = 1e-123, respectively). Note
that ELF4 plays a role in development of NK and NK T-cells [47],

and ETS1 controls the differentiation, survival and proliferation
of lymphoid cells [48]. In other examples, motifs of PPARA and
HNF4A are significantly enriched in kidney-specific functional
peaks (P = 1e-282 and P = 1e-277, respectively). PPARA has been
reported to be a key regulator of lipid metabolism [49], and
HNF4A is essential for development of kidney [50]. Moreover,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa120#supplementary-data
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Figure 4. Transcription and histone modification levels of tissue-specific differential activity genes. (A) Boxplots of transcription levels of differential activity genes

(DAGs) and other genes in the single-cell RNA-seq dataset. The middle red box represents the RNA expression level of DAGs in the corresponding tissues. The left gray

box represents expressions of other genes. The right blue box represents these DAGs expression in other tissues. Each middle box was compared with both left and

right boxes using two-sample Wilcoxon tests. ∗∗ and ∗∗∗ indicate 0.001 < P < 0.01 and P < 0.001, respectively. (B) Enrichment analysis of H3K4me3 mark around TSSs

of DAGs in ten tissues. The signals around DAGs TSSs and TSSs of remaining genes in the corresponding tissue are labeled with red and gray colors, respectively. The

blue line is the mean signal around TSSs of DAGs in other tissues.

NEUROD1 was shown to be associated with neurogenesis [51],
and motifs of NEUROD1 are highly enriched in prefrontal cortex,
cerebellum and whole brain (P = 1e-143, P = 1e-104 and P = 1e-164,
respectively). We also investigated histone modification markers
in tissue-specific functional peaks. Indeed, the enhancer marks

(H3K27ac and H3K4me1) are significantly enriched in tissue-
specific functional peaks (Figure 5A and Supplementary Figure
S10A), highlighting the potential regulation function of these
regions. Moreover, the CTCF marker is also enriched in tissue-
specific functional peaks (Supplementary Figure S10B), which

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa120#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa120#supplementary-data
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might be related with tissue-specific chromatin looping. Overall,
the reconstructed cis-regulatory networks by JRIM could reveal
tissue-specific interactions, which are mediated by coordination
of tissue-related TFs and histone modifications.

The cis-regulatory networks reveal distinct regulatory
mechanisms of the sodium channel gene Scn5a

The cis-regulatory interaction network of heart around Scn10a-
Scn5a locus provides a strong illustration of cooperative regu-
latory roles about TF binding and histone modification. Motifs
of TBX5 are significantly enriched in heart-specific functional
peaks (Table 1, P = 1e-153). Note TBX5 is known to activate ion
channel genes and is essential for heart development [52]. In
addition, TBX3 is also critical for the development of heart, which
competes with TBX5 for the same binding sites, but represses
the expression of ion channels genes, such as the sodium
channel gene Scn5a [53]. In the reconstructed cis-regulatory
interaction network of heart, the occupancy profile of TBX3
shows distinctly higher enrichment in the peaks linked to Scn5a
promoter A (accessible peak: chr9: 119,487,317-119,490,317)
(Figure 5B), implying that Scn5a-related regulatory interactions
in heart are mediated by bindings of TBX3 and TBX5. Meanwhile,
the enhancer marks H3K27ac and H3K4me1 are also strongly
enriched in Scn5a promoter-related regions (Figure 5B). More
interestingly, with the increase of co-accessibility scores, the
signals of TBX3 and H3K27ac also enhance a lot, but the signals
of H3K4me1 are relatively stable. H3K27ac has been reported to
be used to find active enhancers by subtracting H3K4me1 [54].
This suggests that some histone modifications contribute to the
binding of TFs, and the binding of TFs in the active enhancer
region has a greater impact on gene regulations.

The reconstructed cis-regulatory interactions-related to
Scn5a promoters are associated with TBX3 enriched regions
(Figure 5C). Two of these TBX3 enriched regions have been well-
documented to modulate the expression of Scn5a [33, 55, 56]
(a region located in Scn10a gene region labeled as enhancer A:
chr9:119 540 800–119 544 032 and an intergenic region labeled as
enhancer B: chr9:119 378 051–119 379 479). Specifically, Boogaard
et al. [56] have leveraged high-resolution 4C-seq to investigate
the chromosome structure between enhancer A, enhancer B
and promoters of Scn5a, finding that these two enhancers and
Scn5a promoters are in close contact and form a complex. They
also engineered deletions of enhancer A and B and found that
removal of these two enhancers significantly abrogates the
ventricular conduction system and the expression of Scn5a,
indicating the necessity of enhancer A and B for in vivo Scn5a
expression regulation.

The validated interactions between enhancer B and Scn5a
promoters were identified with high co-accessibility scores in
the cis-regulatory network of heart, supporting the transcription
regulation role of enhancer B (Figure 5C). However, as for
enhancer A, we only observed the regulatory contacts between
enhancer A and enhancer B in heart (Figure 5C). And the
H3K4me1 signal in enhancer A region is relatively high, but
the H3K27ac signal is low. We guessed that although the
physical proximity between enhancer A and Scn5a promoters
and the bindings of TBX3 and TBX5 in enhancer A region,
enhancer A regulates the expression of Scn5a through indirect
interactions (enhancer A-enhancer B-promoters of Scn5a) due
to its low enhancer activity. In short, the regulatory network
of heart around Scn10a-Scn5a locus reveals distinct regulatory
mechanisms of Scn5a: regions enriched in both TBX3 bindings
and H3K27ac are likely to directly regulate the expression of

Scn5a (region A, C-F and enhancer B in Figure 5C) and regions
only enriched in TBX3 bindings tend to not interact with Scn5a
promoters (region B and enhancer A in Figure 5C). Moreover,
the regulatory mechanisms of enhancer A demonstrate that
physical proximity does not definitively mean regulatory inter-
action. Therefore, reconstructing cis-regulatory networks using
chromatin accessibility data could help to better understand
regulatory mechanisms and guide downstream analysis (see
another example in Supplementary Figure S11).

The cis-regulatory networks identify a liver-specific
promoter–enhancer loop of clock-controlled gene Gys2

We further investigated the regulatory interaction networks
around Glycogen Synthase 2 (Gys2) gene, which is a liver-
specific clock-controlled gene, catalyzing the rate-limiting step
in hepatic glycogen synthesis [57]. The transcript of Gys2 is
rhythmically expressed in liver during a day. In contrast, the
accumulation of Gys2 mRNA is constant and low in kidney
[58]. We compared the Gys2 promoter related interactions
in all 13 tissues and found a liver-specific contact with a
region of 12 to 21 kb downstream from Gys2 TSS (Figure 6A).
Two of three peaks located in this intragenic region exhibit
higher co-accessibility with Gys2 promoter in liver comparing
to those in kidney (Figure 6B). A recent study investigated
the clock-dependent chromatin topology of Gys2 in kidney
and liver [58]. They measured the interaction frequencies of
Gys2 promoter at different time points in liver and kidney
using 4C-seq technology and found that the promoter of Gys2
contacts with an intragenic region, 21 kb downstream from the
TSS of Gys2, more frequently at the day versus at the night
only in liver (Figure 6C and Supplementary Figure S12A). To
verify this liver-specific promoter-enhancer loop, they cultured
clock-deficient Bmal1 knockout mice through hybridization
and found that rhythms of this liver-specific interaction are
abolished (Supplementary Figure S12B). This putative liver-
specific promoter-enhancer loop is highly consistent with our
observation in the reconstructed cis-regulatory networks.

Discussion
Exploring tissue-specific cis-regulatory interaction patterns
across multiple cell types could help to investigate cell type-
specific regulation. Here, we adopt JRIM to jointly reconstruct
cis-regulatory interaction maps of multiple cell populations
from single-cell chromatin accessibility data. JRIM controls
the sparsity of resulting cis-regulatory interaction networks
simultaneously and alleviates uncorrelated technological
noises across different cell populations. These cis-regulatory
interaction networks could advance the understanding of
regulatory mechanisms and guide downstream analysis such
as CRISPR-mediated (epi)-genome editing.

We believe that our analysis could also help to identify novel
tissue-specific interactions. For example, comparing the cis-
regulatory interaction networks of kidney and liver around Gys2,
JRIM detects a long-range interaction within a region of 280–
320 kb downstream from Gys2 TSS only in kidney (Figure 6A).
This region is suggested to be involved in a kidney-specific
promoter-enhancer loop. As expected, the comparison of liver
and kidney 4C-seq data showed significant increased contact
frequency with the Gys2 promoter within this region in kidney
(Figure 6C). We employed FourCSeq to estimate the spatial
interactions of Gys2 promoter in liver and kidney using 4C-seq
data [59], finding a long-range kidney-specific chromatin loop

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa120#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa120#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa120#supplementary-data
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Figure 5. Illustration of the distinct regulatory mechanisms of Scn5a. (A) Boxplots of the H3K27ac signal of tissue-specific functional peaks compared to those of other

peaks. (B) The occupancy profiles of TBX3, H3K4me1 signal and H3K27ac signal of Scn5a promoter-related peaks (co-accessibility score > 0) and other peaks. (C) The

reconstructed cis-regulatory interaction network around the Scn10a-Scn5a locus (chr9: 119 300 000–119 700 000) in heart. The regions of Scn5a promoters and enhancer

A, B are labeled with red boxes. Blue boxes indicate locations of TBX3 enriched regions A-F. The bottom is ChIP-seq data around Scn5a gene. The image is drawn on

basis of WashU epigenome browser with RefSeq gene annotations.

within this region (Figure 6D and Supplementary Figure S13).
Furthermore, we compared the histone modification marks in
this region and observed that the enhancer marks (H3K4me1,
H3K27ac) of peaks within this region in kidney are far greater
than those in liver (Figure 6E). The physical proximity and the
higher histone modification level in kidney indicated that this
region modulates expression of Gys2 through a long-range
promoter-enhancer loop in kidney.

Although we focused on tissue level and did not emphasize
the cell heterogeneity within tissues in this study, the benefits
of considering cell heterogeneity can be demonstrated through

the poor functional relevance of small intestine-specific differ-
ential activity genes. Unlike other tissues, the profiled cells of
small intestine were dissected from different regions including
duodenum, jejunum, and ileum. The detected co-accessibility
patterns (number of interactions) in small intestine are much
fewer than other tissues (Supplementary Figure S3A), which is
probably caused by cell heterogeneity. JRIM could be applied
to chromatin accessibility data with respect to cell populations
defined ahead to obtain accurate regulatory networks.

Comparing to Cicero, JRIM exploits the similarity between
tissues and generates cis-regulatory networks that can be

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa120#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa120#supplementary-data
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Figure 6. Illustration of two tissue-specific enhancer-promoter interactions revealed by the reconstructed networks. (A) Visualization of Gys2 promoter-related

interactions within region (chr6:142 000 000–142 750 000) in all 13 mouse tissues. The black dashed line indicates the location of Gys2 TSS. The red box indicates

the genomic location of validated liver-specific enhancers. The blue box indicates a region located from 280 to 320 kb downstream of Gys2 promoter. (B) Comparison

of regulatory networks of kidney and liver in the region from 25 kb downstream to 10 kb upstream of Gys2 promoter. The red box indicates the same genomic location

as in (A). (C) The 4C-seq signal in a 450 kb genomic region surrounding Gys2 in kidney and liver. The 4C-seq data generated in [58] depict the interaction frequencies of

Gys2 promoter. The red box and blue box are the same as in (A). (D) Spatial interaction networks around Gys2 TSS in kidney and liver estimated by FourCSeq using 4C-seq

data. The blue box indicates the same region as in (A). (E) Signals of three chromatin modification marks across the region located from 280 to 320 kb downstream of

Gys2 promoter. Grey boxes indicate the location of accessible peaks a–e.

compared directly. In a simple experiment, we found that
although the two scaling parameters of JRIM λ1, λ2 both
contribute to the sparsity of networks, the combined parameters
ω1, ω2 separately control the sparsity level and similarity among

reconstructed networks (Supplementary Figure S14). Especially
when fix ω1, enlarging ω2 brings almost no change in sparsity,
but the similarity among tissues is increasing. We regarded it as
an important merit relative to Cicero, and JRIM could generate

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa120#supplementary-data
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biologically plausible results based on the data-driven parameter
selection process (Materials and Methods).

Currently, most tissue-specific genes are identified on the
basis of differential expression or tissue diseases-related coding-
region mutations. In this paper, we identified tissue-specific
differential activity gene sets based on the changes of promoter-
associated interactions across tissues. We have shown that
tissue-specific differential activity genes tend to be highly
expressed in corresponding tissues (Figure 4A). Moreover, the
mutations within some DAG regions have been reported to
be associated with tissue-related complex diseases on mouse
or human. Taking heart as an example, the mouse embryos
harboring a cardiomyocyte-restricted mutation in the Myocd
gene exhibit myocardial hypoplasia and defective atrial [60],
recessive Ttn truncating mutations in human are known to
be associated with core myopathies [61] and Myh6 mutations
affect myofibril formation and are associated with congenital
heart defects [62]. The methodologies developed here for
identifying tissue-specific genes may provide new biomarkers
for the illustration of mutation and disease-related regulatory
mechanisms.

In this work, we mainly focused on the direct transcrip-
tional regulations, i.e. protein coding gene-related promoter-
enhancer interactions. However, as shown in the case study of
Scn5a, indirect interactions also play a critical role in regula-
tions of gene expression. Moreover, long intergenic noncoding
RNAs (lincRNAs) are known for important regulators of gene
expression [63], and aberrant epigenetic patterns in lincRNAs
might be associated with cancer development [64]. Therefore,
characterizing the regulatory functions of indirect interactions
and noncoding regions will be an intriguing problem. Deci-
phering modular structure of the reconstructed cis-regulatory
networks can be used to distinguish biological function units
and shed light on the understanding of noncoding genes as
well as noncoding mutations. Furthermore, a very interesting
question in single-cell biology is modeling the dynamic changes
during cell development. JRIM could detect dynamic changes of
cis-regulatory interaction networks during cell development by
analyzing time-series single-cell ATAC-seq data [24, 65, 66] or
coupling with ‘pseudotime’ algorithms such as Monocle 2 [67].

Key Points
• We introduce JRIM to jointly reconstruct cis-regulatory

interaction maps of multiple cell populations based on
patterns of co-accessibility in single-cell data.

• JRIM was applied to explore common and specific reg-
ulatory interactions from single-cell ATAC-seq dataset
containing ∼80 000 cells across 13 mouse tissues.

• Reconstructed common interactions indeed relate
to basic biological functions, and individual cis-
regulatory networks show strong tissue specificity and
functional relevance.

• Tissue-specific regulatory interactions are mediated
by coordination of histone modifications and tissue-
related TFs.
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The package of JRIM is available at http://page.amss.ac.cn/
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are public datasets.
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