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Background
Whole genome assemblies are becoming available for an increasing number of organ-
isms due to the reduced time and monetary costs of DNA sequencing. There has been 
more than a threefold increase in the number of assemblies in NCBI’s RefSeq database 
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Background:  To select the most complete, continuous, and accurate assembly for an 
organism of interest, comprehensive quality assessment of assemblies is necessary. We 
present a novel tool, called Evaluation of De Novo Assemblies (EvalDNA), which uses 
supervised machine learning for the quality scoring of genome assemblies and does 
not require an existing reference genome for accuracy assessment.

Results:  EvalDNA calculates a list of quality metrics from an assembled sequence and 
applies a model created from supervised machine learning methods to integrate vari-
ous metrics into a comprehensive quality score. A well-tested, accurate model for scor-
ing mammalian genome sequences is provided as part of EvalDNA. This random forest 
regression model evaluates an assembled sequence based on continuity, complete-
ness, and accuracy, and was able to explain 86% of the variation in reference-based 
quality scores within the testing data. EvalDNA was applied to human chromosome 14 
assemblies from the GAGE study to rank genome assemblers and to compare EvalDNA 
to two other quality evaluation tools. In addition, EvalDNA was used to evaluate several 
genome assemblies of the Chinese hamster genome to help establish a better refer-
ence genome for the biopharmaceutical manufacturing community. EvalDNA was also 
used to assess more recent human assemblies from the QUAST-LG study completed in 
2018, and its ability to score bacterial genomes was examined through application on 
bacterial assemblies from the GAGE-B study.

Conclusions:  EvalDNA enables scientists to easily identify the best available genome 
assembly for their organism of interest without requiring a reference assembly. 
EvalDNA sets itself apart from other quality assessment tools by producing a quality 
score that enables direct comparison among assemblies from different species.
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since August of 2015 [1] (Table 1). As of September 2021, there was a total of 237,740 
assemblies in NCBI RefSeq, consisting of 70,374 unique species. Multiple assemblies 
are often created for the same species by using different sequencing and/or assembly 
methods. However, a single genome assembly is typically selected as a reference genome 
to guide wet-lab and bioinformatics studies. To select the most complete, continuous, 
and accurate assembly for an organism of interest, comprehensive quality assessment of 
assemblies is necessary. Researchers should also be aware of any limitations posed by the 
level of completeness, continuity, and accuracy of their selected reference assembly.

Genome quality is usually assessed by metrics such as gap percent, N50, and the num-
ber of scaffolds that make up the assembly. However, these metrics only reflect the com-
pleteness and continuity of an assembly, and not the accuracy. For example, the best 
assembly is often considered the one with the highest N50, but the N50 metric increases 
even when contigs are joined incorrectly [2]. One way to evaluate the accuracy of an 
assembly is to compare it to an existing reference assembly for the organism of inter-
est through a direct sequence comparison. The assembly evaluation tool Quality Assess-
ment Tool for Genome Assemblies (QUAST) [3] and the set of quality evaluation scripts 
provided by the GAGE study [4] use this method. An updated version of QUAST for 
larger genome assemblies, QUAST-LG, uses direct sequence comparison as well as 
k-mer based statistics to evaluate assemblies [5]. However, many de novo assemblies, 
those built without the use of a reference, do not have a suitable assembly available for 
comparison.

To overcome this issue, several methods for quality evaluation that do not require an 
existing reference assembly have been developed. These methods include gene homol-
ogy methods such as those executed by Core Eukaryotic Genes Mapping Approach 
(CEGMA) [6] and the more recent Benchmarking Universal Single-Copy Orthologs 
(BUSCO) [7] programs. The results of these tools reflect the completeness and accuracy 
of a genome based on expected gene content. However, they only examine the accuracy 
of well-conserved genes and their copy numbers, rather than the whole genome.

The majority of other reference-independent quality assessment tools use information 
from mapping sequencing reads back to the genome of interest. Low mapping quality 
or read coverage can indicate errors in the assembly. Tools using this approach include 
Amosvalidate [2], ALE [8], FRCbam [9], SuRankCo [10], and REAPR [11]. Amosvali-
date was the first automated pipeline for misassembly detection that used read mapping 

Table 1  Assemblies in the NCBI RefSeq Databases in August 2015 [1] and in September 2021 
(counts taken on September 8th, 2021)

The ‘All’ taxonomic group contains viruses and viroids, invertebrates, and protists in addition to the groups listed here. The 
total assemblies and species counts for Sept. 2021 were determined from the ‘assembly_summary_refseq.txt’ file located at 
‘ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/’

Taxonomic Group NCBI RefSeq Aug. 2015 NCBI RefSeq Feb. 2019

Archaea 414 1,154

Bacteria 34,514 223,471

Fungi 167 403

Plants 62 132

Mammals 94 165

All 40,390 (for 12,964 species) 237,740 (for 70,374 species)
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information. However, the pipeline, designed in 2008, uses an older assembly format 
that is not produced by current assemblers. ALE (Assembly Likelihood Estimator) uses 
Bayesian statistics to determine the probability of an assembly being correct given a set 
of reads. The resulting ALE score can be used to compare different assemblies of the 
same genome, but the authors state that ALE should not be used to compare assemblies 
across organisms [8]. FRCbam provides a feature response curve for an assembly instead 
of a numeric score. The curve shows the trade-off between the accuracy and the conti-
nuity of the assembly. Similar to ALE, FRCbam can only be used to compare different 
assemblies of the same organism. SuRankCo uses supervised machine learning where 
the training data includes metrics from read mapping to rank, rather than score, scaf-
folds/contigs within a single assembly. REAPR examines the quality of an assembly base-
by-base and provides multiple quality metrics derived from read mapping.

Despite the development of these important tools, there is still need for a reference-
independent tool that provides a single quality score reflecting the completeness, conti-
nuity, and accuracy of an assembly and can be used to compare assemblies from different 
organisms. Here, we present a novel pipeline called Evaluation of De Novo Assemblies 
(EvalDNA) to address this need. EvalDNA assists in the modeling of genome qual-
ity through supervised machine learning, and uses the subsequent model to estimate a 
single, comprehensive quality score for a given assembled sequence. The quality score 
being learned is based on the number of differences in an alignment between a training 
sequence and its reference, calculated using DNAdiff [12].

EvalDNA calculates completeness and continuity metrics, and uses output from SAM-
tools [13] and REAPR [11] to generate accuracy metrics. A user-specified model, devel-
oped from supervised machine learning, is then used to estimate the quality score using 
a subset of these metrics. We developed and tested a model for scoring mammalian 
assemblies which is provided as part of EvalDNA. The resulting scores from EvalDNA 
can be used to directly compare chromosome sequences within a single assembly, com-
pare multiple genome assemblies from the same organism, and even compare assem-
blies from different organisms as long as each assembled sequence is scored using the 
same model.

EvalDNA was applied to human chromosome 14 assemblies from the Genome Assem-
bly Gold-standard Evaluations (GAGE) study [4] to rank genome assemblers and to 
compare EvalDNA to two other reference-independent quality evaluation tools, ALE 
and FRCbam. EvalDNA was also applied on more recent, complete human assemblies 
from the 2018 QUAST-LG study. In addition, EvalDNA was run on several existing Chi-
nese hamster (CH) genome assemblies to compare its results to that of a manual rank-
ing of the assemblies described in Rupp et  al. [14] as well as rankings from ALE and 
FRCbam. This comparison provided insight regarding the performance of EvalDNA on 
organisms that were not used in the training data and confirmed that EvalDNA can be 
used to select the highest quality assembly. Scores for each chromosome from the 2018 
CH PICR reference genome were also estimated using EvalDNA and compared to chro-
mosomes from the previous CH reference assembly and the reference assemblies for 
human, mouse, rat, and cow.

Finally, error simulation of PICR chromosomes and scaffolds was done to examine 
how the EvalDNA score changes as the amount of errors within an assembled sequence 



Page 4 of 26MacDonald and Lee ﻿BMC Bioinformatics          (2021) 22:570 

increases and to assess EvalDNA’s potential to score scaffolds. The mammalian model’s 
potential to score plant and bacterial genomes was also briefly examined by applying 
EvalDNA to several versions of the rice genome assembly and several bacteria genome 
assemblies from the GAGE-B study [15].

Implementation
Overview of the EvalDNA tool

EvalDNA is provided as a Docker instance and is composed of three parts; the Python 
script to calculate the quality metrics of a given assembly, the scoring model written in 
R, and the R script to run the model on the calculated quality metrics. Users have two 
options when using EvalDNA. If the sequence of interest is from a mammalian genome, 
the user can use EvalDNA with the provided mammalian model. This option would 
require the user to run the EvalDNA metric calculation pipeline to collect quality met-
rics for the sequence of interest and then provide the resulting list of metrics to the ‘run 
model’ script to get the final quality score. Here, we focus mainly on this type of usage.

The second option is to create a new scoring model based on a set of assembled 
sequences each with a reference sequence. These assembled sequences could be derived 
from organisms with a high-quality reference genome that are related to the organism of 
interest. A script is provided to align each of the training sequences to their correspond-
ing reference sequence to get the target quality score. However, scaling of the scores 
may still be required (see the “Reference-based quality scoring” section). A model would 
need to be trained on this data and finalized in R, and then loaded into the ‘run model’ 
script. More on this second type of usage can be found in the EvalDNA documentation.

The steps of the EvalDNA pipeline are shown in Fig. 1. The pipeline requires a configu-
ration file, the sequence(s) of interest in FASTA format, and either a set of paired-end 
DNA sequencing reads in FASTQ format or a BAM file containing the reads mapped 
to the sequence(s) of interest. If the raw reads are provided, EvalDNA will run SMALT-
map [16], which is the recommended read mapper for REAPR, to map the reads to the 

Fig. 1  Computational workflow of EvalDNA. EvalDNA requires the assembly of interest in FASTA format, a 
configuration file, and Illumina paired read data in either FASTQ or BAM file format. EvalDNA first calculates 
contiguity and completeness metrics, and then calculates accuracy metrics based on the output from 
running REAPR and SAMtools. This part of EvalDNA produces a list of metrics that will be given to the 
scoring model (written in R) to estimate the overall quality score for the assembly. The red arrows signify the 
sequence of steps EvalDNA goes through to calculate various metrics, while the gray arrows signify input and 
output of data
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provided sequence, creating the BAM file. If the BAM file is provided, EvalDNA can skip 
the SMALTmap step.

The pipeline calculates the metrics that are used in the mammalian model as well as 
additional metrics which are still insightful. The selection of metrics used in the model 
is described in the subsection “Feature selection”. The pipeline first calculates a set of 
commonly used completeness/contiguity metrics, including percent gaps, N50, and the 
number of scaffolds/contigs. It then executes REAPR [11], followed by SAMtools stats 
[13] to calculate various metrics reflecting the accuracy of the given sequence(s). Met-
rics used in model development are normalized by chromosome length. Once the met-
rics are calculated and normalized, they are used as input for the R script that applies a 
user-specified quality model to estimate the assembly quality score.

Assembly builds

Chromosomes from the current and previous builds of the rat (Rnor6) and mouse 
(GRCm38) reference genomes were downloaded from corresponding organisms’ 
directory on ftp://​ftp.​ncbi.​nlm.​nih.​gov/​genom​es/. For instance, mouse chromosome 
1 from build37.2 was downloaded from ftp.ncbi.nlm.nih.gov/genomes/M_musculus/
ARCHIVE/BUILD.37.2/CHR_01. The FASTA files for each chromosome contained both 
assembled scaffolds and unplaced scaffolds. Chromosomes from the current human 
reference genomes (GRCh38) and two assembly builds of another human genome 
(NA19240) were also used. The NA19240 assembly builds were selected as a training 
data source because they were built from sequencing reads from a single person. There-
fore, differences between reads sequenced from that person’s DNA and the assembly are 
most likely due to errors in the assembly, rather than true differences among individuals. 
Deciphering what a sequence difference means in an assembly built from a pool of indi-
viduals (such as GRCh38) would be more difficult. Assembly build information can be 
found in Additional file 1: Table S1.

Training data

Training data for the provided mammalian model was collected from rat, mouse, and 
human assembly builds. Each training instance consists of a set of quality metrics for 
a single chromosome (see the “Quality metrics” section) and its corresponding quality 
score (see the “Quality scoring” section). Chromosomes from publicly available assem-
blies and chromosomes with simulated errors were used, totaling 416 training instances. 
The full set of training data is provided as Additional file 2.

Simulated chromosomes

SINCsimulator [17] was run on a subset of the chromosomes described above to gen-
erate errors in the existing chromosomes. Differing levels of single nucleotide poly-
morphisms, insertions/deletions (indels) and copy number variants were provided to 
generate chromosomes with differing levels of quality. This resulted in 123 chromosomes 
with simulated errors. A custom script was used to simulate gaps in 17 chromosomes as 
well. Both of these steps were done to ensure the model was trained on chromosomes of 
lower quality than ones that would be submitted to NCBI RefSeq or GenBank.

ftp://ftp.ncbi.nlm.nih.gov/genomes/
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Sequencing reads

20.5 gigabase pairs (Gbp) of Illumina paired-end read sequencing data from ERR319183, 
ERR316497, ERR316496, and ERR319170 (Bioproject PRJEB2922) was used as input 
for the metric calculation portion of EvalDNA for all rat assemblies. The insert size was 
consistent among these runs, ranging from 473 to 475 base pairs (bp), a requirement 
for REAPR. 25.7 Gbp of Illumina paired-end read sequencing data from ERR1856364 
(Bioproject PRJEB19654, insert size 550  bp) [18] was used for the mouse assemblies. 
20.2 Gbp of Illumina paired-end read data from the NA19240 human sequencing run 
SRR2103647 (Bioproject PRJNA288807, insert size 350 bp) was used for the evaluation 
of both GRCh38 and NA19240 assemblies.

All reads were trimmed using Trim Galore [19] with a quality score cut-off of 26. These 
reads were used to calculate the accuracy metrics in the training data for the mammalian 
models. We strongly recommend using at least 10 × coverage of reads with an insert size 
of approximately 350–550 bp when scoring a novel assembled sequence with the mam-
malian model to stay consist with the amount and insert size of the reads used to create 
the training data.

Quality metrics

Quality metrics for each training chromosome were calculated using the metric portion 
of the EvalDNA pipeline. Basic metrics reflecting the completeness and continuity of the 
chromosome assembly, which include gap percent, N50, N90, scaffold/contig number, 
and average scaffold length, were collected first.

Several external programs were then run to collect metrics reflecting the accuracy of 
the assembly. SMALTmap within REAPR maps user-provided reads to the assembly of 
interest. REAPR then scans the assembly base-by-base identifying possible errors based 
on the alignment file. The number of bases in each error type, such as bases in clipped 
reads or low coverage regions, is converted into a percent of the total number of bases 
to normalize by assembly/chromosome length. Finally, SAMtools is used to calculate the 
number of read pairs that aligned to the assembly in the expected orientation and dis-
tance from one another. These proper read pairs were divided by the number of reads 
mapped to the assembly to create a proper pair percent metric. Further details on the 
complete set of metrics and any corresponding normalization can be found in Addi-
tional file 1.

Reference‑based quality scoring

The score for each training instance was calculated based on the NUCmer [12] align-
ment to the most recent build of the corresponding chromosome. For example, each 
build of chromosome 1 (query) from the rat genome assembly was aligned to the Rnor6 
build chromosome 1 (reference). A score derived from the alignment of bases from the 
assembly of interest to its reference reflects both the amount and size of misassemblies 
(translocations, inversions, relocations) and local errors (single base errors and small 
indels) because the alignment in these areas will either contain inserted gaps or base 
differences. Contiguity is also reflected by the gaps in the alignment as well, although 
not as strongly as in metrics such as the corrected N50 or the rankings from FRCbam. 
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The method for calculating the quality score works based on the assumption that more 
recent builds of an assembly are more accurate. This assumption is supported by the 
general quality metrics of the assemblies as well as the continuous improvements in 
DNA sequencing and assembly methods.

For each NUCmer alignment, the number of bases differing between the two 
sequences were found using DNAdiff. This value was used in the following equation to 
get the percent of matching (or correct) bases:

Using this method, the self-to-self alignment for each chromosome from the most 
recent assembly will have a percent of matching bases of 100. However, in practice, 
not all the chromosomes from the most recent build of an assembly will be of identi-
cal quality and neither will chromosomes from different organism assemblies. Therefore, 
this ‘percent of matching bases’ value cannot directly be used as the score, and instead 
requires two rounds of scaling; one among the chromosomes in a single assembly (inter-
nal scaling) and another to scale between organisms (external scaling).

Internal scale factors were determined by calculating the distance between each chro-
mosome and the ideal set of metrics using Euclidean distance. This ideal set of metrics 
are metrics that would be produced from a perfectly accurate, continuous, and complete 
sequence, i.e. gap percent is 0, normalized N50 is 100, percent of error free bases is 100 
etc. The best chromosome (i.e. the one with the lowest distance from the ideal chromo-
some metrics) for each organism kept the score of 100, while the other chromosomes 
‘percent of matching bases’ values were scaled based on differences in the distances from 
the ideal metrics.

A similar process was used to determine the external scale factors. The distances 
between each organism’s best chromosome and the ideal chromosome metrics were 
used to determine the best overall chromosome. This best chromosome was chromo-
some 2 from human NA19240 and kept its score of 100. Again, the distances were used 
to scale the other organisms’ chromosomes to get the final quality score.

This method allows scores from across species to be compared and also provides con-
text for the EvalDNA score. A chromosome with an EvalDNA quality score higher than 
100, for instance, is predicted to be of higher quality than the chromosomes from the 
human reference assembly as well as chromosomes of NA19240, a more recent Illumina/
PacBio hybrid assembly of the human genome.

Model development

Feature selection

To determine which of the 13 quality metrics (features) calculated by EvalDNA were 
correlated with the target quality scores in the training data, the Pearson correlation 
(r) between each metric and target quality score was calculated. Quality metrics with a 
Pearson correlation value between -0.1 and 0.1 were removed before modeling as these 
metrics only have a very weak linear relationship to the reference-based target qual-
ity score. The presence of multicollinearity/redundancy among the metrics was iden-
tified by calculating the Pearson correlation value between each pair of metrics. Since 

Percent Matching Bases =
Length of Reference − Total Differences

Length of Reference
∗ 100
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multicollinearity among metrics can reduce the accuracy of a model, metrics were fur-
ther filtered by calculating the joint mutual information using the ‘jmim’ function of the 
Praznik R package [20] and the percent increase in MSE from the importance function 
of the randomForest R package [21]. Finally, the ‘regsubsets’ function (exhaustive search) 
from the R leaps package [22] was then used to create and test linear regression models 
from subsets of the remaining features (up to 6 metrics). The subset of metrics that cre-
ated the model with the lowest error and that did not use the links metric was used for 
the mammalian model.

Model training, testing, and selection

Model development and testing was carried out using R statistical software [23]. All 
models tested were from the Caret R package [24]. The full set of training data was ran-
domly split into two subsets where 80% of the data became the training set and 20% 
became the testing set. This division resulted in 333 training instances and 83 testing 
instances.

First, a general linear model using the selected metrics was trained using repeated 
cross-validation (CV) with 10 folds and 10 repeats. An elastic net model was also trained 
where cross-validation was used to tune the alpha and lambda hyper-parameters. The 
models were then applied to the test data to calculate the r-squared and root mean 
squared error (RMSE) values.

In addition, other types of supervised machine learning models were tested. Models 
tested included K-Nearest Neighbors (KNN) regression, Random Forest (RF) regres-
sion, and Support Vector Machines (SVMs) with linear and polynomial kernels. tenfold 
cross-validation with 5 repeats was used to tune the KNN model. tenfold cross-valida-
tion was used to tune the RF model and fivefold cross-validation was used to tune the 
SVMs. Each model was applied to the test data to calculate the r-squared and RMSE val-
ues. More information about the models is provided in Additional file 1. The model with 
the lowest RMSE was chosen to be the final model for scoring mammalian assembled 
sequences.

EvalDNA pipeline application

Application to Chinese hamster genome assemblies

EvalDNA was applied to new assemblies of the Chinese hamster (CH) genome using the 
mammalian model. Chromosomes from each meta-assembly described in Rupp et  al. 
[14] as well as the previous RefSeq assembly (GCF_000419365.1) [25] and the chromo-
some-sorted assembly (GCA_000448345.1, CSA) [26] were scored. EvalDNA was also 
used to score each assembly as a whole with no chromosome separation information 
provided and including any unplaced contigs.

Illumina reads from SRR954916, SRR954917, and SRR954918 (sequencing project 
PRJNA167053) [25] were trimmed using a quality cutoff of 26 and a length cutoff of 90 
(with the paired option) in Trim Galore. A random subset of trimmed pairs, totaling 20 
Gbp, was selected as input for EvalDNA. These sequencing runs were chosen because 
they had an insert size (∼500 bp) similar to the reads used in the training data.



Page 9 of 26MacDonald and Lee ﻿BMC Bioinformatics          (2021) 22:570 	

Comparison to other quality evaluation tools

The manual ranking of the Chinese hamster genome assemblies from Rupp et al. [14] 
were compared to rankings from EvalDNA, FRCbam, and ALE. Normalized EvalDNA 
scores, scaled between 0 and 1, for the CH genome assemblies were compared to nor-
malized ALE and FRCbam scores. FRCbam and ALE were run using the same Illumina 
reads used for EvalDNA (described previously). For ALE, the BAM file was created 
using Bowtie2 [27] (with the ‘-very-sensitive’ parameter) instead of SMALTmap. For 
an unknown reason, ALE was unable to run when given BAM files created with 
SMALTmap.

FRCbam was run using the BAM files created with SMALTmap within EvalDNA. 
FRCbam required tuning for the CE-max and CE-min parameters for each set of chro-
mosomes (i.e. chromosome 8 from all assemblies had the same CE-max and CE-min). 
Estimation of these parameters was done by first graphing the CE-stats distribution pro-
vided by FRCbam without specifying the parameters and then using the 0.95 and 0.05 
quantile values from a fitted normal curve as the CE-max and CE-min, respectively. 
Finally, for each set of chromosomes, the smallest CE-max value was selected to be the 
CE-max value and the highest CE-min was selected to be the CE-min value. For FRC-
bam scores, we used the x-value (feature threshold) where the y-value (approximate per-
cent coverage) reached 100% coverage.

Quality scoring of GAGE assemblies

The human chromosome 14 assemblies were downloaded from the GAGE datasets web-
site [28]. EvalDNA was run on each assembly to estimate its quality score and subse-
quently, rank the assemblers. 20.1 Gbp of trimmed paired-end reads from SRR2103647 
was given as input. The reads were quality trimmed using Trim Galore with the quality 
minimum set to 26 to ensure high-quality reads. The EvalDNA results were used to rank 
the assemblies and the rankings were compared to those reported in the ALE and FRC-
bam papers.

ALE was run on the assemblers using identical parameters to those stated in the sup-
plementary information for the ALE paper. We were able to replicate their ranking of 
the assemblers, and additionally scored the CABOG [29] assembly. We also reran ALE 
with the same parameters, but with a more recent version of Bowtie2 (version 2.3.3.1). 
For FRCbam scores, we used the x-value where the y-value either reached its maximum 
or 100 percent depending on which came first. EvalDNA, FRCbam, and ALE scores were 
normalized to be between 0 and 1 for comparison.

Scoring of other assemblies

EvalDNA was run on chromosomes from the reference cow genome (ARS-UCD1.2, 
GCF_002263795.1). Illumina reads from SRR5753530 were trimmed using a quality cut-
off of 26 and a length cutoff of 90 (with the paired option) in Trim Galore. These reads, 
totaling 20.4 Gbp, were selected to use as input for EvalDNA. Read pairs had an insert 
size of 600 bp.

EvalDNA was also run on several Japanese rice (Oryza sativa ssp. Japonica) assem-
blies as well as the chromosomes from the reference assembly (Os-Nipponbare-Refer-
ence-IRGSP-1.0, GCF_001433935.1). The older versions of rice assemblies examined 
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were GCA_000005425.2 and GCA_000149285.1. All assemblies and the sequencing 
reads used were from rice of the Nipponbare cultivar. Illumina reads (250 bp long) from 
SRR547960, SRR547961, SRR547959, SRR547963, and SRR547962 were trimmed using 
the same parameters for the other organisms. The sequencing reads consisted of 11.5 
Gbp and was used as input for EvalDNA. Read pairs had an insert size (450 bp) similar 
to the reads used in the training data.

In addition, several full human assemblies with published quality and completeness 
metrics from the QUAST-LG study [5] were evaluated using EvalDNA. Assembly quality 
was estimated for full genome assemblies from individuals, labelled HG004, built by var-
ious assemblers. Contigs and scaffolds less than 3000 bp removed from each assembly 
before EvalDNA assessment to stay consistent with the QUAST-LG study. Reads, reach-
ing 10 × coverage of the human genome, were randomly sampled from https://​ftp-​trace.​
ncbi.​nlm.​nih.​gov/​Refer​enceS​amples/​giab/​data/​Ashke​nazim​Trio/​HG004_​NA241​43_​
mother/​NIST_​Illum​ina_​2x250​bps/​reads/. EvalDNA scores were compared to a variety 
of continuity, completeness, and accuracy metrics provided in the QUAST-LG study that 
were calculated using the human genome assembly, GRCh38, as the reference assembly.

Error simulation and scoring of PICR chromosomes and scaffolds

Single nucleotide errors were simulated from 5–30%, in increments of 5%, in each chro-
mosome from CH PICR using a custom script. Errors at the same rates were also sim-
ulated in scaffolds of various lengths from CH PICR chromosome 1. Errors could be 
simulated in any location, except for gap regions, across the length of the sequence.

EvalDNA application on bacterial assemblies

The GAGE-B study evaluated the quality of several bacterial assemblies [15]. We applied 
EvalDNA on the scaffold assemblies of three different bacteria species (R. sphaeroides, 
M. abscessus, and V. cholera) available on the GAGE-B website [30]. These assemblies 
were created with a variety of different assembly tools and using HiSeq data provided 
on the GAGE-B website. Scaffolds less than 500 bp long were removed from the down-
loaded genome assemblies to replicate what was done in the GAGE-B study. EvalDNA 
was run, using the available HiSeq data, on the reference assembly for each bacteria as 
well as the output from seven different assemblers.

EvalDNA was also run on two assembly versions of the Pseudomonas syringae pv. acti-
nidiae (Shaanxi_M228 strain) genome (GCF_000344475.2 and GCF_000344475.3). This 
bacteria was selected because its genome length is more than 5 Mbp, there was available 
Illumina paired-end sequencing data (SRR8177059), and there were multiple versions of 
the same assembly where the more recent version is an improved version of the previ-
ous. The raw Illumina paired ends were trimmed using Trim Galore with a quality cutoff 
of 26 and a length cutoff of 50 bp before given as input into EvalDNA. The two assem-
blies were also compared using NUCmer [12] by first aligning the two assemblies with 
the more recent version as the reference and the older version as the query. The show-
tiling command was then used with the ‘-p’ parameter to convert the query assembly 
into a pseudomolecule based on overlaps and gaps determined by the alignment. This 
pseudomolecule was then aligned with NUCmer to the reference for visualization using 
Dot [31].

https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG004_NA24143_mother/NIST_Illumina_2x250bps/reads/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG004_NA24143_mother/NIST_Illumina_2x250bps/reads/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG004_NA24143_mother/NIST_Illumina_2x250bps/reads/
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Results
Training data summary

416 training instances were collected from human, rat, and mouse genome builds. The 
training data included 276 chromosomes taken directly from publicly available assembly 
builds, 140 chromosomes with simulated errors, and 17 chromosomes with simulated 
gaps. Summary statistics (Additional file 1: Table S2) and histograms (Additional file 1: 
Figure S1) for the metrics in the training data can be found in Additional file 1 as well as 
the metric definitions.

Feature selection

The Pearson correlation (r) between each metric and target quality score in the training 
data was calculated (Table 2). Metrics that were not correlated with quality scores in the 
training data (-0.1 < r < 0.1) were removed from the model. These included metrics based 
on the contig number and REAPR’s values for ‘fragment coverage distribution (FCD) 
error within contigs’ and ‘collapsed repeats’.

Pearson correlation between each set of metrics showed that more feature selec-
tion would be beneficial due to the presence of multicollinearity (Fig. 2). Calculation of 
joint mutual information among the remaining metrics showed that metrics based on 
REAPR’s’low read coverage’ and’FCD error over gap’ shared redundant information with 
other metrics regarding the target score value and could be removed.

The %INCMSE importance metric from the randomForest R package was also exam-
ined to see which metrics caused the smallest increase in mean squared error (MSE) 
when replaced by a randomly permuted variable in a random forest regression model. 
This method suggested that the ‘proper pair percent’ and ‘FCD error over gap’ metrics 
could be removed. Results of these feature selection methods are provided in Additional 
file 1: Tables S3 and S4.

Subsets of the remaining features (normN50, gap_perc, clip, error_free_bases, links, 
low_fc_over_gap, low_fc_in_contig) were used to generate linear regression models to 

Table 2  The Pearson correlation coefficient between each metric and the reference-based quality 
score in the training data that was used to create mammalian model

Quality metric Pearson 
correlation

normN50 0.570

gap_perc − 0.300

prop_pair_perc 0.204

FCD_err_in_contig − 0.099

FCD_err_over_gap − 0.295

low_fc_in_contig − 0.521

low_fc_over_gap − 0.579

links − 0.594

clip − 0.476

coll_repeat − 0.071

low_read_cov − 0.402

error_free_bases 0.701

norm_contig_number 0.025
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see which metrics produce high performing models (Additional file 1: Figure S2). The six 
best performing models all produced an r-squared of 0.74 with the top two models hav-
ing the smallest residual sum of squares values. NormN50, gap_perc, clip, error_free_
bases, low_fc_over_gap, and low_fc_in_contig were chosen as the metrics for subsequent 
modeling of the quality score. Low_fc_in_contig was chosen rather than links because 
while links has a negative correlation with quality score (Table 2), it is given a positive 
weight within the linear regression model. This suggests that there may still be concerns 
with multicollinearity when using the links metric.

It is important to note that the metrics selected for the model do allow a perfect score 
to be calculated for a portion of an assembly, either a contig, scaffold, or chromosome. 
EvalDNA with this model would assign as a score of 100 when NormN50 is 100, gap_
perc is 0, clip is 0, error_free_bases is 100, low_fc_over_gap is 0, and low_fc_in_contig 
is 0, which could occur for any sized assembly which had no gaps or errors. Therefore, 
the user should be aware what they are scoring (a full assembly, a chromosome, or a 
smaller piece of an assembly). If a user is interested in scoring only full assemblies, a 
model including a metric reflecting the percent of aligned sequencing reads could be 
used instead of the provided model.

Model selection

RMSE and r-squared values for each possible model type were calculated (Table  3). 
These values reflect each model’s performance on the test set. More specifically, the 
r-squared values reflect the proportion of the reference-based quality score that can be 
explained by each model, while the RMSE values reflect the differences between the ref-
erence-based quality scores and those predicted by each model.

The best performing model was random forest regression with 500 trees and an mtry 
value (number of variables tested at each split) of 2. This model produced an RMSE of 

Fig. 2  Pearson correlation among all metrics. Cells with an X denote metrics with insignificant correlation. 
Dark blue represents a stronger positive correlation, while dark red represents a stronger negative correlation
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12.697 and an r-squared of 0.860 when applied to the testing data (Fig. 3). The random for-
est model was retrained on the full data to develop the final model that would be used to 
predict the quality scores of mammalian genome assemblies.

Once the final model was selected, we wanted to confirm that the source of the assem-
bled sequences in the training set did not impact the ability of the model to predict quality 
scores. There were no clear patterns regarding the residuals of the scores versus organism 
source (data point shapes) or regarding the residuals of the scores versus the generation 
method of the chromosomes i.e. if they were real, simulated, or had gaps added (data point 
colors) (Additional file 1: Figure S3). This observation suggests that the model’s ability to 
predict quality scores of instances within the training/testing data was not impacted by 
organism or generation methods.

Applications of EvalDNA and comparison to other quality evaluation tools

Evaluating assemblers used in the GAGE study

EvalDNA with the mammalian model was used to score and rank the different assemblies 
of human chromosome 14 from the GAGE study [4, 28]. The rankings were compared to 

Table 3  The r-squared and RMSE values for each type of regression model that was tested to select 
the best performing model (highlighted in bold) to be the mammalian model

Regression model RMSE R-squared

General linear 16.413 0.775

Elastic net 16.520 0.773

K-nearest neighbors 13.615 0.840

Random forest 12.697 0.860
SVM (linear) 17.190 0.774

SVM (polynomial) 14.363 0.843

Fig. 3  Performance of the random forest regression model on test data. Estimated quality scores for the test 
instances are plotted against the reference-based quality scores of the test instances. A 100% accurate model 
would produce the blue line with an r-squared equal to 1. The line of best fit for the plotted data is shown as 
the red line and has an r-squared of 0.8597
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rankings generated during the original benchmarking tests for ALE and FRCbam as well 
as the ranking generated by running ALE with an updated version of Bowtie (Fig. 4A). 
Normalized EvalDNA scores (scaled to be between [0,1]) were compared to the two sets 
of normalized ALE scores and the normalized FRCbam scores (Fig. 4B).

EvalDNA and FRCbam selected ALLPATHS-LG [32] as the best assembler, while the 
ALE runs ranked ALLPATHS-LG as the second best with the CABOG assembler [29] 
ranking first. EvalDNA ranked the assembly produced by Velvet [33] as the lowest qual-
ity assembly, which is not surprising since it is made up of approximately 45% gaps. The 
Velvet assembly was ranked second to last by the ALE runs and third to last by FRCbam.

One key difference among the rankings is that EvalDNA ranked the ABySS [34] assem-
bly much higher (second place) than either ALE or FRCbam (last place). ALE and FRC-
bam most likely ranked ABySS the lowest because the assembly is highly fragmented. 
However, the ABySS assembly is also one of the more accurate assemblies with fewer 
scaffold misjoins, inversions, relocations, and indels than the other assemblies [15]. 
ABySS also has a very low gap percent (0.53%). This observation suggests that EvalDNA’s 
mammalian model may value accuracy and completeness (in regards to the lack of gaps) 
over continuity more so than ALE or FRCbam. In addition, examining the normalized 
EvalDNA scores does show that ABySS, while second in the ranking, scored only slightly 
better than the CABOG, MSR-CA [35], and BAMBUS2 [36] assemblers.

Fig. 4  Comparison of quality evaluation methods on human chromosome 14 assemblies (from the 
GAGE study). A The EvalDNA ranking of assemblers used to build the human chromosome 14 assembly 
are compared to the rankings from ALE and FRCbam. The highest quality assembly is given a rank of 1. B 
EvalDNA and ALE scores for the human chromosome 14 assemblies were normalized (scaled to be between 
[0, 1]). ALE paper scores were calculated using the same parameters and version of Bowtie described in Clark 
et al. The ALE redone scores were calculated with an updated version of Bowtie. FRCbam normalized scores 
were derived using the x-value (feature threshold) where the y-value (percent approximate coverage) was 
maximum for each FRCbam curve
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Scoring of Chinese hamster assemblies for reference assembly selection

In 2018, four assemblies for the Chinese hamster (CH) were built using PacBio sequenc-
ing data and existing Illumina data. Manual ranking of these new assemblies as well 
as two Illumina-only assemblies from 2013 was completed to select the best reference 
genome for CH and Chinese hamster ovary (CHO) cells [14]. The two Illumina-only 
assemblies included the 2013 CH RefSeq assembly [25] and the 2013 chromosome 
sorted assembly (CSA) [26]. EvalDNA results were compared to this ranking to evalu-
ate its performance on real assemblies outside of those used in the training data and if 
it could be used to select the best assembly to be the new reference genome. EvalDNA 
with the mammalian model was used to score the six different CH assembly versions 
(Table 4) as well as each chromosome from the assemblies (Table 5). Scaffolds and con-
tigs were assigned to chromosomes based on the coverage of reads mapped from each 
of the CSA chromosomes. For CSA, sequencing was done on chromosomes after they 
were individually isolated using flow cytometry. However, chromosomes 9 and 10 could 
not be separated due to their size similarity [26]. Therefore, for each assembly, scaffolds 
could be assigned to chromosomes 9 and 10, but not separately, and these chromosomes 
together are given a single score. The full CH assemblies were also assessed by FRCbam 
and ALE.

EvalDNA and the manual ranking selected PICR as the CH assembly with the highest 
overall quality (Fig. 5A), with PIRC a close second. FRCbam ranked PICR and PIRC as 

Table 4  The EvalDNA quality scores for each Chinese hamster genome assembly

Assembly Mammalian model Model 
without 
N50

PICR (2018 RefSeq) 70.22 88.47

PIRC 70.20 88.41

IPCR 57.56 59.29

IPRC 57.57 59.22

2013 RefSeq 58.72 64.35

CSA 43.21 40.60

Table 5  The EvalDNA quality scores for each chromosome of the Chinese hamster genome 
assemblies

The highest score for each chromosome is highlighted in bold

Chromosome PICR PIRC IPCR IPRC RefSeq CSA

1 72.04 71.91 60.11 59.26 59.58 41.51

2 71.00 71.20 58.76 57.37 56.92 49.90

3 65.37 65.42 55.56 54.51 55.21 39.55

4 68.75 68.63 54.71 56.01 56.15 42.49

5 68.02 68.21 40.01 63.13 56.38 47.48

6 68.21 68.24 62.77 56.70 56.40 50.27

7 68.95 68.66 55.89 54.77 55.80 46.44

8 63.99 63.84 52.21 56.45 54.47 52.83

9,10 48.31 52.32 39.53 51.92 47.62 47.27

X 53.30 52.51 49.30 53.14 48.72 30.44
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the highest, but the curves were too close to distinguish between them (Additional file 1: 
Figure S4). All four evaluation methods agreed that CSA was of the poorest quality. 
However, EvalDNA and ALE both scored RefSeq higher than IPCR and IPRC, while the 
manual ranking and FRCbam had this order switched. Examining the ALE and EvalDNA 
normalized scores more closely (Fig. 5B) show that these three assemblies are very simi-
lar regarding quality (within 0.05 normalized units). The difference in quality may be too 
small for EvalDNA to meaningfully distinguish between these assemblies.

The accuracy of EvalDNA scores and ranking of CH assemblies was also confirmed 
by calculating the number of differences between each CH assembly and the ‘refer-
ence’ genome (PICR). This method allows each assembly to get a score, calculated the 
same way the training instances were scored with the exception of not being scaled 
(see “Quality Scoring” section in Methods). The difference between each assembly’s 
score and a score of 100 (PICR’s score from aligning PICR to itself ) should be similar 
to the difference between the corresponding assembly’s EvalDNA score and PICR’s 
EvalDNA score. The differences were indeed similar (Additional file 1: Table S5), con-
firming that EvalDNA can be used to accurately evaluate assemblies from organisms 
that were not used in the training set.

Fig. 5  Comparison of quality evaluation methods on Chinese hamster genome assemblies. A Comparison of 
the EvalDNA ranking of the multiple CH genome assemblies to a manual ranking, and rankings from ALE and 
FRCbam. The highest quality assembly is given a rank of 1. B EvalDNA and ALE scores for the CH assemblies 
as well as the rankings from Rupp et al. and FRCbam were normalized (scaled to be between [0, 1]). FRCbam 
normalized scores were derived using the x-value (feature threshold) where the y-value (percent approximate 
coverage) was maximum for each FRCbam curve
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Comparing CH assembly quality to other organism reference assemblies

The PICR assembly was selected by the community to be the new Chinese hamster 
reference assembly (GCF_003668045.1) [14]. EvalDNA scores for the PICR chromo-
somes were compared to scores from the 2013 CH RefSeq assembly and the refer-
ence assemblies for human (GCF_000001405.38), mouse (GCF_000001635.2), rat 
(GCF_000001895.5), and cow (GCF_002263795.1). The majority of the PICR CH 
assembly chromosomes are of higher quality than those of the 2013 CH RefSeq 
assembly and the rat reference assembly (Fig. 6A). Several chromosomes also scored 
as high as those from the mouse reference assembly.

EvalDNA was also run on each chromosome from the rice (Oryza sativa) refer-
ence genome (GCF_001433935.1) (Fig. 6A). While the model was trained using mam-
malian data, the results of EvalDNA with this model on rice also seem reasonable. 
Two older versions of the rice assembly, Build4.0 (GCA_000005425.2) and OrySat_
Sep2003 (GCA_000149285.1), were scored. Build4.0 scored within 1 unit of the most 
recent version, while OrySat_Sep2003 scored significantly lower (more than 30 units). 
The similar scores between Build4.0 and the most recent reference is not surprising 
because the accuracy of Build4.0 was already high with an error rate estimated to be 
less than one per 10,000 nucleotides and possibly as low as 0.15 errors per 10,000 
nucleotides [37]. Results of the rice assemblies are given in Additional file 1: Table S6.

The scores allow comparison of assemblies across organisms in regards to con-
tinuity, completeness, and accuracy. Changing the model to only examine a subset of 
these categories can give more specific insight into where an assembly excels or needs 
improvement. For instance, we scored the chromosomes with a different random for-
est regression model which does not include the normalized N50 metric (Fig. 6B). This 
model, described in Additional file 1, enables comparisons across organisms based on 
completeness and accuracy only. The model shows a large increase in the accuracy and 

Fig. 6  EvalDNA quality scores for chromosomes from various genome assemblies. A EvalDNA quality 
scores for chromosomes from CH PICR, CH 2013 RefSeq, and the mouse, rat, human, cow, and rice reference 
genome assemblies. B EvalDNA quality scores for the same chromosomes but calculated using a model that 
does not include the normalized N50 metric
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completeness of the 2018 CH PICR reference assembly over the 2013 CH RefSeq assem-
bly. In addition, because each chromosome of the cow and rice assemblies contains just a 
single scaffold, the original model scored each chromosome from these organisms much 
higher than the model that does not use the normalized N50 metric (Fig. 6). The dispar-
ity among the scores predicted between these two models does confirm that scores from 
different models are not directly comparable.

EvalDNA scores correlate with error simulation rates, but not linearly

To examine how changes in the amounts of errors within an assembly affect the 
EvalDNA score, we ran EvalDNA on versions of the CH PICR chromosomes which con-
tained varying amounts of randomly generated single nucleotide errors. Single nucleo-
tide changes were simulated from 5 to 30% in increments of 5%.

Each simulated chromosome was scored by EvalDNA (Fig. 7A). Similar trends across 
all chromosomes are seen, and the scores do not linearly decrease as the amount of 
errors increase. On average, the quality score decreases slightly (1 unit) between a 0% 
error rate and a 5% error rate and then decreases an average of 10 units between 5 and 
10% error rates. An even larger score decrease (average of 34 units) occurs as the simu-
lated error rates change from 10 to 15%. The scores decrease an average of 17 units from 
15 to 20%, 3 units from 20 to 25%, and 2 units from 25 to 30%.

Assessment of the EvalDNA scores with respect to error rates alone is difficult because 
none of the PICR chromosomes are perfectly accurate, complete, and continuous before 
error simulation. The chromosomes with 10% simulated error rate have scores anywhere 
from 35 to 65 depending on the continuity and completeness of the chromosome. How-
ever, a near perfect chromosome or assembly will have a score above 100 and insights 
can be gained from scaling all the scores so that maximum score for each chromosome 
is 100 (Fig. 7B). From scaling, we can see that a perfectly complete and continuous chro-
mosome with a score around 89 corresponds with an error rate of approximately 10%. 
This means that a chromosome or assembly that is not fully complete and continuous 
with a score of 89 or above will have a percent error rate lower than 10%. Since most 
mammalian assemblies are far from being fully continuous and complete, a score of 89 
will often mean an error rate of much lower than 10%. Even the chromosomes from the 
current human reference genome assembly (GRCh38) in the training set have scores 
ranging from approximately 85 to 100, and GRCh38 has an estimated error rate of 1 in 
100,000 bases (0.001%) [38]. Recommended guidelines for how to categorize an assem-
bly based on the reference-based quality scores from the training data are provided in 
Additional file 1: Figure S5.

EvalDNA application on scaffolds

Varying levels of single nucleotide errors were randomly generated in several scaf-
folds from PICR chromosome 1 to examine how well EvalDNA with the mammalian 
model performs on scaffolds. To minimize false mapping, EvalDNA was run using 
only reads that mapped to the original scaffold with an identity of 0.75 (at least 75% of 
the bases needed to match).

The error simulation results suggest that EvalDNA’s ability to estimate quality 
scores for scaffolds depends on the amount of errors and the scaffold length (Fig. 8). 
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The score decreases in a similar manner as the chromosomes did for all length scaf-
folds with 0–10% errors simulated. As the percent of errors increases beyond 10%, 
the impact of length on the scores becomes apparent. The scores show the expected 
decreasing trend for scaffolds longer than 5 Mbp, although at a slower rate than the 
chromosome scores. The expected decreasing trend is not observed for scaffolds 
shorter than 1 Mbp and for only some of the scaffolds between 1 and 5 Mbp long. 
Therefore, a model specifically trained on scaffolds in these length ranges would be 
beneficial for short scaffold scoring.

EvalDNA application on human assemblies from the QUAST‑LG study

EvalDNA was applied to four human draft genome assemblies for the individual 
labelled HG004 that were previously evaluated in the QUAST-LG paper [5]. The 
four draft assemblies were all significantly more fragmented than any of reference 
assemblies scored by EvalDNA for the CH genome assembly comparison and also 
had a large number of misassemblies when compared the human reference assembly, 
GRCh38 [5]. EvalDNA appropriately produced low scores for all the draft assemblies 

Fig. 7  Impact of error rates on the EvalDNA quality scores of CH PICR chromosomes. A Changes in EvalDNA 
quality scores due to simulation errors. B Changes in scaled EvalDNA quality scores due to simulation errors. 
Scores were scaled so that the maximum score for a chromosome became 100
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(Additional file 1: Table S7). SOAPdenovo2 assembly was the most fragmented with 
55,725 contigs (10 × more fragmented than the other draft assemblies), had the low-
est N50 (258,443 bp), and had a large number of misassemblies (670). As expected, 
EvalDNA gave the SOAPdenovo2 assembly the lowest score of the four draft assem-
blies (− 11.58). The ABySS2, Discovar, and UpperBound assemblies scored similarly 
at 8.78, 8.42, and 9.35 respectively. The UpperBound assembly, which was created to 
be the theoretical assembly optimum given the set of reads and the GRCh38 reference 
assembly [5], was surprisingly not much higher than the other two draft assemblies 
despite this not having any misassemblies when compared to GRCh38. However, the 
UpperBound assembly was still highly fragmented (4,958 contigs) which caused the 
EvalDNA score to remain low.

EvalDNA application on bacterial assemblies from the GAGE‑B study

EvalDNA correctly scored the reference genome assemblies of the bacteria from the 
GAGE-B study higher than that of the non-reference assemblies (Table  6). However, 
in general, EvalDNA had difficulty distinguishing between the outputs of the differ-
ent assemblers used in the GAGE-B study. The scores from EvalDNA for each bacteria 

Fig. 8  Impact of error rates on the EvalDNA quality scores of CH PICR scaffolds. A Changes in EvalDNA quality 
scores due to simulation errors. B Changes in scaled EvalDNA quality scores due to simulation errors. Scores 
were scaled so that the maximum score for each scaffold became 100
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across the different assemblies were all within five units of each other. There was also 
little correlation between the EvalDNA score and the corrected N50 values reported 
in the GAGE-B study, except for Vibrio cholerae which showed the expected positive 
trend with a Pearson correlation coefficient of 0.58. However, when the EvalDNA score 
and corrected N50 from the reference assemblies are considered, there is a strong posi-
tive correlation (r > 0.95) for all bacteria (Additional file 1: Figure S6). All three bacte-
ria also showed the expected negative trend, with Pearson correlation coefficients from 
-0.52 to -0.75, when plotting the EvalDNA score versus the number of large (> 1  kb) 
errors reported in the GAGE-B study for each assembly (Additional file  1: Figure S7). 
It is important to note that EvalDNA scores could accurately differ in order, from the 
corrected N50 values or large errors, because the EvalDNA score includes more quality 
metrics such as the amount and size of gaps and local errors.

EvalDNA scores calculated for the two assembly versions of the Pseudomonas syrin-
gae genome reflected the improvement between assembly versions with the most recent 
version scoring an 82.54 and the older version scoring a 74.44. The earlier version of the 
assembly consisted of 419 contigs and had an N50 of 38,960 bp, while the more recent 
version was a completed assembly, consisting of two contigs (1 for a chromosome, and 1 
for a plasmid). While the earlier version is significantly more fragmented than the com-
pleted version, alignment using NUCmer [12] showed high percent similarity and cover-
age between the contigs in the earlier version and the two completed sequences in the 
more recent version (Additional file 1: Figure S8). This high accuracy is most likely the 
reason EvalDNA still assigned a good score (~ 70) to the older version.

Runtimes and memory usage for EvalDNA

EvalDNA runtimes are dependent on the size of the input assemblies and the read 
FASTQ files. Runtimes are shortened if the reads are already mapped to the assembly 
and a BAM file is provided. On average, EvalDNA takes several days to run on full 
mammalian assemblies with 16–24 processors and takes about a day for a mammalian 
chromosome (Table  7). The default Docker memory limit of 256  Mb was sufficient 
for scoring mammalian assemblies. For the bacterial assemblies tested, EvalDNA took 
less than an hour to score four assemblies (each about 5 Mbp long) and had a maxi-
mum memory requirement of about 75 Mb.

Discussion
Here, we presented a novel pipeline, called EvalDNA, for genome quality assess-
ment that does not require a reference genome. We also developed a model, trained 
on mammalian assembly data, to be used within EvalDNA. The model evaluates an 

Table 6  The EvalDNA quality scores for each bacterial assembly evaluated from the GAGE-B study

The highest score for each chromosome is highlighted in bold

Bacteria Reference Abyss Cabog MSR-CA SOAP SGA Spades2.3 Velvet

M.abscessus 83.83 67.16 71.62 70.18 69.91 70.79 70.59 71.77

R.sphaeroides 86.42 73.33 74.54 74.32 76.56 75.05 72.6 74.78

V.cholerae 85.4 72.18 69.69 69.78 70.23 70.57 72.15 71.25
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assembly based on completeness, continuity, and accuracy by using the normN50, 
gap_perc, clip, error_free_bases, low_fc_over_gap, and low_fc_in_contig metrics.

The EvalDNA pipeline with this mammalian model was able to accurately estimate 
the quality scores of Chinese hamster genome assemblies and enabled the comparison 
of CH chromosomes to those from other organisms’ reference genome assemblies. 
EvalDNA can also be used to examine the output of different assemblers as demon-
strated on the human chromosome 14 data from the GAGE study and on complete 
human assemblies from the QUAST-LG study.

While EvalDNA with the mammalian model appeared to weigh accuracy over con-
tinuity more so than existing tools such as ALE and FRCbam, the model without the 
normalized N50 metric can be used to score assemblies completely independent of con-
tinuity if needed. This model may be useful for situations such as genome annotation, 
where the accuracy and completeness of an assembly is more important than continuity. 
A model without the normalized N50 metric could also be useful when comparing chro-
mosomes from different assemblies where the method of how the scaffolds/contigs were 
assigned to a chromosome may differ and may impact the quality score. Another use 
case that could benefit from a slightly different model than the one provided would be 
if the user was interested in scoring and comparing only whole assemblies and wanted 
to consider the completeness of each assembly. As noted previously, the provided model 
can assign a perfect score to a portion of an assembly i.e. a chromosome. Instead, to 
avoid this perfect score assignment to segments of an assembly, the user could use a 
model that includes a metric that reflects the percent of aligned reads. This model would 
not assign a perfect score to a shorter piece of an assembly as 100% of the reads should 
only align if the assembly is complete or almost complete. However, it is important to 
note that scores from different models should not be directly compared.

Benefits of a comparable genome assembly score

EvalDNA provides the ability to assign a comprehensive quality score to all assem-
blies and all chromosomes made available online. A researcher would be able to easily 
select the best available assembly for their organism of interest from viewing these 
scores, and even choose the best version of a specific chromosome. More confidence 
could also be given to findings derived from a high scoring reference genome than 
findings from a lower scoring reference genome.

Table 7  EvalDNA runtimes on mammalian full and chromosomal assemblies

Assembly Time Number of 
processors

Assembly length 
(Mbp)

Number 
of reads 
(millions)

CH PICR 1 day 11 h 16 2,368.91 179.59

CH PICR Chr8 11 h. 59 min 16 96.66 179.59

CH PICR Chr10 8 h. 13 min 16 32.58 179.59

CH PICR Chr4 16 h. 35 min 16 231.54 179.59

UpperBound Human (from 
QUAST-LG)

9 days 10 h 24 2,916.50 159.69
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The assigned quality score would also be comparable across organisms scored by 
the same model. The scores would provide insight into how a chosen assembly com-
pares to “gold-standard” genomes, such as the human reference assembly, in terms 
of overall quality. Because EvalDNA can only be used to compare assemblies from 
different organisms if the assemblies were scored using the same model, the applica-
bility of the mammalian model across all species should be examined in more depth. 
Initial results on the rice assembly do suggest that the mammalian model could work 
to assess plant genome assemblies, but more study is needed. The results on the bac-
terial assemblies suggest that EvalDNA can correctly distinguish between bacteria 
assemblies (with lengths of approximately 5 Mbp) with significantly different levels of 
quality.

Applying EvalDNA to scaffolds

The principles used within EvalDNA can be applied to scaffolds as well. However, 
the mammalian model has been created specifically for whole and chromosome level 
assemblies. The training data for the mammalian model was generated using the map-
ping defaults of SMALTmap within REAPR. This only required reads to have at least 
50% of bases match the reference to be mapped. For scaffolds, this threshold causes a 
significant amount of incorrect read mapping as reads from anywhere in the genome 
could map to the scaffold and therefore, a higher mapping stringency is needed. Ini-
tial results of the mammalian model on scaffolds longer than 5 Mbp seem promising, 
but did require increasing the mapping stringency to 0.75 (75% bases need to map). 
Therefore, while the model can be applied to scaffolds longer than 5 Mbp if a higher 
percent mapping threshold is specified, the resulting quality score will not necessarily 
be directly comparable to the scores of chromosomes or whole genome assemblies.

Model improvement

The current model on average predicts the score within 13 units of the real score and 
is able to explain 86% of the variation in quality scores. Therefore, there is potential for 
model improvement. First, increasing the number of chromosome instances in the train-
ing set would help the model become more precise. In addition, the model may benefit 
from the addition of quality metrics not tested here. The new metrics may be able to 
capture the remaining 14% of the score quality not captured by the current model.

Long‑read sequencing

Currently, high-quality paired-end Illumina reads are required to use EvalDNA. 
A future goal is to extend EvalDNA to use longer reads, such as those from PacBio 
or Oxford Nanopore sequencing, to assess accuracy either alone or along with Illu-
mina data. This improvement will require the development of metrics that reflect the 
accuracy of an assembly based on the mapping of long reads. Possible metrics could 
include the percent of high-quality mapped long reads or the total length of structural 
variants identified from the long read mapping.
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Conclusions
We developed and tested a novel pipeline, called EvalDNA, for the evaluation of genome 
assembly quality that does not require a reference genome. A model, which can be used 
within the pipeline, was created using supervised machine learning. The model exam-
ines the accuracy, continuity, and completeness of either an assembled genome or chro-
mosome, and was able to predict reference-based quality scores of assemblies with an 
accuracy of approximately 86%.

EvalDNA will allow scientists working with multiple genome assembly versions 
to identify the most appropriate one to be their reference genome, as well as examine 
which chromosomes may need to be improved. EvalDNA also enables quality compari-
son against other organism assemblies, such as high-quality reference human and mouse 
assemblies.

Availability and requirements
Project name: EvalDNA.
Project home page: https://​github.​com/​bioin​foMMS/​EvalD​NA.
Operating system(s): Platform independent.
Programming language: Python v2.7.13, R statistical software v3.5.1 or later.
Other requirements: Docker.
License: GNU GPLv3.
No restrictions to use by non-academics.

Abbreviations
EvalDNA: Evaluation of De Novo Assemblies; GAGE: Genome Assembly Gold-standard Evaluations; BAM: Binary align-
ment map; CSA: Chromosome-sorted assembly; CH: Chinese hamster; CHO: Chinese hamster ovary; KNN: K-nearest 
neighbors; RF: Random forest; SVM: Support vector machines; RMSE: Root mean squared error.
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