
A collaborative workflow between pathologists and deep
learning for the evaluation of tumour cellularity in lung
adenocarcinoma

Taro Sakamoto,1 Tomoi Furukawa,1 Hoa H N Pham,1 Kishio Kuroda,1,2 Kazuhiro Tabata,1

Yukio Kashima,3 Ethan N Okoshi,1 Shimpei Morimoto,4 Andrey Bychkov1,2 &

Junya Fukuoka1,2,*
1Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 4Innovation Platform and

Office for Precision Medicine (iPOP), Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki,
2Department of Pathology, Kameda Medical Center, Kamogawa, and 3Department of Pathology, Awaji Medical Center,

Sumoto, Japan

Date of submission 21 March 2022
Accepted for publication 12 August 2022
Published online Article Accepted 21 August 2022

Sakamoto T, Furukawa T, Pham H H N, Kuroda K, Tabata K, Kashima Y, Okoshi E N, Morimoto S, Bychkov A

& Fukuoka J

(2022) Histopathology 81, 758–769. https://doi.org/10.1111/his.14779

A collaborative workflow between pathologists and deep learning for the evaluation of
tumour cellularity in lung adenocarcinoma

Aims: The reporting of tumour cellularity in cancer
samples has become a mandatory task for patholo-
gists. However, the estimation of tumour cellularity is
often inaccurate. Therefore, we propose a collabora-
tive workflow between pathologists and artificial
intelligence (AI) models to evaluate tumour cellular-
ity in lung cancer samples and propose a protocol to
apply it to routine practice.
Methods and results: We developed a quantitative
model of lung adenocarcinoma that was validated
and tested on 50 cases, and a collaborative workflow
where pathologists could access the AI results and
adjust their original tumour cellularity scores
(adjusted-score) that we tested on 151 cases. The
adjusted-score was validated by comparing them with
a ground truth established by manual annotation of
haematoxylin and eosin slides with reference to

immunostains with thyroid transcription factor-1 and
napsin A. For training, validation, testing the AI and
testing the collaborative workflow, we used 40, 10,
50 and 151 whole slide images of lung adenocarci-
noma, respectively. The sensitivity and specificity of
tumour segmentation were 97 and 87%, respectively,
and the accuracy of nuclei recognition was 99%. One
pathologist’s visually estimated scores were compared
to the adjusted-score, and the pathologist’s scores
were altered in 87% of cases. Comparison with the
ground truth revealed that the adjusted-score was
more precise than the pathologists’ scores (P < 0.05).
Conclusion: We proposed a collaborative workflow
between AI and pathologists as a model to improve
daily practice and enhance the prediction of tumour
cellularity for genetic tests.
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Introduction

The rapid growth of artificial intelligence (AI) in
recent years, especially deep learning (DL), has pro-
vided significant advancements in numerous fields,
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including medicine. The convolutional neural net-
work (CNN) has emerged as the most suitable method
for medical image analysis.1–4 Trials using CNNs to
assist physicians with diagnosis, treatment or even
prognosis have produced extremely promising
results.5–9

In pathology, CNNs have been used to analyse var-
ious tissues and detect tumour regions to support
histopathological diagnosis.10–15 Studies demonstrate
that CNNs can provide judgements equivalent to
those of pathologists or even exceed them in certain
tasks.12,14 However, the implementation of AI in
pathology is challenging because of the high rate of
false positives and false negatives and the complex
procedures used to optimise the balance between
them.16 Thus, a collaboration between pathologists
and DL may be the most suitable approach to over-
come these obstacles, as we still do not completely
understand the nature of the ‘black box’ inside the
DL training process.17 The implementation of DL in
the clinical workflow, including evidence of its safety
for patient healthcare, is an important issue that
needs to be addressed.18,19

For decades, lung cancer has had the lowest sur-
vival rate among all major types of cancers in
humans.20 There have been revolutionary develop-
ments in cancer treatment, such as ‘personalised’
molecular therapies and the introduction of check-
point inhibitors, with several studies presenting
encouraging evidence of their efficacy.21,22 As
reported in individual studies and molecular testing
guidelines, the accurate detection of tumour cell per-
centage in tissue specimens has been recognised as
an important pre-analytical variable for EGFR and
KRAS mutation testing.23–25 The minimum required
percentage of tumour cells in a sample is dependent
upon the analytical sensitivity of the platform con-
ducting the tests, and varies considerably between
the platforms.25,26 Thus, the evaluation of tumour
cellularity (also known as tumour purity or tumour
fraction) by pathologists, i.e. the percentage of
tumour cells in the sample, is considered critical.
However, recent studies have reported that high vari-
ability and low reproducibility exist among individual
pathologists.27–30 The major goals of tumour cellular-
ity assessment for molecular testing are to determine
whether the specimen is adequate for molecular test-
ing; to determine if a lack of identified mutations is
due to an insufficient amount of tumour cells (cellu-
larity below sensitivity of a platform); and to deter-
mine whether there is subclonal heterogeneity within
a tumour when mutation allele frequency is low.
Therefore, an effective and objective method for the

precise estimation of tumour cellularity is urgently
needed.
Studies have been conducted to detect, discriminate

subtypes of and predict the mutations of lung cancers
using the histological features of tumour cells.9,18,31–36

However, to the best of our knowledge, no study has
focused upon measuring tumour cellularity using
DL – which is expected to aid pathologists in accu-
rately determining the tumour purity for molecular
testing. In this report, we develop a DL algorithm and
evaluate a collaborative process of modification by
pathologists as a clinically applicable protocol and
investigate if it improves the quality of tumour cellu-
larity counts.

Materials and methods

S T U D Y C O H O R T S

The current study protocols were approved by the
Institutional Review Board of Nagasaki University
Hospital (#190218282 for the creation, validation
and testing of the AI-score model and #190311162
for testing the collaborative workflow). Both proto-
cols were published on the Nagasaki University
Hospital Clinical Research Center website for opt-
out. We designed the study in three phases: algo-
rithm development, testing the AI results (AI-score)
and testing the collaborative workflow (Supporting
information, Figure S1). In the algorithm develop-
ment phase, a CNN model was constructed and vali-
dated to measure tumour cellularity. For testing the
AI-score the model was tested on 50 cases, and in
testing the collaborative workflow, its efficacy was
evaluated in 151 different cases. For the algorithm
development and AI-score testing phases, 100
haematoxylin and eosin (H&E)-stained trans-
bronchial biopsy (TBB) slides (one slide per case),
diagnosed with lung adenocarcinoma, were collected
from Nagasaki University Hospital, Nagasaki, Japan.
Of these, 50 whole slide images (WSIs) were used as
a data set for model development, and the other 50
slides were used to test the AI-score. For the testing
study of the collaborative workflow, 151 slides were
used. These 151 slides included not only TBB, but
also other modalities such as core needle biopsy
(CNB), surgical resection, transbronchial needle aspi-
ration (TBNA) and cell block. The 50 slides for test-
ing the AI-score were scanned using an Aperio
Scanscope CS2 digital slide scanner (Leica, Wetzlar,
Germany Biosystems, Buffalo Grove, IL, USA) with a
409 objective lens (0.25 lm/pixel). The 151 slides
for testing the collaborative workflow were scanned
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using an Ultra Fast Scanner (Philips, Amsterdam,
the Netherlands) with a 409 objective lens
(0.25 lm/pixel). Afterwards, digital slides were
imported into HALO version 2.2 (Indica Labs, Albu-
querque, NM, USA), which included HALO AI (CNN
VGG network) and the HALO Image Analysis
program.

A L G O R I T H M D E V E L O P M E N T P H A S E

We enrolled 50 TBB slides as a data set for DL model
development. Subsequently, the model was validated
on the 10 cases of the validation data set. We used
HALO Image Analysis (Indica Labs) to detect all
nuclei in the tissue for measuring the tumour cellu-
larity (i.e. tumour cell percentage).

T E S T I N G S T U D Y O F T H E D L M O D E L

An alternative set of 50 TBB WSIs was used to test
the model by comparing pathologist and AI-
generated predictions. First, a representative fragment
of each case was selected. Four pathologists, J.F.,
A.B., Y.K. and H.P., estimated the tumour cellularity
by reviewing the virtual slides through conventional
visual review. The tumour regions identified by the
DL model constructed in the algorithm development
phase were subsequently combined with the data
obtained from the HALO Image Analysis software to
calculate the percentage of nuclei detected within the
highlighted tumour areas, thus evaluating the overall
tumour cellularity (Figure 1). Based on the level of
accuracy perceived by a group of pathologists, these
DL model-generated tumour cellularity estimates
were sorted into three groups: ‘good’ (near perfect
recognition of tumour cells and non-tumour cells),
‘fair’ (with minor errors, needing modifications by
pathologists) and ‘poor’ (the error exceeds accurate
recognition). Representative images are shown in
Supporting information, Figure S2. Thereafter, a
ground truth was established using a combination of
the pathologists’ annotations for tumour regions and
the HALO Image Analysis detection of nuclei for
tumour cellularity. A statistical comparison between
the results of the DL model and pathologists was per-
formed based on the deviation (absolute value of the
difference) between these results and the ground
truth.
To compare different scanners, 20 cases of TBB

were scanned by both a Aperio Scanscope CS2 digital
slide scanner and a Philips Ultra Fast scanner, and
the quality of the segmentation between the two
scanners was compared.

T E S T I N G T H E C O L L A B O R A T I V E W O R K F L O W

B E T W E E N P A T H O L O G I S T S A N D T H E D L M O D E L

From April 2019 to September 2020, a total of 151
biopsies and surgical resections of pulmonary adeno-
carcinoma cases from three institutes (Nagasaki
University Hospital, Kameda Medical Center and
Awaji Medical Center) were enrolled into this study.
All three institutions are fully digitised, i.e. glass slides
are scanned before assigning the case to a patholo-
gist.18 The designed workflow is presented in Figure 2.
Initially, the WSIs with suspected adenocarcinoma
containing the highest number of tumour cells were
selected as per the pathologists’ assessment. These
selected images were downloaded by a member of the
analysis team and converted to the pyramid TIFF for-
mat following anonymisation. For certain cases, the
images were cropped. The tumour cells were anno-
tated to enclose the region of interest (ROI) (Figure 2).
The WSIs were evaluated using the trained algorithm
and the results were shared at sign-out sessions,
where the pathologists were blinded to the results of
the AI analysis and were asked to estimate the
tumour cellularity of the specimens; their answers
were averaged to produce the path-score. Subse-
quently, the pathologists visually reviewed the results
of the AI analysis represented by the automated
tumour detection map and nuclear detection overlay
(AI-score). The pathologists determined the final
tumour cellularity (adjusted-score) by adjusting the
AI-score as they deemed fit. As described earlier, the
quality of AI analysis was categorised into three
levels; the representative images for each level are pre-
sented in Supporting information, Figure S2. For the
cases categorised as ‘good’ by multiple pathologists
during a sign-out session, the AI-scores were included
in the pathology report. Regarding research ethics, we
followed the guidelines for digital pathology usage
published by the Japanese Society of Pathology and
included the AI-score in pathology reports only after
validation by a laboratory developed test.37

A D J U S T E D - S C O R E

The cases requiring further major or minor adjust-
ment of the AI-score were mathematically processed.
For instance, in Figure 3, the recognition of tumour
cells by AI was considered to be 30% less than the
actual value. Therefore, based on the consensus of
the pathologists, we added 30% to the AI-score to
obtain the adjusted-score. In cases judged as ‘poor’ by
attending pathologists, we did not refer to the AI-
score and used the path-score without adjustment
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(Supporting information, Figure S2). Before applying
any modification to the 151 collaborative workflow
testing cases, 37 cases from the DL model testing sets
were used as a practice set to train pathologists.
To validate the adjusted-score, 20 adjusted cases

were randomly selected and the tumour cells were
manually annotated. The original H&E slides were

destained with hydrochloric acid/ethanol solution and
immunohistochemically restained with a cocktail of
antibodies for thyroid transcription factor 1 (TTF-1)
and napsin A (ADC cocktail; Pathology Institute Corp.,
Toyama, Japan),38 which are widely used markers for
pulmonary adenocarcinoma. The immunostained
slides were rescanned using a Philips Ultra Fast

Figure 1. Calculation of tumour cellularity using two algorithms. Original haematoxylin and eosin (H&E) image (A) was analysed using two

distinct algorithms. Nuclei on the H&E image were masked as blue markers (B) and tumour clusters were segmented as red masking (C).

Combining (B) with (C), the total number of nuclei (number of blue markers) and the number of tumour nuclei (number of blue markers

within red mask) could be obtained (D), thus we can calculate the tumour cellularity of samples.
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Scanner. Annotations for individual tumour cells were
applied based on simultaneous observation of the
immunostained slides and the original H&E images
(Supporting information, Figure S3). All annotation
data were verified by the expert pulmonary patholo-
gist (J.F.). Ultimately, the cell count algorithm was
applied to the annotated area, and the tumour cellu-
larity values from those 20 cases were used as the
ground truth. These numbers were compared to the
original path-score and the adjusted-score.
Supplementary materials and methods, including

details on algorithm development and validation, the
architecture of the deep learning model and statistical
analysis, are provided in the Supporting information files.

Results

A L G O R I T H M D E V E L O P M E N T A N D T E S T I N G T H E

A I - S C O R E

To validate the proposed DL software in the algorithm
development phase, a model with a cross-entropy of

Figure 2. Synergistic workflow between pathologists and artificial intelligence (AI) model. The proposed approach significantly improved the

pathologists’ workflow by enabling them to diagnose using digital images. The approach comprised routine operation of the AI model and

evaluation of AI analysis results by pathologists. Starting with tissue sampling, specimen preparation and digitisation, the cases diagnosed as

adenocarcinoma by pathologists were assigned regions of interest (ROIs) as necessary and subjected to analysis of tumour cellularity by AI.

After the analysis, the cases were evaluated and modified by pathologists in a sign-out session. This process will be followed by reporting the

adjusted-score and selecting the appropriate genetic test.

Figure 3. Artificial intelligence (AI)-generated carcinoma segmenta-

tion and pathologist adjustments. Red masked regions were seg-

mented and identified as carcinoma by AI. Certain areas were

missed by AI (arrowhead). In such cases, pathologists had to

include the missing percentage in AI’s calculation of tumour cellu-

larity (AI-score) to create the adjusted-score. In this region of inter-

est (ROI), pathologists determined that approximately 30% was

required to be added to the AI-score. Thus, 30% of the tumour area

was missed by the segmentation algorithm. In practice, this deci-

sion was applied at the whole slide image (WSI) level.
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0.16 was adopted as the test model. The tumour cel-
lularity of the 40 training WSIs ranged from 0.7 to
46.4%, with a median of 11.7%. The validation set
contained 10 WSIs that were divided into 14 611
patches of 0.01 mm2 to match the size of the training
patches. Among these 14 611 patches, 7771 were
classified by the DL model as positive for the tumour
regions and 7630 regions corresponded with the
pathologists’ positive annotation, i.e. true positives.
Conversely, 6024 of 6840 patches classified as nega-
tive by the DL model were true negatives. The overall
sensitivity, specificity and accuracy were 97.1, 87.0
and 93.5%, respectively. To evaluate the nuclear
recognition, the HALO Image Analysis results were
compared with the pathologists’ exact manual count
in 10 ROIs, which revealed an accuracy of 98.5%.
In evaluating tumour cellularity in 50 randomly

selected cases, the mean deviation from the ground
truth among the four participating pathologists was

15%, whereas the mean deviation of the results
obtained by the proposed DL model from the ground
truth was 6%. Among these 50 cases, 29, 12 and 9
were categorised as good, fair and poor, respectively.
In 19 of the 29 cases categorised as ‘good’, the DL
model outperformed all the participating pathologists
(Figure 4, Supporting information, Table S1). The
mean deviation of the DL model in these ‘good’ cases
was 3%, whereas the mean deviation for the patholo-
gist estimations was 16%. For the 12 ‘fair’ cases, the
DL model deviated 4% on average from the ground
truth, whereas the pathologists deviated by 14% on
average. For the nine ‘poor’ cases, the mean deviations
were 15 and 14% for the DL model and pathologists,
respectively. The results show that the consensus
judgement of pathologists generally deviated from
ground truth by approximately 15%. Supplementary
results on false positives and false negatives are pro-
vided in the Supporting information files.

Figure 4. Interobserver variability and inconsistency of pathologist’s tumour cellularity estimates in 29 cases assessed as ‘good’ in the 50

testing cases. A line plot displaying ground truth (solid line), artificial intelligence (AI)-score (dotted line) and individual path-score (vertical

line). In 19 of 29 cases, AI-score outperformed all participating pathologists’ assigned path-score.
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According to the evaluation of the segmentation
quality between the Aperio Scanscope CS2 digital
slide scanner and the Philips Ultra Fast scanner in 20
cases, the slides scanned by the Philips Ultra Fast
scanner were categorised as ‘good’ in 85% of the
cases (17 of 20), while the ones scanned by the Ape-
rio Scanscope CS2 digital slide scanner were cate-
gorised as ‘good’ in 65% of the cases (13 of 20).
There were no slides categorised as ‘poor’ in either
group. The Pearson’s correlation coefficient for the
AI-score was high between the two groups (r = 0.89,
P < 0.001). Supporting information, Figure S4 shows
the comparative images between these two scanners.

A S S E S S I N G T H E L E V E L O F C L A S S I F I C A T I O N I N T H E

C O L L A B O R A T I V E W O R K F L O W

A total of 151 samples were analysed in the testing
phase of this study. Of these samples, 26 were
acquired from Nagasaki University Hospital, 111 from
Kameda Medical Center and 14 from Awaji Medical
Center (Supporting information, Figure S1). By con-
sensus of the participating pathologists, the AI seg-
mentation of the samples was labelled by pathologists
as follows: 80 good (53%), 38 fair (25%) and 33 poor
(22%). AI-scores of the 80 ‘good’ cases were included
in the pathology reports. Data from the practice set,
collected from 37 cases (from the data set used for
testing the AI-score), displayed a tendency for overes-
timation (i.e. ≥ 1% increments) by an individual
pathologist (overestimation in 21 of 37). The data for
the 151 collaborative workflow testing cases dis-
played a similar frequency of over- and underestima-
tion: overestimation in 67 of 151 cases (44.3%) and
underestimation in 65 of 151 cases (43%), as
depicted in Supporting information, Figure S6. Based
on the generalised Wilcoxon test, the pathologist
tended to significantly overestimate the tumour cellu-
larity to a greater extent in the first 37 samples used
as a practice set than in the 151 samples for testing
the collaborative workflow afterwards (P < 0.005).
The pathologist who led this study was involved in

the sign-out of all the 151 cases enrolled herein. In
the first 20 cases evaluated, the pathologist tended to
overestimate the tumour cellularity by more than
20%, resulting in a large deviation between the indi-
vidual path-score and adjusted-score. However, after
referring to the AI segmentation data from the 20
cases, the pathologist realised that they tended to
overestimate (Figure 5). Based on logistic regression
analysis, the pathologist’s score did not tend to devi-
ate from the adjusted-score by more than �20% after
case 20 (P = 0.019). This pathologist’s path-score

deviated from the adjusted-score in 132 of 151 sam-
ples, which signified that the AI segmentation data
caused the pathologist to reconsider their first esti-
mate of the tumour cellularity in 87% of the samples.

C O M P A R I S O N W I T H G R O U N D T R U T H

The individual tumour cluster-level annotations in
the 20 randomly selected ground truth cases num-
bered 4527. This ground truth was established by
manually counting the tumour nuclei on H&E-
stained slides while referencing the same slide
restained with TTF-1/napsin A. The average number
of annotations was 226.35 per sample (range = 33–
526). The mean deviation between the ground truth
and adjusted-score was 3.08%. The adjusted-score
was within 5% of the ground truth in 80% of the test
cases (16 of 20) and within 10% in all the cases. The
mean deviation of the pathologist’s path-score to
ground truth was 7.12%, confirming that the
adjusted-score was generally closer to the ground
truth (P = 0.009, Wilcoxon’s signed-rank test) (Fig-
ure 6, Supporting information, Figure S7). The
adjusted-score was also superior to the scores
obtained by the consensus of the pathologists
(P = 0.032, Wilcoxon’s signed-rank test). Among the
20 test cases, the AI segmentation data was cate-
gorised as ‘good’ in four cases, ‘fair’ in 12 cases and
‘poor’ in four cases. The median deviation from the
ground truth in each level was 3.2, 2.1 and 4.0%,
respectively (Supporting information, Figure S8).

A S S E S S M E N T O F T H E L E V E L O F C L A S S I F I C A T I O N

P E R S A M P L I N G M O D A L I T Y A N D A M O N G

I N S T I T U T I O N S

The proportion of samples categorised by the model as
‘good’ for each sampling method was 53% for TBB,
39% for CNB, 57% for surgical, 93% for TBNA and
33% for cell block (Table 1). The mean adjustment
from AI-score to adjusted-score for each modality was
�19.33% for cell block, +2.53% for CNB, �0.29% for
surgical, +1.41% for TBB and +33% for TBNA
(Table 2). False positives were highly prominent in
the cell block samples (standard deviation = 31%),
and the individual cells contained in the cell block
samples could not be easily identified, especially
mesothelial cells and macrophages floating in the
pleural fluid in the thoracic cavity (Tables 1 and 2).
The percentage of samples rated as ‘good’ from each

institution ranged from 48 to 73% (Table 3). The per-
centage of samples rated ‘good’ was significantly
higher in cases from Nagasaki University Hospital
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than those from Kameda Medical Center (P < 0.05).
However, when pooling ‘good’ and ‘fair’ samples, no
significant differences were observed among institu-
tions: 88% of Nagasaki University Hospital samples
(23 of 26), 76% of Kameda Medical Center samples
(84 of 111) and 79% of Awaji Medical Center samples
(11 of 14) were labelled either ‘good’ or ‘fair’.

Discussion

We developed a DL image analysis model that yielded
tumour cellularity values by integrating a tumour
region segmentation model and a nuclear counting
algorithm. In addition, we developed a trial workflow

to compare the pathologists’ estimates before and
after referring to the AI segmentation data.
In our study, pathologists were able to refer to the

AI-score and adjust their original consensus estimates
(path-score) to provide more accurate estimations. In
particular, 87% of the 151 test samples involved a
pathologist altering the earlier estimation after refer-
ring to AI data. Thus, this is a valid reason for incor-
porating AI into daily practice to provide a more
accurate pathological diagnosis. We demonstrated
that AI-aided diagnosis improved the pathologists’
judgement. This primarily materialised in the form of
improving large overestimations in the early stages.
However, this adjustment increased the proportion of

Figure 5. Improvement of cellularity estimation. Chronological variation of deviation between adjusted-score and path-score for an individ-

ual pathologist. In the early stage, overestimation exceeding 20% deviation from adjusted-score appeared in certain cases, but the path-score

stabilised. Although the pathologists supervised the artificial intelligence (AI), they could similarly learn from it. These data not only implied

that the human-in-the-loop workflow effectively improved the pathologist’s assessment but also highlighted the requirement of AI aid (de-

spite increased trials of cellularity estimates, the pathologist’s score varied).Red lines: the average difference between individually assigned

cellularity and adjusted-score. Separate averages are shown for case numbers 1–19 (average = 10.95), and from 20 on (average = �0.598).

Blue lines: �20% is shown as a cut-off range in percentage difference. Green line: case number 20.
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underestimations, which did not exhibit significant
improvement regardless of the increased case experi-
ence (Figure 5). As human judgement is limited in

this context, this may be a rationale for recommend-
ing AI-aided diagnosis. It proved that even for subop-
timal accuracy of the AI, the pathologists could
visually assess the results of the segmentation model
and adjust the calculation of the tumour percentage
to obtain a more accurate prediction of the ground
truth. Upon referring to the AI data, the human
could extract more accurate data, indicating that the
collaboration was significant. AI may have limited
accuracy in recognition of the cancer cells, which is
a common occurrence in pathological investigations.
The pathologists make the final decisions, but this
collaboration between AI and pathologists – also
known as a type of human-in-the-loop mod-
elling17,39,40 – is a promising direction for the future
of pathological diagnosis and related tasks.

Figure 6. Deviation from the

ground truth. The box-plot

displaying adjusted-score was

significantly closer to the

ground truth than both the

path-score and individual path-

score for a pathologist. The

proposed artificial intelligence

(AI)-based tumour cellularity

adjustment attained less than

10% deviation in all the cases

and less than 5% deviation in

three-quarters of the cases.

Table 1. Classification level per sampling method

Sampling n Good Fair Poor

Transbronchial
biopsy

85 52.9% (45) 24.7% (21) 22.4% (19)

Core needle biopsy 38 39.5% (15) 34.2% (13) 26.3% (10)

Surgical resection 7 57.1% (4) 42.9% (3) –

TBNA 15 93.3% (14) 6.7% (1) –

Cell block 6 33.3% (2) – 66.7% (4)

Total 151 53% (80) 25% (38) 22% (33)

TBNA, transbronchial needle aspiration.

Table 3. Classification level across three institutions

Institute*
Total
cases Good Fair Poor

Nagasaki
University
Hospital

26 73.1% (19) 15.4% (4) 11.5% (3)

Kameda Medical
Center

111 47.7% (53) 27.9% (31) 24.3% (27)

Awaji Medical
Center

14 57.1% (8) 21.4% (3) 21.4% (3)

Total 151 53% (80) 25% (38) 22% (33)

*All institutes included in this study used a Philips Ultra Fast scan-

ner.

Table 2. Mean adjustment from AI-score per sampling
method

Sampling Mean adjustment Standard deviation

Transbronchial biopsy 1.41 7.38

Core needle biopsy 2.53 6.85

Surgical resection �0.29 9.96

TBNA 2.33 4.15

Cell block �19.33 30.90

TBNA, transbronchial needle aspiration.
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Large interobserver variability was present in the
estimates between the pathologists (Figure 4, Sup-
porting information, Table S1), similar to that
reported in several prior studies,27–30 which chal-
lenged consensus-building. In this study, we adopted
the average scores marked by the pathologists as the
consensus. Although this average score was an
improvement over individual pathologists’ scores, the
collaborative method between the physician and the
AI was ultimately the most accurate method. In clin-
ical applications of AI, pathologists must be able to
interpret the results and provide input. We overlaid
the segmentation data on the WSI, reviewed the
tumour cellularity percentages, verified the level of
nuclear recognition and modified the AI-scores.
Pathologists could enhance their practice by utilising
the AI model. Moreover, the differences in staining
and specimen preparation techniques between labo-
ratories are some of the major barriers to the adop-
tion of AI.41,42 This was confirmed, as the model
yielded the best results on samples acquired from the
institution at which training was conducted
(Table 3), as well as a higher frequency of errors on
samples from other institutions. However, input from
a pathologist was able to compensate for these minor
errors. We examined whether the accuracy of the
adjusted-score varied with the decreasing classifica-
tion level, but no clear deterioration was observed
(Supporting information, Figure S8). This indicated
that the specimen preparation and staining proce-
dures conducted at various institutions did not signif-
icantly impact the tumour nuclei count obtained
using the proposed model, and the AI model can be
used at any institution. This notion was further
extended by our subgroup analysis using two differ-
ent WSI scanners. Interestingly, our study showed
that the levels of tumour cell recognition between
the two modalities were identical and showed a high
correlation.
There are certain limitations to this study.

Although the annotations of the training data were
highly accurate at the region level, the number of
cases was small. Secondly, for testing the collabora-
tive workflow, the WSI scanner used was changed,
but the AI model was not adjusted to match the
scanner. We did not train the model with additional
data extracted by a Philips Ultra Fast Scanner to
improve detection. Thirdly, cross-validation for the 50
cases – 40 training and 10 validation – was not per-
formed due to limitations in our ability to modify the
code of the HALO-AI model, as per our licensing
agreement. Fourthly, this study was conducted using
only digital data from lung adenocarcinoma tumours.

In conclusion, we developed an AI model and a
human-in-the-loop collaborative workflow to evaluate
tumour cellularity in lung adenocarcinoma. This
study demonstrated that the proposed model could
more accurately determine tumour cellularity than
pathologists’ consensus alone, and additionally
implied that pathologists can learn from the imple-
mentation of AI. The collaboration between AI and
pathologists can result in a synergistic, positive feed-
back loop in which each side improves the other.
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Supporting Information

Additional Supporting Information may be found in
the online version of this article:

Figure S1. Flowchart of study dataset
The study dataset was designed in three phases:

the algorithm development phase (training and vali-
dation), testing the AI-Score, and testing the collabo-
rative workflow. This flowchart includes the number
of each dataset, types of sampling, name of scanners,
year, and the institution’s name.WSI: whole slide
image; TBB: transbronchial biopsy; CNB: core needle
biopsy; Surgical: surgical resection; TBNA: trans-
bronchial needle aspiration; Nagasaki Univ.: Nagasaki
University Hospital; Kameda Med. Ctr.: Kameda Medi-
cal Center; Awaji Med. Ctr.: Awaji Medical Center;
IHC: immunohistochemical.
Figure S2. Representative images with red classifi-

cation mapping judged as good, fair, and poor by
pathologists.
The segmentation level of each of the cases was

judged as one of the three levels: good (A-L), fair (M-
P), and poor (Q-T). (10x)
Figure S3. Creation of ground truth based on

simultaneous observations of H&E slides and
immunostained slides.
In 20 cases, pathologist-supervised annotations

were collected to compile a ground truth dataset.
(A) Original H&E image.
(B) Re-stained slide of original H&E specimen with

TTF-1 & napsin A cocktail.
(C) Segmentation output by AI model.
(D) Ground truth established by meticulous annota-

tion with reference to immunostained slides. (40x).
Figure S4. Comparison of different scanners.
The level of segmentation when using different

scanners was evaluated. (A), (C), and (E) were the
images scanned by the Aperio Scanscope CS2 digital
slide scanner, and (B), (D), and (F) were scanned by
the Philips Ultra Fast scanner. The segmentation
levels of both (A) and (B) were categorized as ‘good’;

(C) was assigned as ‘good’, but (D) was assigned as
‘fair’ because of the several false negative areas.
Meanwhile, (E) was assigned as ‘fair’, while (F) was
assigned as ‘good’ since (E) had much more false-pos-
itive areas than (F).
Figure S5. Examples of false positives and false neg-

atives.
Bronchial epithelium (A), alveolar macrophages

(B), lymphocyte infiltration/aggregation (C), tracheal
cartilage (D), and anthracotic pigments (E) were
detected as false positives in certain instances. Inva-
sive mucinous adenocarcinoma (F) tended to possess
weakly atypical nuclei and could result in false nega-
tives. Upon weighing the number of these false posi-
tives and false negatives, the pathologists considered
the extent of correction required in the AI-Score.
(40x)
Figure S6. Trends in the practice and testing

phases.
These plots show the deviation between an individ-

ual pathologist’s assigned scores (Path-Score) and the
final Adjusted-score for 151 testing cases (A), and 37
cases as a practice set for pathologists to evaluate col-
laborative workflow (B) in the early phase when AI
was implemented into the cell count workflow. The
line on both plots represents when Path-Score exactly
equals the Adjusted-score. Although the pathologist
tended to overestimate the cellularity at first (points
above the line), the frequency of overestimation and
underestimation was almost even after gaining expe-
rience with the AI.
Figure S7. Deviation from ground truth in 20

cases.
Line plot showing the ground truth (solid line),

Adjusted-score (dotted line), and Path-Score (vertical
line). As observed, the interobserver variability in
pathologists’ estimations was resolved by adjusting
AI-Score.
Figure S8. Deviation from ground truth per classifi-

cation level.
Three-line plots showing Ground truth (solid line),

Adjusted-score (dotted line), and individual Path-
Score (vertical line) categorized as per the samples
judged as good (A), fair (B), and poor (C), respec-
tively.
Table S1. Inter-observer variability of Path-Score in

29 cases judged as good in the 50 cases used for AI-
Score testing.
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