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The  estimated  mean  copy  per partition  (�)  is  the  essential  information  from  a digital  PCR  (dPCR)  experi-
ment  because  � can  be used  to calculate  the  target  concentration  in  a sample.  However,  little  information
is  available  how  to  statistically  compare  dPCR  runs  of  multiple  runs  or reduplicates.  The  comparison  of
� values  from  several  runs  is  a multiple  comparison  problem,  which  can be  solved  using  the  binary
structure  of  dPCR  data.  We  propose  and  evaluate  two  novel  methods  based  on  Generalized  Linear  Mod-
els (GLM)  and Multiple  Ratio  Tests  (MRT)  for  comparison  of digital  PCR  experiments.  We  enriched  our
MRT  framework  with  computation  of simultaneous  confidence  intervals  suitable  for  comparing  multiple
eneralized Linear Models
LM
ultiple comparison

dPCR  runs.  The  evaluation  of both  statistical  methods  support  that  MRT  is  faster and  more  robust  for
dPCR  experiments  performed  in large  scale.  Our theoretical  results  were  confirmed  by  the  analysis  of
dPCR  measurements  of  dilution  series.

Both methods  were  implemented  in  the  dpcR  package  (v.  0.2)  for  the  open  source  R statistical  computing
environment.

© 2016  The  Author(s).  Published  by  Elsevier  GmbH.  This  is  an open  access  article  under  the  CC
ntroduction

Digital PCR (dPCR) is a PCR-based method, which enables a pre-
ise quantification of nucleic acids. The conventional PCR performs
ingle reaction per one sample. However, in the case of dPCR the
ample is separated into a large number of partitions, in which
he reaction is carried out individually (clonal amplification). The
artitioning allows to assess the number of amplified template
olecules by detection of their presence (positive call) or absence

negative call) in particular partitions [1,2]. Since the output of
hese results is binary, we do not know if the positive partition con-
ains one or more template molecules. The Poisson transformation
s required to compute the average number of template molecules
er partition, expressed by �:

 = − log
(

1 − k
)

(1)

n

here k is number of positive partitions and n is number of negative
artitions.
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Thanks to that, it is possible to measure precisely concentrations
of nucleic acids with high sensitivity and reliability. Therefore, dPCR
found common applications in amplification of DNA  samples for
next-generation sequencing and detection of variation in genomic
sequences, e.g. point mutations and repeats [1].

In contrast to the conventional PCR, in which the number of
amplification cycles ideally is proportional to the initial copy num-
ber, dPCR does not depend on the cycle number to determine
the initial amount of nucleic acids in the sample. In particu-
lar, the quantitative real-time PCR is known to be demanding
regarding preprocessing, quantification cycle determination and
multi-plate measurements [3–6]. The dPCR methodology elimi-
nates the dependence on the exponential shape of data to estimate
the concentration of target nucleic acids and enables their absolute
quantification. Therefore, this method does not need calibra-
tion curves and may even be less susceptible to inhibitors. The
amplification chemistry of absolute quantification in the dPCR is
orchestrated by well established methods such as analogue PCR or
isothermal amplification [7,2,8–10].

Precision, sensitivity, dynamic range, number of partitions and

their volume are important parameters in a dPCR system [11].
Moreover, technical replicates are affected by different intrinsic
and extrinsic influences increasing the variation of obtained results.
This variation needs to be assessed to make a valid statement about
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he assay performance. As all diagnostic methods, the dPCR requires
ools to check consistency of obtained results. There is a growing
eed for statistical methods for the analysis and design of experi-
ents using digital PCR experiments.
Previously, two methods to compute the � value and its uncer-

ainty were described. Dube’s approach uses confidence intervals
12], whereas Bhat’s method is based on the uncertainty [13]. The
atter is not a confidence interval in the statistical sense, but never-
heless can be employed to compute probability coverage of the
stimated � value. The Dube’s method computes binomial con-
dence intervals for proportion k/n using the method of normal
pproximation. Briefly, the binomial distribution of positive counts
ith the parameters p = k/n and n trials is approximated by a normal
istribution. Both Bhat’s and Dube’s methodologies do not address
ultiple comparisons of runs, which is a common task during the

esign and analysis of dPCR experiments.
Here, we propose two approaches for the comparison of mul-

iple dPCR experiments. Both are able to simultaneously compare
he � values of multiple runs. One of them is based on Generalized
inear Models and the second one is the uniformly most powerful
atio test combined with multiple testing correction. Our findings
ere implemented in the R statistical computing environment [14],
hich has numerous functionalities devoted to analysis of dPCR

nd qPCR reactions [15].

ethods

eneralized Linear Models – GLM

Generalized Linear Models (GLM) are linear models for data
n which the response variable may  have a non-normal distribu-
ion (e.g. binomial distribution of positive partitions in the case of
PCR experiments). We  employ a simplistic model reflecting the
elationships between variables in dPCR results, given by formula:

og Y = ˇT X (2)
here Y are counts of positive partitions, X are experiments names
categorical data) and  ̌ are coefficients for every run. Since the
inomially distributed response is explained by the linear combina-
ion of parameters (in our specific case experiment names) we call

igure 1. Scheme of the in silico dPCR for two approaches based on Generalized Linear M
our  runs (coloured circles). Each run within one group is generated using the same numb
00.  Equally-sized groups were finally compared by GLM and MRT  methods. (For interpr
eb  version of the article.)
on and Quantification 9 (2016) 14–19 15

such model binomial regression as described in detail elsewhere
[16]. Briefly, we employed the logarithm function (function that
limits values of response) and the estimated means of copies per
partitions by calculating �̂ = exp ˇ. Importantly, our GLM employs
the quasibinomial model, which describes the binomial distribu-
tion with excessive zeros. That means that number of zeros may
surpass its value predicted by the binomial distribution [17].

The GLM model used in this analysis and represented by Eq.
(2) can be refined by adding further effects, such as the techni-
cal replication. This may  decrease the variance within replicate
experiments.

Next the differences between estimated coefficients are evalu-
ated pairwise [18,19]. The resulting p-values require no posterior
correction because the familywise error is controlled. This approach
is a single-step procedure, because the decision (rejection or accep-
tance of null hypothesis) is not based on the decision of another
hypothesis. As implied by the name, all tests are made in the single
step, independently and simultaneously.

Multiple testing

The �̂ from two or more dPCR experiments may be pairwise
compared using the uniformly most powerful (UMP) ratio test.
Uniformly most powerful tests have the highest statistical power
(probability that the test correctly rejects the false null hypothesis
H0) for all tests with the same ˛. The p-values are computed using
the TST (twice the smaller tail) method [20,21]. Similarly to the GLM
method, this is a single-step approach. However, to control the fam-
ilywise error rate the pairwise comparison requires an appropriate
adjustment of p-values, as the Benjamini–Hochberg correction [22].
The UMP  ratio test has the following null-hypothesis:

H0 :
�1

�2
= 1 (3)

where �1 and �2 are mean numbers of template molecules per par-
tition in two  experiments. It is also possible to employ other tests

(e.g., proportion test) designed to determine the probabilities of
having positive partitions [23].

Instead of relying on confidence intervals (CI) computed by the
UMP  test, we  used CIs calculated by the Wilson method. It was

odels (GLM) and Multiple Ratio Test (MRT). The groups (A and B) contain one to
er of molecules in 1000 partitions. The number of molecules (m0) range from 10 to
etation of the references to color in this figure legend, the reader is referred to the
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roven [24] that Wilson’s CIs have generally a good coverage prob-

bility. In particular, this applies when the probability of success is
lose to zero, such as in cases of dPCR experiments where the con-
entration of the template is low. The Wilson’s confidence intervals

able 1
ormulations of uncertainty intervals of compared methods: MRT, Dube and Bhat.
:  cumulative normal distribution function.

Method name Formulation

MRT  − log

(
1

1+ 1
n

(
�−1
(

1− ˛
2

))2

(
k
n +
(

�−1
(

1− ˛
2

))2

2n ±

�−1
(

1 − ˛
2

)√
k2
n

(
1 − k

n

)
+
(

�−1
(

1− ˛
2

))2

4n2

⎞
⎠
⎞
⎠

Bhat � ±
√

k
n

n(1− k
n )

Dube − log

(
1 − k

n ± �−1(1 − ˛
2 )

√
k
n (1− k

n )
n

)

igure 2. Monte Carlo evaluation of the GLM and MRT  methods for number of
uns in a single group from one to four. The colour of the tile describes which of
hese methods distinguished between two compared groups (at the level  ̨ = 0.05).
bscissa and ordinate represent the average number of template molecules per par-

ition used in the in silico experiment in equinumerous groups A and B, respectively.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web  version of the article.)
on and Quantification 9 (2016) 14–19

are calculated independently for every dPCR run and its significance
level is adjusted using the Dunn–Šidák correction [25]:

˛adj = 1 − (1 − ˛)1/T (4)

where  ̨ is the significance level and T is the number of tested
hypotheses.

Such intervals are wider than non-corrected CIs but they simul-
taneously contain the mean number of template molecules per
partition of several experiments at a given significance level. Due
to this, simultaneous confidence intervals allow testing the results
against thresholds while keeping the familywise error at specified
level. In other words, the value of � is statistically different (on the
significance level equal to the confidence level) from the threshold
value only if the threshold value is not covered by the confidence
intervals.

For clarity, we  decided to call our novel approach Multiple Ratio
Test (MRT).

Confidence intervals
The confidence intervals computed by MRT  were compared to
uncertainty intervals calculated using two other methods: Bhat’s

Figure 3. The impact of number of runs on the average time of data analysis by GLM
and  MRT  methods. The MRT  outperforms GLM for larger data sets. The performance
does not depend on the total number of partitions per run, n. The average time was
calculated from 100 repetitions.
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13] and Dube’s [12]. The formulation of considered methods is
resented in Table 1.

valuation of statistical methods

Two implemented approaches, GLM and MRT  were compared
ver 2 millions in silico dPCR runs. Each simulation contained two
roups with the same number of runs (from one to four runs), which
tarted from the same number of template molecules. The simula-
ion was repeated 60 times (Fig. 1). Both frameworks were used to
ompare the runs. The GLM approach used a quasibinomial model.

xperiment setup

To validate the proposed MRT  analysis framework, we per-

ormed a dPCR experiment on dilution series using the dPCRmethyl
ataset from the dpcR package [26]. This dataset contains a dilu-
ion of methylated human gDNA (see package for details). For each
oncentration level, three samples were measured.

igure 4. The confidence intervals of the results of the experiment. The red color marks c
For  interpretation of the references to color in this figure legend, the reader is referred to
on and Quantification 9 (2016) 14–19 17

Implementation

All findings were implemented in the dpcR package (v. 0.2) [26]
for the R statistical computing environment. The GLM uses func-
tionality from multcomp package [27] and the ratio for MRT comes
from rateratio.test [28]

The stable version of the package is available from https://cran.
r-project.org/web/packages/dpcR/index.html. Plots were created
with ggplot2 [29]. All analyzes were done in dedicated R envi-
ronments as described previously [15]. An executable R script is
attached as a supplement.

Results and discussion

Monte Carlo evaluation

The statistical tests showed that neither GLM nor MRT  rejected

the true H0 (Eq. (3)) in all cases. Both methods had ‘blind spots’, in
which they could not distinguish runs containing different num-
bers of template molecules (Fig. 2). The number of non-rejected
hypotheses widened with the growth of the � values. For example,

onfidence intervals that failed to cover the real value of � denoted by a green line.
 the web  version of the article.)

https://cran.r-project.org/web/packages/dpcR/index.html
https://cran.r-project.org/web/packages/dpcR/index.html
https://cran.r-project.org/web/packages/dpcR/index.html
https://cran.r-project.org/web/packages/dpcR/index.html
https://cran.r-project.org/web/packages/dpcR/index.html
https://cran.r-project.org/web/packages/dpcR/index.html
https://cran.r-project.org/web/packages/dpcR/index.html
https://cran.r-project.org/web/packages/dpcR/index.html
https://cran.r-project.org/web/packages/dpcR/index.html
https://cran.r-project.org/web/packages/dpcR/index.html


1 etection and Quantification 9 (2016) 14–19

t
t
m
w

a
w
t
M
m
m

m
o
i
b
(

C

d
i

d
a
c

n
e
r

A

f
t
e
i
a

c
I
v

t
i
(

T
F

Figure 5. Example for the analysis of multiple dPCR runs. In this example, the graph-
ical  user interface RKWard [30] (v. 0.6.5) was used to compare multiple dPCR runs.
The  principle analysis of such experiments has been described in [15]. (A) Only a
few  lines of code are needed to load, process and report the results of the dPCR
experiments. Here we  used the dPCRmethyl dataset contained in the dpcR package.
8 M. Burdukiewicz et al. / Biomolecular D

he difference between a run with � = 0.01 and runs with � only up
o 0.03 was not considered statistically significant by at least one

ethod, whereas a run with � = 0.14 differed significantly from runs
ith � even up to 0.20.

The statistical power of the GLM and MRT  methods depended
lso on the number of runs (Figs. 2 and S1, and Table S1). The GLM
as more sensitive than MRT  to changes of the template concen-

ration when a single run per group was compared. In turn, the
RT  had higher statistical power when tested scenarios involving
ore than one run per group. This is in line with the definition of a
ultiple comparison.
The speed of both approaches was assessed in a separate bench-

ark. The MRT  method was always faster than GLM regardless
f the number of runs compared. The difference considerably
ncreased non-linearly with the number of runs, whereas the num-
er of partitions had much smaller impact on the computation time
Fig. 3 and Table S2).

overage probability of confidence intervals

We  performed 1×106 dPCR experiments in silico (2×104

roplets each) for the range of � values from 0.05 to 2.00 with the
ncrement 0.05 (1.2×107 experiments total).

To assess the simultaneous coverage probability, we  randomly
ivided experiments into 2000 groups (500 experiments each) for
ll values of �. We  counted the frequency of groups in which all
onfidence intervals contained the true value of �.

The adjusted confidence intervals, which are much wider than
ominal/uncorrected CIs, guaranteed 0.95 stable simultaneous cov-
rage probability. This offers more reliable comparison of multiple
uns (Table S3).

nalysis of experimental data

We  analyzed experimental data using the MRT. The proposed
ramework was able to distinguish between different concentra-
ions even on restrictive confidence levels. As in the Monte Carlo
valuation, there are ‘blind spots’, where MRT  is not able to discrim-
nate between two relative concentrations, for example between 0%
nd 5% (Table 2, detailed results in Fig. S2 and Table S4).

MRT  yields sufficiently high p-values when comparing the same
oncentrations with the only exception for the 75% concentration.
n this case, only one sample was wrongly assessed as having the �
alue different from other samples with the same concentration.

The confidence intervals determined by MRT  always covered

he real mean number of template molecules per partition. This
ndicates that all technical replicates come from the same source
Fig. 4 and Table S5). On the opposite, the real � was not covered in

able 2
raction of significant pairwise comparisons of dPCR results.
(B) The results of the analysis can easily be presented as interactive table. (C) Plots
of  the analysis can be created as needed. In our example, we used the functionality
of  the dpcR package to create an plot automatically.

22% and 44% of cases by the confidence intervals computed using
Dube’s and Bhat’s method, respectively.

Conclusions

The MRT  framework seems to be a tailor-made method for com-
paring multiple dPCR experiments. This method is characterized by
a statistical power which is superior to the simplistic GLM approach
and is considerably faster. Performance is very important, because
even the analysis of large experimental setups should be possible
on average desktop computers.

Adjusted confidence intervals suitable for multiple comparison
problems are an integral part of MRT. Although Dube’s method
might be also enhanced by Dunn–Šidák correction for the pur-
pose of multiple testing, it uses normal approximation to compute
the confidence intervals. Others have shown that this approach is
inferior to Wilson’s method as employed by MRT, because its proba-
bility coverage is inadequate for values of k/n close to 0 and 1 [24]. In
consequence, for low and large values of �, the real probability cov-
erage of confidence intervals determined by Dube’s method may
differ from its nominal value in contrast to the Wilson’s method.

It is worth to note that both analyzed statistical methods may
be further enhanced. GLM may  be expanded with more complex
models taking more effects as recently shown into account [9]. MRT
can utilize different tests for binomial proportion (e.g., test of equal
proportions).

Both tests are available by the test counts function of the dpcR
package the commonly available open source statistical software
environment R (see Fig. 5).
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