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Abstract: The neuroprotective properties of piperine, the major alkaloid extracted from black pepper,
have been under investigation, but its mechanism of action in excitotoxicity is still poorly under-
stood. This study aimed to evaluate the protective effects of piperine with a focus on nerve growth
factor (NGF) signalling in a kainic acid (KA) rat model of excitotoxicity. Rats were administered
intraperitoneally (i.p.) piperine (10 or 50 mg/kg) before KA injection (15 mg/kg, i.p.). Our results
show that KA exposure in rats caused seizure behaviour, intrinsic neuronal hyperactivity, glutamate
elevation, hippocampal neuronal damage, and cognitive impairment. These KA-induced alterations
could be restored to the normal state by piperine treatment. In addition, piperine decreased the
expression of the NGF precursor proNGF and NGF-degrading protease matrix metalloproteinase
9, whereas it increased the expression of proNGF processing enzyme matrix metalloproteinase 7,
NGF, and NGF-activated receptor TrkA in the hippocampus of KA-treated rats. Furthermore, KA
decreased phosphorylation of the protein kinase B (Akt) and glycogen synthase kinase 3β (GSK3β) in
the hippocampus, and piperine reversed these changes. Our data suggest that piperine protects hip-
pocampal neurons against KA-induced excitotoxicity by upregulating the NGF/TrkA/Akt/GSK3β
signalling pathways.
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1. Introduction

Glutamate is the major excitatory neurotransmitter in the central nervous system
(CNS) and plays a crucial role in neurological processes, including cognition, learning,
and memory [1]. However, excessive activation of glutamate receptors under pathological
conditions leads to Ca2+ overload and neuronal death [1,2]. Glutamate-induced excitotoxic-
ity is considered a common hallmark of many neurological disorders [3,4] and has been
linked to alterations in the expression of the neurotrophin nerve growth factor (NGF) [5,6].
NGF regulates neuronal survival by binding to TrkA, which activates several signalling
pathways, such as protein kinase B (Akt) and glycogen synthase kinase 3β (GSK3β) [7,8].
Decreased NGF that accompanies neuronal death has been observed in the brains of excito-
toxic injuries, and neuronal cell death from excitotoxicity also appears to be prevented by
increasing NGF [5,6,9]. Importantly, the NGF pathway has emerged as a pharmacological
target for neuroprotection and repair against excitotoxic brain injury or neurodegenerative
disorders [10–14].

The search for new drugs that maintain glutamate homeostasis and regulate the
cascades of intracellular signalling that can lead to neuronal death is very important. In
this sense, plant-derived substances have been shown to be efficient in increasing NGF
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expression and protecting against glutamate excitotoxicity [9,15,16]. Piperine is an alkaloid
extracted from black pepper, the chemical formula of C17H19NO3 (Figure 1A). However,
this substance has poor solubility in water and low bioavailability [17,18]. Piperine has
antioxidant, anti-inflammatory, and antitumour effects. In addition, piperine has been
found to provide neural protective actions in various in vitro and in vivo experimental
models [17,19,20]. It has been demonstrated, for example, that piperine can penetrate
the blood–brain barrier (BBB) [18,21], protect against ischaemic brain injury and kainate-
induced seizures or neurotoxicity [22–24], attenuate β-amyloid or oxidative stress-induced
neuronal cell damage and death [25–27], and improve depression-like behaviour and
cognitive impairment [26,28,29]. Despite the compelling evidence for the neuroprotective
effects of piperine, its mechanism of action is not fully clarified. The aim of the present
study was to investigate the protective effect of piperine with a focus on NGF signalling in
an excitotoxicity rat model induced by kainic acid (KA), which is a glutamate analogue.
Here, we propose that the neuroprotective mechanisms of piperine are associated with
upregulation of the NGF signalling cascade.
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Figure 1. (A) Chemical structure of piperine. (B) Experimental design. Rats were administered
piperine (10 and 50 mg/kg, i.p.) 30 min before KA injection (15 mg/kg, i.p.). Seizure behaviour and
epileptic bursts were recorded 3 h after KA administration. At 3 days after KA injection, the rats
were examined by the Morris water maze (MWM) test and sacrificed for high-performance liquid
chromatography (HPLC), Western blot, and immunohistochemistry (IHC) studies.

2. Results
2.1. Piperine Pretreatment Attenuated Seizures and Hippocampal Glutamate Level Elevation in
KA-Treated Rats

Systemic administration of KA to rodents provokes endogenous glutamate release
and results in excitotoxic events, such as seizure activity [30]. To evaluate the protective
effect of piperine on the seizure activity induced by KA, rats were intraperitoneally (i.p.)
injected with piperine (10 or 50 mg/kg) 30 min before KA administration (15 mg/kg, i.p.),
and the epileptic burst was detected by electroencephalogram (EEG) recording. The details
of the experimental timeline are shown in Figure 1B. In Figure 2A, no epileptic bursts were
observed in the control group. Compared with the control group, the KA-treated group
exhibited a significant increase in the number of epileptic bursts. This enhancement was
prevented in piperine + KA-treated rats compared with the KA group (Figure 2A). In the
piperine (10 and 50 mg/kg) + KA group, quantification of the results showed a significant
decrease in the number and duration of the epileptic bursts (F(2, 6) = 43.52, p < 0.001 vs. the
KA group and F(2, 6) = 72.62, p < 0.001 vs. the KA group, respectively, Figure 2B). Obvious
seizure behaviours were also observed in KA-injected rats. Piperine pretreatment (10 or
50 mg/kg) significantly decreased the severity of seizures over 180 min compared with
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the KA group (at 180 min: F(2, 24) = 28.3, p < 0.001, Figure 3A). In addition, we collected
cerebrospinal fluid (CSF) to examine the glutamate level changes 3 days after treatment by
using HPLC. As shown in Figure 3B, the extracellular glutamate levels were dramatically
increased in the KA group (F(3, 16) = 304.7, p < 0.001 vs. the control group). Piperine
pretreatment (10 or 50 mg/kg) significantly decreased the levels of glutamate compared
with the KA group (p < 0.001, Figure 3B).
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Figure 2. Effect of piperine pretreatment on electrographic seizures in rats with KA. (A) Representa-
tive EEG traces show epileptic bursts within 3 h. (B) The epileptic bursts are presented as the mean
number and mean duration of seizure spikes. Data are presented as the means ± S.E.M. (n = 3).
# p < 0.001 versus the KA group (ANOVA/Scheffé).

2.2. Piperine Pretreatment Attenuated KA-Induced Neuronal Cell Death in the Hippocampus
of Rats

Three days after KA injection, brain tissue sections were stained with the neuronal
marker neuronal nuclei (NeuN) and Fluoro-Jade B (FJB, identifying degenerating neu-
rons) to study the neuroprotective effect of piperine on hippocampal neurons. As il-
lustrated in Figure 4A, neuronal loss and neuronal degeneration were observed in the
hippocampal CA1 and CA3 regions of the KA-injected rats, and piperine pretreatment
(10 or 50 mg/kg) alleviated these KA-induced changes. The quantification showed that
a significant reduction in the number of NeuN+ cells and a significant increase in the
number of FJB+ cells were observed in the hippocampal CA1 and CA3 regions of the
KA-injected rats (NeuN CA1: F(3, 12) = 119.4; NeuN CA3: F(3, 12) = 139.5; FJB CA1:
F(3, 12) = 179.9; FJB CA3: F(3, 12) = 361.5, p < 0.0001 vs. the control group, Figure 4B).
However, the number of NeuN+ cells in the hippocampal CA1 and CA3 regions was signif-
icantly increased in the piperine (10 and 50 mg/kg) + KA group compared with the KA
group (CA1: p < 0.0001; CA3: p < 0.0001, Figure 4B). Similarly, the number of FJB+ cells in
the hippocampal CA1 and CA3 regions was significantly reduced in the piperine (10 and
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50 mg/kg) + KA group compared with the KA group (CA1: p < 0.0001; CA3: p < 0.0001,
Figure 4C).

Molecules 2022, 27, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 3. Effect of piperine pretreatment on seizure severity and extracellular glutamate levels in 
rats with KA. (A) Seizure scores are recorded every 30 min (n = 9). * p < 0.05; ** p < 0.01; *** p < 0.001 
versus the KA group. (B) The extracellular glutamate levels from the cisterna magna were evalu-
ated by HPLC (n = 5). Data are presented as the means ± S.E.M. # p < 0.001 versus the KA group; *** 
p < 0.001 versus the control group (ANOVA/Scheffé). 

2.2. Piperine Pretreatment Attenuated KA-Induced Neuronal Cell Death in the Hippocampus of 
Rats 

Three days after KA injection, brain tissue sections were stained with the neuronal 
marker neuronal nuclei (NeuN) and Fluoro-Jade B (FJB, identifying degenerating neu-
rons) to study the neuroprotective effect of piperine on hippocampal neurons. As illus-
trated in Figure 4A, neuronal loss and neuronal degeneration were observed in the hip-
pocampal CA1 and CA3 regions of the KA-injected rats, and piperine pretreatment (10 or 
50 mg/kg) alleviated these KA-induced changes. The quantification showed that a sig-
nificant reduction in the number of NeuN+ cells and a significant increase in the number 
of FJB+ cells were observed in the hippocampal CA1 and CA3 regions of the KA-injected 
rats (NeuN CA1: F(3, 12) = 119.4; NeuN CA3: F(3, 12) = 139.5; FJB CA1: F(3, 12) = 179.9; 
FJB CA3: F(3, 12) = 361.5, p < 0.0001 vs. the control group, Figure 4B). However, the 
number of NeuN+ cells in the hippocampal CA1 and CA3 regions was significantly in-
creased in the piperine (10 and 50 mg/kg) + KA group compared with the KA group 
(CA1: p < 0.0001; CA3: p < 0.0001, Figure 4B). Similarly, the number of FJB+ cells in the 
hippocampal CA1 and CA3 regions was significantly reduced in the piperine (10 and 50 
mg/kg) + KA group compared with the KA group (CA1: p < 0.0001; CA3: p < 0.0001, Fig-
ure 4C). 
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with KA. (A) Seizure scores are recorded every 30 min (n = 9). * p < 0.05; ** p < 0.01; *** p < 0.001
versus the KA group. (B) The extracellular glutamate levels from the cisterna magna were evaluated
by HPLC (n = 5). Data are presented as the means ± S.E.M. # p < 0.001 versus the KA group; *** p < 0.001
versus the control group (ANOVA/Scheffé).

2.3. Piperine Pretreatment Maintained the Levels of NGF in the Hippocampus of Rats with
KA Injection

As NGF has a critical function in neuronal survival during brain injury induced by
excitotoxicity [6,9], we assayed the expression of NGF and its precursor proNGF in the
hippocampus of KA-treated rats. As depicted in Figure 5, KA significantly decreased the
levels of NGF and significantly increased the proNGF levels compared with the control
group (NGF: F(3, 16) = 17.5; proNGF: F(3, 16) = 31.6, p < 0.001). However, these alterations
in NGF and proNGF expression were reversed by piperine pretreatment (p < 0.001). In
addition, a significant decrease in the level of matrix metalloproteinase 7 (MMP7, a protease
converting proNGF to NGF) and a marked increase in the level of matrix metalloproteinase
9 (MMP9, an NGF degrading enzyme) were observed in the hippocampus of KA-treated
rats (MMP7: F(3, 16) = 43.5; MMP9: F(3, 16) = 80.7, p < 0.001 vs. the control group; Figure 5).
Pretreatment with piperine (10 or 50 mg/kg) effectively restored the protein levels of
MMP7 (p < 0.001) and MMP9 (p < 0.001) to the control levels in the hippocampus of the
rats (Figure 5).
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Figure 4. Effect of piperine pretreatment on neuronal damage in the hippocampus of KA-treated rats.
(A) CA1 and CA3 regions of the hippocampus are observed with NeuN, FJB, and DAPI immunoflu-
orescent staining. Scar bar for hippocampus = 200 µm; scar bar for CA1 and CA3 regions = 100 µm.
(B,C) Quantitative analysis of NeuN-positive and FJB-positive neurons in the hippocampal CA1 and
CA3 regions. Data are presented as the means ± S.E.M. (n = 4). # p < 0.001 versus the KA group;
** p < 0.01 versus the control group; *** p < 0.001 versus the control group; $ p < 0.01 versus the
KA + piperine 10 mg/kg group (ANOVA/Scheffé).
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Data are presented as the means ± S.E.M. (n = 5). # p < 0.001 versus the KA group; *** p < 0.001
versus the control group (ANOVA/Scheffé).

2.4. Piperine Pretreatment Increased the Phosphorylation Levels of TrkA, Akt, and GSK3β in the
Hippocampus of KA-Treated Rats

To further investigate the possible molecular mechanisms of piperine, we analysed
the high-affinity membrane receptor tyrosine kinase A (TrkA) of NGF and its downstream
Akt/GSK3β signalling pathway [7,8]. As shown in Figure 6, KA decreased the TrkA
expression (TrkA: F(3, 16) = 31.39, p < 0.001 vs. the control group) and significantly reduced
the phosphorylation levels of TrkA, Akt and GSK3β compared to the control group (pTrkA:
F(3, 16) = 18.51; pAkt: F(3, 16) = 36.69; pGSK3β: F(3, 16) = 404.3, p < 0.001). These changes
induced by KA were significantly increased in the piperine (10 and 50 mg/kg) + KA group
compared with the KA group (p < 0.001).
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2.5. Piperine Pretreatment Improved KA-Induced Spatial Memory Dysfunction in Rats

To determine the effect of piperine on spatial learning and memory, we analysed the
rat performance in the MWM test. As shown in Figure 7A, the swimming tracks of the rats
in each group were recorded. Figure 7B shows that KA significantly increased the time
to find the platform (escape latency) compared with the control group (F(3.16) = 252.37,
p < 0.001). Pretreatment with piperine (10 and 50 mg/kg) effectively decreased the escape
latency compared with the KA group (p < 0.001). Similarly, the swimming distance of the
KA group markedly increased compared with that of the control group (F(3.16) = 68.7,
p < 0.001), which was shortened by piperine pretreatment (p < 0.001, Figure 7B).
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Figure 7. Effect of piperine pretreatment on spatial memory deficits in rats with KA. (A) The
swimming path of rats in the MWM test. (B) Quantitative data of memory deficits are presented
in the mean escape latency and mean swimming length. Data are presented as the means ± S.E.M.
(n = 5). # p < 0.001 versus the KA group; *** p < 0.001 versus the control group (ANOVA/Scheffé).

3. Discussion

The pathophysiology of numerous neurological diseases has been associated with
glutamatergic excitotoxicity [4,16,31]. Thus, research on new neuroprotective strategies
with the ability to mitigate glutamate toxicity has received increasing attention. Given this
background, we evaluated the effect of piperine in an excitotoxicity rat model induced by
systemic KA administration, investigating its possible mechanism of action. This study
provided evidence that piperine prevents KA-induced excitotoxicity, which could result
from activating TrkA/Akt/GSK3β signalling by increasing NGF expression.

KA, an analogue of glutamate, can increase glutamate levels and glutamate receptor
overactivation, which leads to an epileptic burst and excitotoxic neuronal death [31,32]. In
the current study, we found that pretreatment with piperine significantly attenuated KA-
induced abnormal electrical brain activity and seizure behaviour, indicating that piperine
exerts an anticonvulsant effect, which is consistent with previous studies [22,23,33]. In ad-
dition, we found that piperine pretreatment reduced the KA-induced increase in glutamate
concentrations and attenuated neuronal damage in the hippocampus. Thus, the beneficial
effect of piperine on the generation of KA-induced seizures and neuronal damage can be at
least partially ascribed to the inhibition of glutamate-mediated overexcitation. Although
the exact mechanism of the anticonvulsant and neuroprotective effects of piperine remains
to be further clarified, reducing glutamate release may provide some answers. For example,
piperine has been found to suppress the release of glutamate by rat hippocampal nerve ter-
minals [34]. Furthermore, the inhibitory effects of clinical antiepileptic drugs on glutamate
release by human and rat brain tissues has been proposed [35,36]. Thus, we can infer that
piperine pretreatment prevents the increase in glutamate release in the hippocampus of
KA-treated rats, which may partially explain the neuroprotective effect of piperine against
KA-induced hippocampal neuronal loss and, consequently, its anticonvulsant effect.
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NGF, a member of the neurotrophin family of growth factors, is implicated in the
regulation of neuronal survival, differentiation, and growth by binding to its high-affinity
receptor (TrkA) [10,37]. Decreased NGF levels in the brain have been shown to be associated
with KA-induced neuronal damage [5,6]. In this study, as expected, KA decreased NGF
levels in the hippocampus, and this phenomenon was reversed by piperine pretreatment.
Regarding the changes in the expression of NGF in the hippocampus, effects on NGF
synthesis or NGF degradation might be involved [38–40]. Studies have already revealed
that the NGF precursor proNGF is released when neuronal activity is activated and it
is converted to NGF by MMP7; then, any NGF that does not bind to TrkA is rapidly
degraded by MMP9 [41–43]. In the present study, we found that KA decreased MMP7
expression, while it increased MMP9 expression. These KA-induced changes were reversed
by piperine pretreatment. In addition, we found that the expression level of proNGF
increased in the hippocampus of KA-treated rats, which is consistent with the findings
of previous studies [44]. Piperine pretreatment was also able to prevent the KA-induced
increase in proNGF levels. ProNGF is a potent apoptotic ligand that interacts with the p75
neurotrophin receptor (p75NTR) [45]. Increased proNGF that accompanies neuronal death
has been observed in the hippocampus after seizure, and this excitotoxic neuronal loss
also appears to be prevented by proNGF inhibition via increasing MMP7 activity [44,46].
We confer that i.p. administration of KA to rats decreased MMP7, leading to proNGF
accumulation and neuronal death in the hippocampus. Piperine pretreatment might
increase MMP7, as well as decrease proNGF, and in doing so, it could increase NGF
to preserve KA-induced hippocampal neuronal damage. Overall, the neuroprotective
effect of piperine against KA-induced hippocampal neuronal damage is attributable to its
NGF enhancement, which is elicited via an increase in NGF synthesis and a decrease in
NGF degradation.

Moreover, NGF exerts a protective effect against excitotoxicity-induced neuronal death
by activating the TrkA signalling pathways, including the Akt/GSK3β pathway [7,8,47].
Inhibition of the Akt/GSK3β pathway has been shown to offset the ability of NGF to
promote cell survival [14,48]. In our current study, we found that the activation of TrkA, Akt,
and GSK3β in the hippocampus was decreased by KA administration, which was markedly
reversed by piperine. Based on our data, we hypothesize that piperine exerts a protective
effect against KA-induced hippocampal neuronal damage by activating the TrkA/Akt
pathway through increasing NGF. In addition, dysregulation of NGF signalling has been
shown to cause cognitive dysfunction [8,15,40,49,50]. A previous study also revealed
that increased NGF and TrkA expression and activation of the Akt/GSK3β pathway could
ameliorate brain hypoperfusion-induced cognitive impairment in rats [51]. In this study, we
also evaluated memory function using the MWM test and found that piperine pretreatment
improved memory deficits in KA-treated rats. Thus, we speculated that piperine could
prevent hippocampal neuronal damage by increasing NGF-induced TrkA/Akt/GSK3β
activation, thus contributing to the improvement in memory dysfunction in rats with
KA-induced seizures. In fact, the beneficial effects of piperine on cognitive function have
been proposed in various animal models of neurological disorders, including autism,
Alzheimer’s disease, and Parkinson’s disease [52–54].

The ability of piperine to pass through the blood–brain barrier (BBB) has numerous
beneficial effects on the CNS, which was revealed in in vivo studies [17,18,21]. For exam-
ple, piperine was found to alleviate ischaemia-induced brain damage [24], to improve
depression-like behaviour and cognitive dysfunction [29,52,54] and to promote neurogene-
sis [26]. Regarding the neuroprotective mechanisms of piperine, it has been reported that
this beneficial effect is associated with influencing neurotransmitter concentrations [55] and
suppressing oxidative stress [25] and inflammatory responses [23,33]. In addition to these
possible mechanisms, our previous [34] and present study results presume that inhibiting
glutamate release and its antiexcitotoxic properties may partly contribute to the neuropro-
tective effects of piperine in the brain. On the other hand, piperine has been shown to have
an excellent safety profile [56,57]. For example, the oral administration (5–50 mg/kg/day)
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of piperine to rats for 90 days showed nontoxic effects [58]. In addition, the average daily
consumption of piperine is approximately 14–54 mg/person/day [58]. Clinical trials also
reported that oral administration of a single large piperine dose (45.7 mg/kg) produced
health-promoting effects [59]. The doses of piperine (10 and 50 mg/kg) used in the present
study are similar to those used in these studies, which indicates that the dose we used is
safe and makes our results more relevant to clinical studies.

In the present study, although we observed significant anticonvulsant and neuropro-
tective effects of piperine against KA-induced seizures and excitotoxic injury, limitations
exist. First, our findings indicate that the effects of piperine are related to NGF signalling
upregulation in the KA seizure rat model, but the in-depth molecular mechanism that
underlies its effects requires further verification. Second, the present study focused only on
the effects of piperine on neurons. Because KA-induced seizures and excitotoxicity involve
glial activation and suppressing glial activation protects against the neuronal damage
caused by KA-induced seizure [60], further study is required to elucidate the effects of
piperine on astrocytes/microglia in KA seizure rats.

4. Materials and Methods
4.1. Animals and Experimental Design

Male Sprague–Dawley rats weighing 200–225 g were purchased from BioLASCO
(Taipei, Taiwan) and maintained at the Animal Care Services of Fu Jen Catholic University,
Taiwan. Rats were kept under standardized conditions (22–24 ◦C, 55% relative humidity,
12 h/12 h light/dark cycle) for 1 week, and food and water were available ad libitum. The
experimental protocol was reviewed and approved by the Institutional Animal Care and
Use Committee (IACUC) of Fu Jen Catholic University (17 December 2020; A10944).

The excitotoxicity animal model was induced by intraperitoneal (i.p.) administration
of KA (K0250, Sigma-Aldrich, St. Louis, MO, USA; dissolved in normal saline) at a dose of
15 mg/kg. Rats were divided into 4 groups: the control group (i.p. injected DMSO alone,
Sigma-Aldrich), KA group, piperine (P49007, Sigma-Aldrich) 10 mg/kg + KA group, and
piperine 50 mg/kg + KA group. Piperine (dissolved in DMSO) was i.p. injected 30 min
before KA injection.

4.2. Seizure Score

After KA administration, spontaneous seizure behaviour of the rats was scored every
30 min for up to 3 h according to the modified Racine scale: (0) no response; (1) star-
ing and nodding; (2) wet dog shakes (WDS), drooling, and pawing; (3) WDS, drooling,
and forelimb clonus; (4) WDS, drooling, forelimb clonus with rearing and jumping; and
(5) rearing, jumping, falling, status epilepticus, and even death [61].

4.3. EEG Recording

Rats were anaesthetized via inhalation of 3% sevoflurane (Baxter healthcare corpo-
ration, Guayama, Puerto Rico, USA). The rats were secured on a stereotaxic frame while
a hot blanket was used to maintain their body temperature. After a central incision on
the scalp was made, four burr holes were made in the skull according to the stereotaxic
atlas (AP: +1.8 mm, ML: ±1.5 mm and AP: −3 mm, ML: ±2.5 mm relative to Bregma)
using a hand-held dental drill (#8424, Pinnacle Technology, Inc., Lawrence, KS, USA) [62].
Then, stainless steel screws were drilled with wire leads (#8247, Pinnacle Technology, Inc.,
Lawrence, KS, USA) into these pilot holes. The EEG/EMG Rat Headmount (#8239, Pinnacle
Technology, Inc., Lawrence, KS, USA) was implanted in the head, the EMG probes were
inserted bilaterally into the nuchal muscles, and the probes were fixed to the skull with
dental acrylic powder. EEG recordings were taken 7 days after the surgery and were
monitored for 3 h after KA injection. The EEG equipment consisted of a 100× preamplifier
(#8213, Pinnacle Technology, Inc., Lawrence, KS, USA) to monitor the data. The EEG data
were collected from the data acquisition/conditioning system (#8206, Pinnacle Technology,
Inc., Lawrence, KS, USA) and recorded with PAL-8200 software (Version 1. 6. 6, Pinnacle
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Technology, Lawrence, KS, USA). The spikes were analysed by Sirenia Seizure Pro software
(Version 1. 6. 6, Pinnacle Technology, Lawrence, KS, USA).

4.4. Immunohistochemistry

Rats were transcardially perfused with 300 mL normal saline and 300 mL ice-cold
4% paraformaldehyde in phosphate-buffered saline (PBS, 0.1 M, pH 7.4, Sigma-Aldrich)
under zoletil (40 mg/kg, i.p.; Virbac Lab, Carros, France) anaesthesia. Their brains were
quickly removed and postfixed with 4% paraformaldehyde (Sigma-Aldrich) in PBS at
4 ◦C overnight. The brains were transferred to 30% sucrose (Sigma-Aldrich) in 0.1 M
PBS at 4 ◦C. Coronal brain sections (20 µm) were then cut on a cryostat (Leica CM3050 S,
Wetzlar, Germany).

Floating brain sections were blocked in PBS containing 5% normal goat serum
(Abbkine, China) and 0.3% Triton X-100 (Sigma-Aldrich) for 1 h at room temperature.
After blocking, the sections were incubated with the neuronal marker anti-NeuN (ab177487,
Abcam, Cambridge, UK; diluted 1:500) for 60 min at room temperature followed by rins-
ing in PBS three times. Next, the sections were incubated with goat anti-rabbit antibody
conjugated to DyLightTM 594 (35560, Invitrogen, IL, USA) in the dark for 90 min at room
temperature. They were washed three times in PBS and stained with DAPI (D9542, Sigma-
Aldrich, 1 µg/mL) for nuclear staining for 10 min at room temperature. After the final
washes, the brain sections were mounted on gelatin-coated glass slides and allowed to
air-dry in the dark.

The degeneration of the hippocampal neurons following KA-induced excitotoxicity
was assessed with FJB (#1FJB, Histo-Chem, Jefferson, AR, USA) as described previously [63].
For FJB staining processing, the air-dried slides were rehydrated with decreasing concen-
trations of ethanol (100%, 95%, 70%) and immersed in distilled water. They were moved to
0.06% potassium permanganate (KMnO4, Sigma-Aldrich) and slowly shaken for 10 min,
followed by rinsing in distilled water for 2 min. The slides were then soaked in 0.001% FJB
solution containing 0.1% acetic acid with gentle shaking for 10 min and rinsed in distilled
water three times for 1 min each. After air-drying in the dark, they were cleared by immer-
sion in xylene for 2 min and coverslipped with Entellan® (Sigma-Aldrich). The CA1 and
CA3 regions of the hippocampus were visualized with an ImageXpress® Micro confocal
microscope (Molecular Devices, CA, USA) with a 40× objective. The numbers of NeuN+

cells (indicating surviving neurons) and FJB+ cells (indicating degenerative neurons) were
counted in an area of 0.35 mm × 0.35 mm by ImageJ (version 1.43, Synoptics, Cambridge,
UK) on 3 slices per animal.

4.5. Morris Water Maze

The rats were tested in the Morris water maze for spatial memory ability, as reported
previously [64]. The water maze consisted of a black round pool (diameter: 150 cm;
height: 70 cm) that was filled with tap water (23 ± 1 ◦C, depth: 40 cm) and divided into
four quadrants by two imaginary lines crossing the pool centre. A transparent escape
platform (diameter: 15 cm) was placed in the centre of the pool and submerged 1 cm below
the water surface. Each rat was put into the pool facing the wall and trained to search for
the hidden platform for a maximum of 2 min (4 times daily, from a different quadrant, with
5 min intervals) for 3 consecutive days. If the rat failed to find the hidden platform within
2 min, the examiner gently guided them to the platform where the animals were permitted
to stay for 1 min. Three days after KA administration, the time and distance travelled
to reach the hidden platform were recorded using a video tracking system (Version 3.0,
Panlab, Barcelona, Spain).

4.6. Glutamate Levels

Rats were anaesthetized with zoletil (40 mg/kg; i.p.), and cerebrospinal fluid (CSF,
~100 µL) was collected from the cisterna magna [65]. The CSF was filtered with a centrifugal
filter (UFC5030, Merck KGaA, MA, USA) (10,000× g for 10 min at 4 ◦C) and frozen at −80 ◦C
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until use. The glutamate level was determined by injecting the filtered CSF into the HPLC
system with electrochemical detection (HTEC-500, Eicom, Kyoto, Japan) according to the
previously described method [66].

4.7. Western Blotting

After CSF collection, the rats were decapitated for hippocampal sampling. The hip-
pocampus was quickly extracted and homogenized in ice-cold lysis buffer (Sigma-Aldrich)
supplemented with phosphatase and protease inhibitors (Roche, Mannheim, Germany) as
described previously [63]. Lysates were incubated on ice for 30 min and then centrifuged
at 13,200 rpm for 10 min at 4 ◦C. The supernatants were harvested, and the protein con-
centration was determined by a bicinchoninic acid (BCA) kit (Thermo Scientific). Equal
concentrations of protein (30 µg) from each group were electrophoresed in 12% SDS–PAGE
and transferred to polyvinylidene fluoride (PVDF) membranes (GE Healthcare, Amersham,
UK). After 1 h of blocking with 5% nonfat milk in Tris-buffered saline containing 0.1%
Tween-20, the blots were incubated overnight at 4 ◦C with primary antibodies (β-actin,
#3700, 1:8000; TrKA, #2505, 1:20,000; AKT, #9272, 1:4000; phospho-AKT, #9271, 1:4000;
GSK3β, #9315, 1:8000; phospho-GSK3β, #9336, 1:2000; all from Cell Signaling Technology,
Beverly, MA, USA; NGF, ab52918, 1:5000; ProNGF, ab68151, 1:15,000; MMP9, ab58803,
1:1000; all from Abcam, Cambridge, UK; MMP7, GTX104658, 1:500; from GeneTex, Irvine,
CA, USA; phospho-TrKA, SC-8058, 1:500; from Santa Cruz Biotechnology, Dallas, TX, USA).
After washing with TBST (0.1% Tween-20 in Tris-buffered saline), the membranes were
incubated with goat anti-rabbit or anti-mouse HRP-linked secondary antibody (1:5000;
GeneTex) in 5% nonfat milk for 1 h at room temperature. The immunoreactive bands on
the membrane were detected with a chemiluminescent kit (GE Healthcare) and exposed
to X-ray film (GE Healthcare). The optical density of the protein bands was quantified
using ImageJ software (version 1.43, Synoptics, Cambridge, UK), normalized to β-actin,
and presented as a relative value.

4.8. Statistical Analysis

All statistical analyses were carried out with SPSS 18 software, and all figures were
made using GraphPad Prism 8 software. Values are expressed as the means ± SEM of three
or more independent experiments. One-way ANOVA followed by the Scheffé post hoc test
was used to assess group differences. The results were defined as statistically significant
when p < 0.05.

5. Conclusions

In conclusion, the present study demonstrates that piperine attenuates excitotoxic dam-
age in a rat model induced by KA. This neuroprotective effect of piperine may result from at-
tenuating glutamate hyperactivity and upregulating the NGF-mediated TrkA/Akt/GSK3β
signalling pathway in the hippocampus (Figure 8). The results from this study provide a
new framework for the neuroprotective mechanisms of piperine, suggesting that piperine
is likely to be a promising therapy for preventing excitotoxicity-related brain diseases.
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