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Using Communication to Modulate
Neural Synchronization in Teams
Terri A. Dunbar* and Jamie C. Gorman

Systems Psychology Laboratory, School of Psychology, Georgia Institute of Technology, Atlanta, GA, United States

Throughout training and team performance, teams may be assessed based on
their communication patterns to identify which behaviors contributed to the team’s
performance; however, this process of establishing meaning in communication is
burdensome and time consuming despite the low monetary cost. A current topic in
team research is developing covert measures, which are easier to analyze in real-time,
to identify team processes as they occur during team performance; however, little is
known about how overt and covert measures of team process relate to one another. In
this study, we investigated the relationship between overt (communication) and covert
(neural) measures of team process by manipulating the interaction partner (participant
or experimenter) team members worked with and the type of task (decision-making or
action-based) teams performed to assess their effects on team neural synchronization
(measured as neurodynamic entropy) and communication (measured as both flow and
content). The results indicated that the type of task affected how the teams structured
their communication but had unpredictable effects on the neural synchronization of
the team when averaged across the task session. The interaction partner did not
affect team neural synchronization when averaged. However, there were significant
relationships when communication and neural processes were examined over time
between the neurodynamic entropy and the communication flow time series due to
both the type of task and the interaction partner. Specifically, significant relationships
across time were observed when participants were interacting with the other participant,
during the second task trial, and across different regions of the cortex depending
on the type of task being performed. The findings from the time series analyses
suggest that factors that are previously known to affect communication (interaction
partner and task type) also structure the relationship between team communication
and neural synchronization—cross-level effects—but only when examined across time.
Future research should consider these factors when developing new conceptualizations
of team process measurement for measuring team performance over time.

Keywords: team process, team coordination, neural synchronization, team communication, constraints, entropy,
cross-level effect
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INTRODUCTION

Cross-level effects, or temporal dependencies across levels of
analysis (e.g., physiological, cognitive, and motor), are thought
to occur unconsciously and develop naturally as people interact
(Gorman et al., 2016). The purpose of the current study is
to establish whether cross-level effects exist in teams between
the communication and neurophysiological levels of analysis
and whether they can be controlled by constraining how
teams coordinate. Empirical grounding for this research can
be found in studies performed on individuals and teams
where cross-level effects occur through the coupling of motor,
perceptual, and neural processes during task performance. In
individual speech, for example, the speed of speech syllables,
the movement of the mouth, and the electrical activity in the
auditory cortex all modulate at a frequency between 3 and
8 Hz (Ghazanfar and Schroeder, 2006; Schroeder et al., 2008;
Chandrasekaran et al., 2009; Luo et al., 2010). This entrainment
across levels of analysis (mouth movements, speech, and
auditory neural activity) suggests that these processes (motor,
perceptual, and neural) are coupled during the production
of speech.

Entrainment also occurs in interpersonal communication
where neural synchronization (i.e., temporal coupling due
to interacting in a shared medium; Strogatz, 2003) occurs
incidentally between people during a conversation. More
specifically, the neural activity of the speaker is spatially
and temporally correlated with the listener’s neural activity
(Stephens et al., 2010; Dikker et al., 2014; Pérez et al., 2017).
This neural coupling often occurs at a delay, but it can also
be predictive, where the listener’s neural activity anticipates
the speaker’s neural activity (Stephens et al., 2010; Kuhlen
et al., 2012). Studies using live verbal communication find
similar results, especially during face-to-face communication
(Jiang et al., 2012; Spiegelhalder et al., 2014). According to
Stephens et al. (2010), the neural coupling may serve as a
mechanism for how brains coordinate or convey information
successfully between individuals. The coupling mechanism is
also supported by prior findings that people have similar
neural responses when they interpret a narrative the same
way (Nguyen et al., 2019). This study will expand on
this research by experimentally inducing cross-level effects
during live, back-and-forth conversation during more complex
team tasks.

In the current study, cross-level effects are experimentally
induced in two ways: Type of task and the interaction partner.
According to the theory of interactive team cognition, team
cognition embodied in team communication is inextricably
tied to task context (Cooke et al., 2013). Therefore, we
hypothesize that if team communication and neural processes
are coupled, then changes in team communication will be
concomitant with changes in neural synchronization as a
function of task context. In previous research, we found
that the type of team task controls the type of team
communication pattern that emerges over time (Dunbar
and Gorman, 2014). Specifically, dyads performed one of
two task types: The Non-combatant Evacuation Operation

planning task (NEO; Warner et al., 2003) or the Minecraft
visual-spatial coordination task (Dunbar and Gorman, 2014).
Dyads that performed the NEO task dynamically organized
their communication around planning and cognitive processes
whereas dyads that performed the Minecraft task dynamically
organized their communication around perceptual information
directly available in the environment. Because we have
established that these tasks affect the dynamic structure of team
communication, we used these two task types to manipulate
cross-level effects in the current study.

Although the effects of these two specific tasks on the
patterns of neural synchronization in teams are unknown,
according to predictions from the dynamical systems theory
of team coordination (Gorman, 2014; Gorman et al., 2017b),
neural synchronization that occurs within these two tasks
should be coupled with the cognitive-behavioral (here,
communication) differences between the two tasks. Although it
has not been established where neural synchronization should
occur in these tasks, we used research on related tasks to
inform us where possible indicators of neural synchronization
might occur.

Relevant to the NEO planning task, neural synchronization
has been observed in submarine crews engaged in planning and
visual-spatial coordination using electroencephalogram (EEG) in
the 10–12 Hz frequency range using a measure of engagement
(Berka et al., 2007) at the sensor sites Fz and POz (Stevens
and Galloway, 2016, 2017; Gorman et al., 2016). Higher-level
social coordination processes, such as when people are engaged
in planning, have also been linked to increased coupling in
the mu medial and phi complex rhythms in the alpha band
(8–12 Hz) in the FCz and CP4 electrodes of EEG (Tognoli
and Kelso, 2015). Abstract communication, such as planning
communication, has also been tied to the FC1 and FC2 electrodes
in the alpha band (Moreno et al., 2013). This pattern of
results suggests that for the NEO task, the Fz, POz, CP4,
FCz, FC1, and FC2 electrodes in the alpha frequency range
are possible locations to investigate for indicators of team
neural synchronization.

Relevant to the Minecraft visual-spatial task, a similar type
of task is the map task where people communicate about
the shapes and locations of objects on maps. For teams
performing the map task, neural synchronization occurred in
the 16–17 Hz frequency range of EEG at the sensor sites
Fz, C3, and C4 (Stevens and Galloway, 2014, 2016). Action-
based communication, which is captured in the perceptual-
motor communication of the Minecraft task, has been tied
to mu and low beta rhythms in the beta band (13–30 Hz)
in the C3, Cz, and C4 electrodes of an EEG (Moreno
et al., 2013). These correspond to similar areas associated
with motor simulation processes when people observe another
person act (Muthukumaraswamy et al., 2004). This pattern
of results suggests that for the Minecraft task, the Fz,
C3, C4, and Cz electrodes in the beta frequency range
are possible locations to investigate for indicators of team
neural synchronization.

The overall pattern of the neural activation results suggests
that there may be different indicators of neural synchronization
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TABLE 1 | Summary of findings on neural synchronization.

Study Alpha (8–12 Hz) Beta (13–30 Hz)

Tognoli and Kelso (2015) Social Coordination:
FCz, CP4

Stevens and Galloway (2016, 2017) Submarine Crews:
Gorman et al. (2016) Fz, POz
Stevens and Galloway (2014, 2016) Map Task:

Fz, C3, C4
Moreno et al. (2013) Abstract: Action:

FC1, FC2 Cz, C3, C4
Action:
Cz, C3, C4

depending on the type of task the team is performing.
Table 1 summarizes the pattern of research findings on neural
synchronization. Based on these findings, we hypothesized that
experimentally manipulating the type of team task modulates
both communication behavior and neural synchronization,
the latter of which may be indicated along with different
EEG frequency bands at pre-specified sensor sites such as
the Fz, POz, P4, Cz, C3, and C4 electrodes depending on
whether the task is more planning-based (NEO) vs. action-
based (Minecraft). Because the spatial resolution of EEG is
low, we also looked broadly at the frontal, central, and
parietal areas for neural synchronization differences between the
two tasks.

We also examined whether neural synchronization
between team members depended on whether they were
communicating with each other to complete the task vs.
communicating with a trained experimenter to complete
the task. Our manipulation is based on basic research
on interpersonal cognitive and motor processes, such
as postural synchronization (Shockley et al., 2003) and
visual synchronization (Richardson et al., 2007) during the
conversation. In those studies, the researchers provide a control
condition to help eliminate the possibility that any observed
synchronization is spurious. The control condition consists
of the participant communicating with an experimenter to
perform the task, whereas the experimental condition consists
of the participant communicating with another participant
(here, a teammate) to perform the task, with synchronization
between participants measured under both conditions. In the
experimental condition, synchronization occurs due to the
verbal coupling between the participants. However, in the
control condition, synchronization between participants does
not occur because they are not verbally coupled (i.e., they
are coupled with an experimenter). This pattern of results
indicates that postural and visual synchronization during
conversation is not spurious. We used this same logic to
validate spontaneous neural synchronization between verbally
coupled participants.

In the current study, participants performed one of two
tasks as a dyad, the NEO task, or the Minecraft task (between-
subjects manipulation). These tasks were performed twice,
once with their teammate and once with an experimenter
(within-subjects manipulation). During task performance in
all conditions, we continuously measured the EEG of the

participants and the communication of both the participants
and experimenters. We used these manipulations to test
four hypotheses:

Hypothesis 1: Dynamic structuring of communication
patterns depends on the type of team task being performed.
Specifically, we should observe conversations organized around
perceptual information for the action-based Minecraft task and
around planning and cognitive processes for the planning-based
NEO task.

Hypothesis 1 is a manipulation check. The purpose of testing
this hypothesis is to ensure that the task type manipulation
impacts the dynamics of team communication as expected based
on prior research (Dunbar and Gorman, 2014).

Hypothesis 2: Neural synchronization between teammembers
occurs when communicating with a teammate but not when
communicating with an experimenter.

According to Hypothesis 2, neural synchronization
between team members should only occur when the team
members are verbally coupled with one another. When
team members are communicating with the experimenter
they are verbally coupled with the experimenters, and
thus synchronization between team members should not
occur if verbal coupling with a teammate modulates neural
synchronization. The purpose of testing this hypothesis,
therefore, is to provide a control condition against which
the state of spontaneous synchronization between people
during the conversation (i.e., cross-level effects) can
be compared.

Hypothesis 3: Type of neurophysiological synchronization
between teammates depends on the type of
team task.

According to Hypothesis 3 and theoretical cross-level
effects, Task Type should not only modulate the dynamic
structuring of communication patterns but also modulate neural
synchronization. Based on prior research, we predicted that
indicators of neural synchronization should be found in the
alpha band (8–12 Hz) in the Fz, POz, and P4 electrodes for the
NEO task, whereas indicators for neural synchronization in the
Minecraft task should be found in in the beta band (13–30 Hz) in
the Fz, Cz, C3, and C4 electrodes. We also looked more broadly
across the frontal, central, and parietal cortical areas for task
type differences.

Hypothesis 4: Communication and neural activity should be
coupled, such that changes in communication patterns should be
reflected in the neural activity of teams (or vice versa).

According to Hypothesis 4, if team coordination occurs
simultaneously across multiple levels of analysis, then these
levels should be temporally related to one another. Moreover,
fluctuations in neural synchronization (e.g., periods with high,
low, or medium neural synchronization) should temporally
lead or lag team communication flow. The weaker version
of this hypothesis is that temporal coupling between the
neural and communication levels occurs only at the moment
(e.g., in the same second), such that no lead-lag relationship
exists. To test this hypothesis, we computed lagged temporal
cross-correlations between neural synchronization and
communication flow time series and analyzed differences
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in the observed patterns of temporal cross-correlation using
chi-square tests of independence.

MATERIALS AND METHODS

Participants and Procedure
Forty-six participants (23 dyads) were recruited from the
Georgia Institute of Technology psychology participant pool
and were compensated with course credit for completing the
study. During the study, 10 dyads’ data were discarded due to
equipment failures (microphones that stopped recording and
servers crashing), and 1 dyads’ data was discarded due to a
participant dropping out of the study early. Data collection
continued until 24 participants’ (six dyads per between-subjects
condition) complete data sets were available for analyses, which
was the desired sample size based on an a priori power analysis.
The power analysis was conducted using effect sizes (d = 2.11 and
d = 1.89) from a prior study that detected task differences in
the communication dynamics of teams using the same tasks
as the current study (Dunbar and Gorman, 2014). One team
included in the analysis did not have recorded communication
data for the experimenter condition, but all neural data for
this team was intact. Average participant age was M = 19.70
(SD = 1.77). The sample was predominantly male, with 28.26%
of the participants being female, and the remaining 71.74%
male. Eight dyads were mixed gender and four dyads were
all male. This study was approved by the Georgia Institute
of Technology’s Institutional Review Board and carried out
following their recommendations.

Participants were pre-screened using an online recruitment
advertisement to avoid possible complications with EEG
data collection. Pre-screening included colorblindness, systemic
disorders with CNS involvement, neurological disorders, alcohol
and drug abuse or dependence, CNS active medications, or
psychiatric disorders. Participants were reminded to avoid
caffeine, nicotine, and alcohol consumption 24 h before
participation. No participants reported knowing each other
before the experiment; any recent caffeine, nicotine, or alcohol
consumption; alcohol and drug abuse or dependence; CNS active
medications; or any systemic disorders with CNS involvement,
psychiatric disorders, or neurological disorders. No participants
tested as colorblind.

Informed consent was obtained before participation. Dyads
were randomly assigned to the Task Type and Trial Order
conditions before arriving. Following informed consent,
participants were tested for colorblindness because the
Minecraft task involves differentiating between different
colors of blocks and a red-green colorblind individual would
be unable to complete the task; however, participants in both
Task Type conditions were given the test to ensure equal
treatment. Following the colorblindness test, participants
were equipped with the EEG headsets. Before the start of
the task, resting baseline EEG power levels were measured
for 15 min. Participants then had 15 min to either read
through their materials (NEO) or practice the controls of
the game (Minecraft), depending on their task condition.
The actual task length was 15 min for both tasks, and each

task was completed twice. In one task session, participants
performed the task together; in the other task session,
each participant performed the task with an experimenter.
Experimenter task sessions were completed in the same
manner as described in the Experimental Design section.
Following the second task session, participants filled out the
demographics survey and the experimenter debriefed the
participants concerning the purposes of the study. Participation
lasted 2 h.

Experimental Design
Participants performed as dyads in one of two task conditions
corresponding to a between-subjects variable, Task Type,
with two levels, NEO and Minecraft. The interaction served
as a within-subjects variable with two levels, where A
refers to performing the task with an experimenter and
B refers to performing the task with their team member.
Participants performed their task twice, either in the AB
or BA order, which served to counterbalance the order of
trials across teams, and neural synchronization between
participants was recorded at each level of Interaction.
Finally, a between-subjects variable, Trial Order, indexed
the order in which dyads performed the A and B Interaction
conditions. This variable was used to check for differential
transfer effects.

Two tasks served as the Task Type manipulation for this
study: The Non-combatant Evacuation Operation task (NEO;
Warner et al., 2003) and the Minecraft task (Dunbar and
Gorman, 2014). The NEO task was originally developed by
the Navy and was adapted from three participants to two
participants for this study. In the NEO task, participants verbally
communicate to plan a rescue mission based on a hypothetical
military scenario given a limited number of weapons, personnel,
and time resources. The team cannot complete the task without
verbally communicating because each teammember is only given
a portion of the information about the resources available for the
mission. The team’s goal was to develop a 24 h plan to rescue
three Red Cross workers from a church on a fictitious remote
island that contains friendly natives and foes. During the task
session, the team must plan how they will get the rescuers to
the church, how they will evacuate the Red Cross workers, and
how they will return to either an Army base or aircraft carrier.
To develop their plan, team members communicate about which
personnel they will use throughout the mission, plan the specific
route the personnel will take on the island to get to the church,
how the personnel will extract the Red Cross workers, how they
will safely manage the Red Cross workers injuries, and the route
the personnel and Red Cross workers will take to return safely.
Participants were instructed to type up their planned actions for
every hour in 24 h starting at 2:00 AM.

Each participant received a file containing general
information about the task that included background
information about the island, Red Cross workers, rebel
forces, military assets, and maps of the island. Participants
also received role-specific information containing either
weapons expert information or environment/intelligence
information that went beyond the general information. The
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FIGURE 1 | Example of Non-combatant Evacuation Operation (NEO) task
materials (Warner et al., 2003). This example contains descriptions of three of
the transportation and weapon options available to one of the participants.

weapons expert information contained information about the
various vehicles, weapons, and military personnel that could
be used by the participants for their extraction plan. The
environmental/intelligence information consisted of weather
conditions on the island, information about the water, a more
detailed map of the church where the Red Cross workers are
located, and information about the island population. For each
task iteration, A or B, participants received different information
about the island or their resources to minimize a practice or
memorization effect. See Figure 1 for examples of information
participants received for the NEO task. The participants typed up
their plan during each task session in a shared Google Document
that both participants accessed through a web browser.

The second Task Type condition was a one-right answer
building task involving building a structure in the game
Minecraft (Dunbar and Gorman, 2014). The Minecraft game
world is constructed of blocks that players can manipulate
by destroying or adding blocks of their own. However, for
the task used in this study, participants were given a specific
set of blocks to build in the game world and were restricted
in the types of blocks they could place in the game. Each
participant was given three individual colors of blocks to use in
the game. Participant 1 was restricted to red, green, and blue
blocks, whereas Participant 2 was restricted to purple, yellow,
and black blocks. Also, each participant received 36 columns
of blocks to build in the game that required using all six
colors of blocks in columns of various heights (Figure 2). Each
participant’s set of columns was unique with no overlapping
columns between the two sets. Because the participants were
only allowed to use three colors of blocks and each participant
was given different sets of columns containing all six colors of
blocks, the task required participants to verbally communicate
with each other to complete the task by placing the correct
blocks in the correct sequence to complete the columns.
Participants and experimenters (depending on the task iteration)
also informed the other participant or experimenter (depending
on the task iteration) of blocks that the participant needed
them to place in the world to complete their maps. For
each task iteration, A or B, participants received a different

FIGURE 2 | An example set of columns for the Minecraft task (Dunbar and
Gorman, 2014). (A) Participant 1 set of columns. (B) Participant 2 set of
columns. Each participant contains a unique set of columns containing six
colors: red, green, blue, purple, yellow, and black. Each column varies in
height from one to six blocks high.

set of columns to minimize a practice or memorization
effect. The team’s goal was to combine both sets of columns
into a 10-by-10 square space and verbally communicate the
locations, heights, and colors of blocks to be built with
each other.

Apparatus
Participants were seated in separate rooms with the doors closed
for the duration of participation, ensuring that participants
were unable to see each other and coordinated only through
verbal communication. Two experimenters were located in
different rooms, adjacent to the participants. Each participant
and the experimenters used a computer with dual monitors
to complete their tasks. Participants and experimenters
communicated with one another via microphone using
TeamSpeak (TeamSpeak Systems GmbH, 2017) by holding
down the shift key in a push-to-talk format.

Dry electrode 20-channel EEG headsets from Cognionics
were used for data collection. Cognionics Data Acquisition
software (Cognionics, 2018) acquired all neural data from the
EEG channels of the two participants. A Cognionics remote
trigger was used to synchronize the EEG data streams at every
trial. To synchronize the communication data streams with
the neural activity data streams, the experimenters stated ‘‘We
are marking the EEG recording now’’ into their microphone
whenever they pressed the Cognionics remote trigger. The
experimenter pressed the trigger when they said the word ‘‘now.’’
The neural activity of the experimenters was not measured
because it was not pertinent to the hypotheses of this study.

Measures
Communication Content
We conducted a power-law analysis of the communication
content to operationalize the dynamic structuring of the
team’s communication in terms of the team’s communication
distribution to test Hypothesis 1. To serve as input for this
analysis, each dyad’s audio recordings were manually transcribed
and split into verb phrases, and two research assistants blind to
the purposes of the study coded the verb phrases independently
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into facts, interpretations, and conversation regulation (Butner
et al., 2008; Pasupathi and Hoyt, 2009; Pasupathi and Wainryb,
2010). Using the coding scheme, Facts are verb phrases relating
to something present in the world and the five senses (e.g., ‘‘I
see your red blocks’’); Interpretations are verb phrases relating
to ‘‘mental processes’’ and refer to inferences, emotions, or
evaluations (e.g., ‘‘I think an airplane would be faster than
a helicopter’’); and Conversation regulations are verb phrases
relating to backchanneling or establishing understanding (e.g., ‘‘I
agree’’). Agreement between coders was acceptable, κ = 0.78 for
Minecraft, κ = 0.84 for NEO.

For each team’s coded transcript, inter-event codes
(IECs) were calculated as the number of other codes
between each occurrence of the code being analyzed (e.g.,
if interpretations are being analyzed, then the number of facts
and conversation regulations between interpretation coded
communication events comprise the IECs). The more dynamic
organization a code has, the greater its role in team dynamics
(Dunbar and Gorman, 2014).

To ensure that it was proper to use a power-law scaling
exponent to measure dynamic structuring, we calculated the
goodness-of-fit between the data and the power-law distribution
using the methods recommended by Clauset et al. (2009). Their
approach compares how well the empirical data fit a power-law
distribution relative to how well samples of synthetic data fit a
power-law distribution using the Kolmogorov–Smirnov statistic.
We also compared the power-law distribution to alternative
distributions including exponential, Poisson, and log-normal
using a likelihood ratio test.

Assuming a significantly better power-law fit, the more
negative the scaling exponent, the more emergent, or
dynamically structured, the team communication process.
This interpretation is consistent with Butner et al. (2008),
Brown and Liebovitch (2010), and Gorman and Crites (2015).
Relevant to the current study, we predicted significantly more
dynamic structuring for interpretation-based communication
for the NEO task and significantly more dynamic structuring for
fact-based communication for the Minecraft task (Hypothesis 1).

Communication Flow
Communication flow was used as a measure of communication
patterns to test Hypothesis 4. After each audio recording was
transcribed, we used the program Audacity (Audacity, 2016)
to calculate the start and end time of each utterance in
the audio recordings using the sound finder function, which
calculates the timestamps for any noises above a set decibel
threshold (in this case, the Audacity default of 20 dB was
used). The timestamps were then manually matched with the
utterances in the transcript. Timestamps that did not match the
utterances (e.g., a participant sneezing) were discarded. If there
were utterances that did not have any matching timestamps,
timestamps were obtained manually by measuring the start
and ending points of the speech waveform in Audacity. The
timestamps for each utterance were used to create a 1 Hz
symbolic time series of who was talking for each second of the
transcript. The six possible symbol states for the communication
flow time series are shown in Table 2.

To match the neural measures described in the next section,
we calculated quantitative estimates of information transmission,
or bits, on the symbolic communication flow time series using
Shannon entropy (Shannon and Weaver, 1949).

Entropy is first measured, where pi is the relative frequency
of distribution i over a sliding window (100 s). Entropy is first
measured over the initial 100 s communication distribution, then
the window is shifted forward 1 s, creating a new distribution
by adding a symbol and deleting the first symbol until the
window has been slid over the entire communication flow
time series. For a symbolic time series of length N, this
results in a continuously fluctuating entropy time series of
length N-99. We used 100 s as the window size because
prior research has indicated that windows smaller than
100 s can create artifactual spikes in the entropy time series
(Likens et al., 2014).

Entropy = −
# Symbol States∑

i=1

(pi × log2 pi)

Neural Measures
To obtain the neural activity from each team member, we
used Cognionics Quick-20 Dry EEG headsets. These headsets
included electroencephalography and a full 10-20 EEG array
(20 channels plus mastoid reference and ground) which
recorded the participants’ EEGs continuously throughout
baseline measurement and task performance. The continuous
EEG data were subjected to band-pass filtering at 0.1 (high-
pass) to 30 (low-pass) Hz and 50 Hz notch filtered to
isolate the electrical recording from possible environmental
contamination using the open-source Matlab Toolbox EEGLab.
Following the band-pass and notch filtering, blinks, and
electromyography artifacts were removed in EEGLab using
independent components analysis (ICA; Onton et al., 2006). ICA
is used to create components that are maximally independent
of one another, minimizing mutual information between the
components. ICA was used here to remove the components
associated with eye blinks and electromyography artifacts
from the original EEG channel data, which were usually
the first two components in the ICA corresponding to the
Fp1 and Fp2 components. Finally, fast-Fourier transforms were
conducted using EEGLab to split the neural data into the alpha
and beta frequency bands.

Each team’s neurodynamics was assessed each second
through the relative levels of EEG power (amplitude2) for
each team member. For all EEG channels and frequencies, the
distribution of activation was sampled at 500 Hz to capture

TABLE 2 | Symbolic states for communication flow.

Code Speaker

0 No speakers
1 Participant 1
2 Participant 2
3 Experimenter 1
4 Experimenter 2
5 Multiple speakers
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changes in the distribution (Figure 3A) over time. A set of
neurodynamic symbols were created that classifies the activation
distribution across a team as a discrete neurodynamic state (NS;
Figure 3B; Stevens and Galloway, 2014, 2016). A set of nine
neurodynamic symbols were created that show the activity levels
for both of the team members individually as well as in the
context of the other team member (Figure 3B; Stevens and
Galloway, 2014, 2016). The activity levels are a split of the upper
33% (high), middle 33% (average), and lower 33% (low) EEG
power levels relative to the average baseline power. The average
baseline power was calculated from the 15-min baseline for
each participant, described under ‘‘Participants and Procedure’’
section, captured before task performance. For each second, the
EEG power levels for each participant during the task session was
compared to their individual average baseline EEG power level
and subsequently categorized into the high (higher than average
baseline), average (around average baseline), and low (lower
than average baseline) categories for each participant using the
33% cut-offs described earlier. These individual symbolic series
were then combined into a team-level symbol series (NS 1–9 in
Figure 3) that shows the activity levels for both team members
individually but also in the context of the other team member
at each second. An NS symbol series, sampled at 1 Hz, is
the result and provides the input for the neurophysiological
synchronization analysis. This process was conducted separately
for the alpha and beta frequency bands.

Often, synchronization is characterized as 1:1 phase locking
between two signals, perhaps because it is frequently described
this way in the psychological literature (e.g., mirroring;
Sternad et al., 1992). However, synchronization is more
generally defined as frequency locking between two signals
in any proportion (e.g., 2:1; 3:1; Gorman et al., 2017a).
To quantify neurophysiological synchronization according to
this more general definition of synchronization, we calculated
synchronization across all amplitude combinations (NS) shown
in Figure 3. The assumption is that teams synchronize by either
both members being low or being high (i.e., mirroring) or by
one team member is high and the other low (non-mirroring
synchronization), and so on, so long as NS relationship is
relatively stable over time.

Neural synchronization was operationally defined as the
relative stability (vs. variety) of symbols in the NS symbol series
over time as indexed by Shannon information. Shannon entropy
was calculated on the neurophysiological symbolic time series
to obtain a quantitative estimate of NS distribution variety
over time. For example, the greater the variety of the symbol
distribution in a 100 s window, the higher the entropy and the
lower the synchronization. Sliding window Shannon entropy was
used to provide a continuous measure of synchronization and
to match the sliding window measurement of communication
flow entropy. Decreased entropy can be operationally defined
as higher synchronization because the NS distribution is not
changing (is stable) over time, whereas higher entropy can be
operationally defined as lower synchronization because the NS
distribution is changing over time. We chose Shannon entropy
as our measure of synchronization because other approaches
such as cross-correlations or phase-phase coherence provide

FIGURE 3 | Example of neurodynamic symbols (NS). (A) An example NS
representing above-average EEG power for one team member and
below-average EEG power for the other team member and (B) the symbol
space (NS states) of potential distributions of EEG power at any sensor
location for any frequency between two people. The EEG power distribution
could either be higher than baseline, around the baseline, or lower
than baseline.

only linear correlations between signals over time (Pereda et al.,
2005), whereas our approach provides a continuous measure
of synchronization beyond 1:1 phase locking to capture all
modes of synchronization (linear and nonlinear) that has been
established to neural synchronization in complex team tasks
(Stevens and Galloway, 2014, 2016). Additionally, the EEG time
series power spectra from the current study exhibited non-
stationarity, to which linear synchronization approaches are less
sensitive (Pereda et al., 2001).

Entropy serves as the measure of synchronization in neural
activity to address Hypotheses 2, 3, and 4. There are two entropy
time series for each team, one for Interaction A (team member
communication) and one for Interaction B (experimenter
communication). For Hypothesis 2, synchronization across
participants is expected to only occur when team members are
working on the task together and not when working with an
experimenter. For Hypothesis 3, synchronization was examined
in the context of specific sensor sites depending on task type.
The NEO task should affect the mu medial and phi complex
rhythms in the alpha band (8–12 Hz) in the Fz, POz, and
P4 electrodes, and the Minecraft task should affect the mu
and low beta rhythms in the beta band (13–30 Hz) in the Fz,
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C3, CZ, and C4 electrodes. For Hypothesis 4, synchronization
was examined across neurodynamics and communication flow
using lagged cross-correlations. We expected to find significant
cross-correlations between communication flow and neural
synchronization as evidence of cross-level effects in teams.

Subjective Measures
Participants completed a survey at the end of the experimental
session containing questions about their demographics (e.g.,
gender, age, year in college, major, race and ethnicity), factors
that could confound their task performance (e.g., hours spent
playing video games per week, hours spent playing social
games per week, familiarity with the game Minecraft, prior
military experience), factors that could confound their EEG data
(e.g., caffeine, nicotine, or alcohol consumption; neurological
or psychiatric disorders), and how frequently they move their
hands and head while speaking as indicated on a five-point
Likert frequency scale. The variables from this survey were
used as covariates for some of the analyses described in the
‘‘Results’’ section.

RESULTS

Effect of Task Type on Communication
Structure
To test the hypothesis that team communication is dynamically
structured based on the type of task, a preliminary analysis
was conducted comparing the fit of the empirical data to
synthetic datasets using the Kolmogorov–Smirnov statistic. This
comparison was conducted for all 34 of the task sessions and
the three types of coded communication: Facts, Interpretations,
and Conversation Regulation. According to recommendations
by Clauset et al. (2009), if the p-value is greater than 0.1, then
this suggests that a power-law is a plausible distribution for the
dataset.We also ran a binomial test on the proportions of the task
sessions where a power-law distribution seemed to be a plausible
fit to determine if the proportion was statistically significant.
The results indicated that for Facts, power-law was a plausible
distribution for 21 of the 34 task sessions which were not a
significant proportion of the data, p = 0.05. For Interpretations,
power-law was a plausible distribution for 23 task sessions
which was statistically significant, p = 0.02. For Conversation
Regulation, power-law was a plausible distribution for 25 task
sessions which was also statistically significant, p = 0.003. These
findings suggest that a power-law distribution is plausible for
Interpretation and Conversation Regulation communication, but
not for Facts.

To rule out alternative distributions, we compared the
power-law distribution to alternative distributions that look
like a power-law (exponential, Poisson, and log-normal) using
a likelihood ratio test (Clauset et al., 2009). We determined
which type of distribution best fit each dataset based on the
likelihood ratio test results, which revealed that none of the
datasets was the best fit by a power-law. However, the datasets
differed onwhether they were the best fit by exponential, Poisson,
and log-normal distributions. We used a chi-square test of
independence to determine if there were significant differences

FIGURE 4 | Distribution differences based on the type of task. The Minecraft
and NEO tasks differed primarily in how many datasets were the best fit by an
exponential distribution and a Poisson distribution.

in these distributions based on either the Task Type (Minecraft
or NEO) or the Communication Code (Facts, Interpretations,
or Conversation Regulation). The Task Type by Distribution
chi-square was significant, χ2

(2) = 8.01, p = 0.02, suggesting
that the two task types resulted in different communication
distributions, which provides some support for Hypothesis 1.
Based on Figure 4, the two tasks primarily differed in the number
of datasets that were best fit by an exponential distribution and
a Poisson distribution. However, the Communication Code by
Distribution chi-square analysis was not significant, χ2

(4) = 8.79,
p = 0.07, suggesting that the distributions did not differ based
on the type of communication code. These latter results do not
support the hypothesis that team communication is dynamically
structured around specific communication types (i.e., Facts
vs. Interpretations) based on task type; however, the former
result suggests that task type did manipulate the underlying
communication distribution independent of code type.

Effect of Interaction on Neural
Synchronization
To test the effect of the Interaction condition on neural
synchronization, we conducted separate 2 (Task Type) × 2
(Interaction) × 2 (Trial Order) mixed ANOVAs for the
electrodes Fz, P4, and POz in the alpha band as well as Fz,
Cz, C3, and C4 in the beta band. Because these were planned
comparisons, no alpha correction was used. We also conducted
exploratory post hoc contrasts with a Bonferroni alpha correction
(α = 0.008) in the alpha and beta bands in the frontal, central,
and parietal cortical regions. These three regions were selected
because they represent the broader regions for the individual
electrodes tested in Hypothesis 2 and Hypothesis 3.

Based on the second hypothesis, we predicted that neural
synchronization with a team member will only occur when
talking to a team member and not when talking to an
experimenter. However, no main effects of Interaction
were statistically significant. Controlling for the amount of
communication (both how much time was spent speaking and
the number of utterances produced during the session) as well
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as the self-reported frequency of hand and head movements
when speaking did not alter the pattern of results. Additionally,
the pattern of mean differences was not in the hypothesized
direction: Means for the Experimenter condition were lower
(indicating higher synchronization) than in the Participant
condition across both task types for all electrodes, regions,
and frequencies tested. Both sets of results fail to support
Hypothesis 2.

To ensure that any observed effects were not due to the order
of the trials participants engaged in, we conducted similarly
planned and exploratory comparisons investigating the effect
of Trial Order on neural synchronization. The between-subject
comparisons of AB and BA, where A refers to the TeamMember
condition and B refers to the Experimenter condition, were
tested. As expected, the pattern of results was null (all p > 0.05),
indicating that differential transfer did not occur when going
from A to B vs. going from B to A.

Effect of Task Type on Neural
Synchronization
We used the same mixed ANOVAs from Hypothesis 2 to test
Hypothesis 3. For the third hypothesis, we predicted that the
pattern of neural synchronization between team members would
depend on the type of team task. Specifically, we predicted
increased neural synchronization in the alpha band in the
Fz, POz, and P4 electrodes for the NEO task and increased
neural synchronization in the beta band in the Fz, Cz, C3,
and C4 electrodes for the Minecraft task. This hypothesis was
only partially supported for the NEO task in the Fz electrode,
where the NEO condition’s (M = 2.53, SD = 0.08) neural
entropy in the alpha band was significantly lower than in the
Minecraft condition (M = 2.99, SD = 0.08), p = 0.002. There
was a similar result in the Fz electrode in the beta band,
but the results were in the opposite direction from what was
predicted: the NEO condition’s (M = 2.70, SD = 0.09) neural
entropy in the beta band was significantly lower than in the
Minecraft condition (M = 3.08, SD = 0.09), p = 0.02. No
other main effects of Task Type were significant. Controlling
for the amount of communication (both how much time was
spent speaking and the number of utterances produced during
the session) as well as the self-reported frequency of hand
and head movements when speaking did not alter the pattern
of results.

Additional analyses focusing on the 2 (Task Type) × 2
(Interaction) component of the 2 × 2 × 2 mixed ANOVA
with the same electrodes, frequency bands, and brain regions
suggested that the effect of Task Type did not depend on the
Interaction condition.

Cross-level Effects
The fourth hypothesis was that communication and neural
activity should be related, such that changes in communication
patterns should be reflected in the neural activity of teams
(and vice versa). To investigate this hypothesis, we calculated
lagged cross-correlations using the MatLab crosscorr function
for each team across 17 electrodes (C3, C4, Cz, F3, F4,
F7, F8, Fz, O1, O2, P3, P4, P7, P8, Pz, T3, and T4),

two frequency bands (alpha and beta), and both Interaction
conditions (experimenter and team member). Similar to prior
research (Gorman et al., 2016), we examined the graphs of
the lagged cross-correlations for qualitative relationships of
significant zero-lag (i.e., significant positive or negative peak
at lag 0; changes in the communication flow and the neural
activity occur simultaneously), positive lag (i.e., significant peak
in positive lag; changes in the communication flow precede
changes in the neural activity), negative lag (i.e., significant peak
in negative lag; changes in the neural activity precede changes in
the communication flow), pure lead-lag (i.e., a single significant
positive peak and a single significant negative peak in both
forward and backward lag; changes in the neural activity alternate
between preceding or following changes in the communication
flow), or pure lead-lag with seasonality (i.e., multiple significant
positive and negative peaks in both forward and backward lag;
the neural activity and communication flow covary regularly
across multiple points in time). See Figure 5 for examples
of these patterns. The lag in each graph corresponds to
1 s in time. To analyze the cross-correlations for significant
differences in pattern types, we conducted chi-square tests
of independence to determine how the Interaction, Task
Type, or Trial Order manipulations affected the pattern of
temporal cross-correlations.

Experimenter vs. Participant Conditions
There were significant differences in the type of patterns
observed between the neural entropy and the communication
flow entropy time series depending on who the participant
was performing the task with (Figure 6), χ2

(10) = 822.33,
p < 0.001. In the experimenter condition, we observed
more instances of zero-lag and negative lag compared to
the participant condition. In the participant condition, we
observedmore instances of seasonality and positive lag compared
to the experimenter’s condition. These patterns suggest that
the temporal relationship between team neural entropy and
communication flow was affected by the Interaction condition.
Specifically, the experimenter condition produced a more
transient relationship across time (i.e., neural entropy and
communication flow entropy change together at the same time),
whereas the participant condition produced a more persistent
relationship across time (i.e., neural entropy and communication
flow entropy are related across multiple points in time). These
results support Hypothesis 4.

Minecraft vs. NEO
The cross-correlation patterns between the Minecraft and NEO
task conditions were compared within the central, frontal,
occipital, parietal, and temporal brain regions collapsing across
the alpha and beta frequencies because we did not observe
significant differences in the patterns between the alpha and
beta frequency ranges, χ2

(4) = 2.01, p = 0.73. All Task Type
comparisons were statistically significant: central, χ2

(10) = 810.17,
p < 0.001; frontal, χ2

(10) = 793.21, p < 0.001; occipital,
χ2
(10) = 817.22, p < 0.001; parietal, χ2

(10) = 794.01, p < 0.001;
and temporal, χ2

(10) = 805.54, p < 0.001. See Figure 7 for a
visualization of these differences.
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FIGURE 5 | Examples of the five possible relationships examined in the
cross-correlation graphs. In these graphs, the x-axis indicates the time lag
where 1 lag = 1 s. The y-axis indicates the cross-correlation between the
neural entropy and the communication flow entropy. The blue horizontal lines
indicate the threshold of significance. Any peaks beyond this line are
considered statistically significant correlations. (A) An example of a significant
zero-lag relationship is indicated by a significant positive or negative peak
around lag zero. Significant zero-lag relationships indicate that the two
variables change together. (B) Example of a significant positive lag
relationship which is indicated by a significant peak in positive lag. (C) An
example of a significant negative lag relationship is indicated by a significant
peak in negative lag. Significant positive and negative lags indicate that
changes in one variable precede the other variable. (D) An example of a
significant pure lead-lag relationship is indicated by a single significant positive
peak and a single significant negative peak in both forward and backward lag.
Significant pure lead-lag relationships indicate that changes across both
variables alternate which one precedes or follows the other. (E) Example of a
significant pure lead-lag with seasonality relationship which is indicated by
multiple significant positive and negative peaks in both forward and backward
lag. Significant pure lead-lag with seasonality relationships indicate that
changes in the two variables occur across multiple points in time.

In the central region, the Minecraft task had more instances
of zero-lag relationships compared to the NEO task, suggesting
that for the Minecraft task in the central region, neural entropy

FIGURE 6 | Frequencies of cross-correlation patterns observed across the
experimenter and participant conditions. The experimenter condition contains
higher frequencies of zero-lag and negative lag whereas the participant
condition contains higher frequencies of seasonality and positive lag.

and communication flow entropy changed together at the same
timemore than the NEO task. In the frontal region, theMinecraft
task had more instances of seasonality relationships and less
positive lags compared to the NEO task, suggesting that for
the Minecraft task in the frontal region, neural entropy and
communication flow entropy were related to one another across
multiple points in time. The two tasks differed slightly in the
occipital region where the Minecraft task had more instances
of negative lag than the NEO task, suggesting that changes in
the neural entropy led to changes in communication. For the
parietal region, the Minecraft task again had more instances
of negative lag whereas the NEO task had more instances of
positive lag, where positive lag indicates that communication
changes led to neural changes. Lastly, in the temporal region,
theMinecraft task containedmore seasonality patterns compared
to the NEO task whereas the NEO task contained more
zero-lag patterns.

The results for task differences in the cross-correlations
suggest that the relationship between neural entropy and
communication flow differs across the brain regions depending
on the type of task. For the Minecraft task, the frontal
and temporal regions indicated long-term dependencies
between neural synchronization and communication
flow, whereas the central region indicated that the neural
synchronization and communication flow changed together
only ‘‘at the moment.’’ For the NEO task, the opposite
pattern was observed—the central region indicated long-term
dependencies whereas the frontal and temporal regions indicated
immediate changes. This set of findings provides support for
Hypothesis 4.

First vs. Second Trial
There were significant differences in the type of patterns
observed between the neural entropy and the communication
flow entropy time series depending on the trial order (Figure 8),
χ2
(10) = 796.08, p < 0.001. In the first trial, there were more

zero-lag and negative lag relationships observed between the
neural entropy and the flow entropy time series (Figure 8). This
pattern indicates that the neural entropy and communication
flow entropy changed together at the same time in a more
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FIGURE 7 | Frequencies of cross-correlation patterns observed across the Minecraft and NEO task conditions, with (A) central, (B) frontal, (C) occipital, (D)
parietal, and (E) temporal regions. The Minecraft condition contains higher frequencies of zero-lag in the central region, seasonality in the frontal and temporal
regions, and negative lag in the occipital and parietal regions compared to the NEO condition.

transient fashion during the first trial. By the second trial,
the relationship between the neural and flow entropy time
series more frequently showed a pure lead-lag with seasonality
relationship. This pattern suggests that neural entropy and
communication flow entropy were related to one another across
multiple points in time in the second trial. Both sets of
results suggest that there may have been transfer (order effects)
across trials in the relationship between neural entropy and
communication flow entropy, such that long-range dependencies
(persistence) developed between neural synchronization and
communication flow from the first trial to the second trial (see
also Gorman et al., 2016, for similar results regarding less- vs.
more-experienced teams).

DISCUSSION

This study demonstrates how specific team task constraints
can differently structure team communication and neural

dynamics over time. Specifically, we found support for cross-
level effects in the form of significant cross-correlations
between changes in the neural synchronization of teams
and changes in the team’s communication flow across
time, which was affected by the type of task the team was
performing and whether the team members were performing
the task with each other. Although we were unable to
replicate previous research findings where manipulating
the type of task alters the dynamical structure of specific
team communication codes, we did find differences in the
communication patterns due to the type of task. However,
we did not find support for the effect of task type and
interaction partner on neural synchronization across the
hypothesized electrodes, frequency bands, or brain regions. It
appears that while we can control communication structure
through team task constraints, it is more difficult to pinpoint
concomitant team neural synchronization effects beyond
the task and interaction partner-dependent patterns of
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FIGURE 8 | Frequencies of cross-correlation patterns observed across the
first and second trials. The first trial contains higher frequencies of zero-lag
and negative lag whereas the second trial contains higher frequencies
of seasonality.

temporal cross-correlation observed in this study (see also
Gorman et al., 2016).

Communication Dynamics
The first hypothesis was both theoretical in that communication
dynamics should match task dynamics (e.g., action-based
tasks should modulate action-based communication) and
a manipulation check based on prior work (Dunbar and
Gorman, 2014) using a shorter task period (15 min compared
to the original 45 min). In Hypothesis 1, we predicted that
the action-based Minecraft task would result in dynamical
communication structuring around fact-based communication,
and the planning-based NEO task would result in dynamical
communication structuring around interpretation-based
communication. Although task type resulted in significantly
different communication pattern distributions, the dynamic
structuring of task-specific communication codes hypothesis
was not supported, and it is plausible that one of two things
is occurring: That the dynamics in the communication data
are illusory or that the 15-min time frame for the task was
too short to produce reliable fractal, power-law dynamics. The
latter interpretation may be plausible because time series shorter
than 256 data points can produce inaccurate estimates of the
time series’ true scaling exponent (Delignieres et al., 2006).
Dyads varied in the amount that they communicated with
one another. On average, dyads spent less than half the task
session communicating [time (s) spent speaking M = 419.00,
SD = 189.75]. The average length of verb phrases (verb phrase
M = 259.97, SD = 104.54) for each task session is near the point
where the fractal analysis may not accurately capture the scaling
exponent, potentially impacting the reliability of the scaling
exponents for the teams that communicated less frequently.
Future research is necessary to determine the optimal task length
to circumvent this issue for the scaling exponents.

Neural Synchronization
The second and third hypotheses pertained to the effect
of the Interaction (H2) and Task Type (H3) conditions on
the average neural entropy. In Hypothesis 2, we predicted
that neural synchronization would be higher in the team
member condition compared to the experimenter condition. In

Hypothesis 3, we predicted increased neural synchronization
in the alpha band in the Fz, POz, and P4 electrodes for
the NEO task and increased neural synchronization in the
beta band in the Fz, Cz, C3, and C4 electrodes for the
Minecraft task. Neither hypothesis was supported by the
results of this study. Rather, we found that the Fz electrode
identified differences in neural synchronization between the
NEO task and the Minecraft task, similar to an indicator found
in prior research (Stevens and Galloway, 2014, 2016, 2017;
Gorman et al., 2016).

One possible reason for the null results may be because we
averaged entropy across the entire task session, masking changes
in entropy in the time series due to a loss of the internal data
structure. By averaging across the task session, we may have
removed nuances in the neural entropy over time that could
have been due to the task type or interaction conditions. This
argument has some support based on the differences between the
averaged results and the time series results, which are discussed
in the next section ‘‘Cross-level Effects.’’

Another possible reason for the null results may be because
the teams were coordinating during ‘‘typical conditions.’’ Other
research has used neural measures of entropy as an indicator
of uncertainty, where high entropy represents high uncertainty
or ‘‘surprise’’ that needs to be resolved by the team (Stevens
and Galloway, 2017). Prior research has found that teams tend
to have low-to-average neural entropy as they work in typical
conditions and that entropy increases with uncertainty and
decreases after uncertainty reach a tipping point, or threshold,
where the team needs to resolve the uncertainty during the
task session (e.g., Stevens et al., 2016). Uncertainty can be
inherent to the task setting, task performance, or introduced
artificially in the task session by perturbing the team during task
performance. We did not include perturbations in this study,
which may have resulted in a lack of variability in neural entropy.
Also, both the NEO and Minecraft tasks have less uncertainty,
or surprise, built into them than more realistic tasks, such as
medical simulations (e.g., Stevens et al., 2016). It may also be
plausible that the relationship between entropy and uncertainty
is mediated by attention, where entropy is an indicator of when
joint attention is needed from the team to resolve uncertainty
in the task. The tasks selected for this study had few incidents
where participants would need to jointly attend to an event on
their screen.

It is also possible that neither the task type nor interaction
manipulation affected neural dynamics. Although they modulate
the distribution of the communication content, the task
type manipulations might not affect neural synchronization
similarly across the brain. In the average neural entropy
results, we found only that the Fz electrode identified reliable
differences in neural entropy between the Minecraft and
NEO tasks. The cross-correlation analyses indicated that there
were differences due to task type when examining neural
entropy over time (rather than averaging); however, there
was a fair amount of overlap between the cortical regions
involved in the relationship between the neural activity and
communication across the two task types. These results
provide only limited support for extending the theory of
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interactive team cognition (Cooke et al., 2013) to neural
coordination and point to the current limitation in specifying
neural differences at the level of detail required to test scalp
location- and frequency-based differences using these types of
team tasks.

The interaction manipulation was based on prior research
on interpersonal motor coordination dynamics; namely, postural
sway (Shockley et al., 2003). In prior studies, this interaction
manipulation served as a convenient control to disentangle
dynamics due to the experimental task from dynamics due
to the shared interaction medium (i.e., verbal coupling). In
the average neural entropy results, we did not find any
differences in direct verbal coupling between the participants.
The null results for the interaction condition may be because
we overestimated the impact that the experimenter and
participant task sessions would have on the verbal coupling.
Specifically, whether the participants were communicating with
each other or communicating with the experimenter, they
were still performing the same task, such that residual neural
synchronization would occur regardless of the interaction
partner. Although the Interaction condition may not have
successfully manipulated neural dynamics on its own, it was
successful in modulating the cross-level effects between neural
synchronization and communication flow.

Cross-level Effects
In the fourth hypothesis, we expected to find reciprocal
relationships between the communication and neural activity
of teams based on predictions from the dynamical systems
theory of team coordination (Gorman, 2014; Gorman et al.,
2017b, 2020). We addressed this hypothesis using lagged cross-
correlation analysis. We found support for this hypothesis,
where significant changes in communication flow were
temporally cross-correlated with the neural entropy time
series of teams. These results provide support for the dynamical
systems theory of team coordination by demonstrating different
patterns in cross-level effects as a function of changing team
task constraints.

Unlike the average neural entropy results, we found that the
relationship of neural entropy with communication flow was
impacted by the Interaction condition. Specifically, we found
significant zero-lag and negative lag relationships between neural
entropy and communication flow entropy in the experimenter
condition, whereas we found significant pure lead-lag with
seasonality and positive lag relationships in the participant
condition. The results for the experimenter condition suggest
that the relationship between changes in neural activity and
who is speaking and when is more superficial because they
are only related momentarily in time. If this relationship
were meaningful (e.g., tied to the speaker), there would be
significant relationships across time. Conversely, we expected
to find significant relationships across time for the participant
condition because, in this condition, the communication flow
was relevant not only to what was going on in the task now,
but also previously, and in the future for both participants.
Conversely, for the experimenter condition, communication flow
was only relevant for one participant at a time, because the

participants were performing the task separately with different
experimenters. Also, we found that the relationship between
neural entropy and communication flow was affected by the Task
Type condition. We found more pure lead-lag with seasonality
patterns primarily in the frontal and temporal regions for the
Minecraft task. For the NEO task, we found more pure lead-lag
with seasonality patterns in the central region. Taken together,
these findings suggest that the communication—neural activity
link in teams as a function of task type and interaction partner
only becomes apparent when the relationship is examined as
a pattern extended in time rather than as a mean over time
as in the aggregate communication distribution and neural
synchronization analyses.

Although we performed these analyses to examine Hypothesis
4, the differences found in the relationship between the
communication and neural activity of teams were not at all
similar to the predictions in Hypothesis 3. In contrast to
Hypothesis 3, it seems that multiple cortical regions contribute
to the relationship between neural activity and communication
flow of teams, which overlap somewhat between the two task
types. The predictions for Hypothesis 3 were derived from
prior research investigating the neural coordination between
interacting individuals performing different types of tasks,
but much of this research focused primarily on the frontal
(e.g., Stevens and Galloway, 2014, 2016, 2017) and central
regions (e.g., Moreno et al., 2013; Stevens and Galloway,
2014, 2016), with some emphasis on the parietal-occipital
region (e.g., Stevens and Galloway, 2016, 2017). In contrast,
similar to the results found in the current study, basic
speaker-listener coupling research suggests that neural coupling
occurs widely across the brain, relative to both language
production and comprehension (Stephens et al., 2010). With
communication flow, we found that the temporal region seems to
contribute most to the relationship between neural activity and
communication flow, which is compatible with findings from
speaker-listener coupling in the temporal regions concerning
language production (Stephens et al., 2010). Our findings suggest
that in addition to the frontal and central regions, future
research on team coordination dynamics should measure the
temporal region in conjunction with team communication to
determine how these cortical regions are differentially related to
team communication.

Limitations and Future Directions
Although, we controlled for how much participants and
experimenters communicated and participants self-reported
movement during speech in our analyses, we did not control
for experimenter experience with the task nor task performance.
Prior research has shown that task experience affects the
relationship between neural activity and communication
(Gorman et al., 2016). The trained experimenters were quite
experienced with the task and ran their task sessions similarly
across sessions, whereas the participant sessions differed
in how much the participants communicated and how the
participants approached the task. Also, we were unable to
measure task performance due to the infeasibility of acquiring
accurate performance measures, but the two sessions may
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have differed on their task performance. It may be possible
that the experimenter’s expertise with the task influenced the
participant’s neural and communication dynamics in unintended
ways. Future research will be necessary to disentangle this by
recruiting four naïve participants for each experimental session,
rather than having two participants work separately with
trained experimenters.

Another limitation of this study was that it was difficult
to find changes in neural entropy in the Minecraft task. The
Minecraft task is a predictable and relatively unchanging task
with little uncertainty. Prior research usually inserts identifiable
events meant to disrupt the team’s coordination to induce
changes in dynamical parameters in the time series (e.g., Gorman
et al., 2016). Future research should perturb the team as the
team members are coordinating to induce variability in neural
dynamics or use tasks withmore built-in uncertainty (e.g., during
healthcare simulation training; Stevens et al., 2016).

Another possible future direction is to examine other
approaches for conducting the neural analysis. Individual
participants’ neural data were discretized into a team level time
series by averaging into one-second epochs and converting the
two team member’s neural data into NSs before running the
entropy analysis. Although widely used in team neurodynamics
research, this discretization process could have obscured some
information in the continuous amplitude time series relevant
to neural synchronization. Prior research has suggested that
neural synchronization occurs at a delay of a few seconds
(Stephens et al., 2010; Kuhlen et al., 2012), however, so it
may also be possible that the discretization process did not
obscure relevant information. Future research is needed that
catalogs the qualities of and differences between varieties
of neural synchronization analyses for investigating neural
synchronization in teams.

CONCLUSION

The purpose of the current study was to establish whether cross-
level effects exist in teams between the communication and
neurophysiological levels of analysis and whether they can be
controlled by constraining how teams coordinate. The current
findings illustrate that teams do dynamically structure the flow

of their communication in relation to their neural activity.
This dynamical structuring across multiple levels of analysis
occurs around both the task constraints and who the team is
working with on the task, but only when looking at the time
series; these relationships may be concealed when looking for
cross-level effects using aggregated neural and communication
measures. These findings highlight the need to examine the
nuances of the relationship between levels of analysis—cross-
level effects—across time. Ultimately, investigating the causal
nature of these relationships may reveal how neural and
communication levels of analysis are nested within one another,
providing new conceptualizations of team process measurement
for assessing team performance over time.
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