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Abstract In addition to the hallmark muscle stiffness, patients with recessive myotonia

congenita (Becker disease) experience debilitating bouts of transient weakness that remain poorly

understood despite years of study. We performed intracellular recordings from muscle of both

genetic and pharmacologic mouse models of Becker disease to identify the mechanism underlying

transient weakness. Our recordings reveal transient depolarizations (plateau potentials) of the

membrane potential to �25 to �35 mV in the genetic and pharmacologic models of Becker

disease. Both Na+ and Ca2+ currents contribute to plateau potentials. Na+ persistent inward

current (NaPIC) through NaV1.4 channels is the key trigger of plateau potentials and current

through CaV1.1 Ca2+ channels contributes to the duration of the plateau. Inhibiting NaPIC with

ranolazine prevents the development of plateau potentials and eliminates transient weakness in

vivo. These data suggest that targeting NaPIC may be an effective treatment to prevent transient

weakness in myotonia congenita.

Introduction
Myotonia congenita is one of the non-dystrophic muscle channelopathies. It is caused by loss-of-

function mutations affecting the muscle chloride channel (ClC-1) (Lipicky et al., 1971;

Steinmeyer et al., 1991; Koch et al., 1992). Patients with recessive myotonia congenita (Becker dis-

ease) experience muscle stiffness due to hyperexcitability (Lehmann-Horn et al., 2008;

Trivedi et al., 2014; Cannon, 2015) as well as transient weakness due to unknown factors

(Ricker et al., 1978; Rüdel et al., 1988; Zwarts and van Weerden, 1989; Deymeer et al., 1998;

the CINCH Consortium et al., 2013). Some patients with Becker disease report transient weakness

in arm muscles as a greater impediment than muscle stiffness (Rüdel et al., 1988). This weakness

can last up to 90 s and is brought on by exertion following rest (Ricker et al., 1978; Rüdel et al.,

1988; Zwarts and van Weerden, 1989; Deymeer et al., 1998).

The mechanism underlying transient weakness in Becker disease has remained unknown since its

initial description close to 50 years ago (Ricker and Meinck, 1972). There appears to be loss of mus-

cle excitability, as weakness is accompanied by a drop in compound muscle action potential (CMAP)

amplitude during repetitive stimulation (Ricker and Meinck, 1972; Brown, 1974; Aminoff et al.,

1977; Deymeer et al., 1998; Drost et al., 2001; Modoni et al., 2011). This drop in CMAP is associ-

ated with reduction in muscle fiber conduction velocity, which has been proposed to progress to

depolarization block (Zwarts and van Weerden, 1989). What has remained unclear, and perhaps

counterintuitive, is why a loss-of-function mutation of the muscle ClC-1 channels in myotonia
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congenita (Lipicky et al., 1971; Steinmeyer et al., 1991; Koch et al., 1992) leads to transient loss

of excitability. The primary defect caused by loss of ClC-1 current is hyperexcitability of muscle,

which causes myotonia.

We established that a ClC-1 homozygous null (ClCadr) mouse model of Becker disease has tran-

sient weakness in vivo, mimicking the condition in human patients. Intracellular recording in both

ClCadr muscle and a pharmacologic model of Becker disease (due to block of ClC-1 with 9-AC) have

elucidated a novel phenomenon: transient depolarizations to voltages between �25 and �35 mV,

lasting many seconds, which we termed ‘plateau potentials.’ Blocking Na+ persistent inward current

(NaPIC) with ranolazine prevented both development of plateau potentials and transient weakness.

We conclude that NaPIC plays a central role in the development of plateau potentials, which are the

mechanism underlying transient weakness in Becker disease.

Results

Identification of transient weakness in mice with myotonia congenita
To study in vivo isometric motor performance in the Clcn1adr-mto2J (ClCadr) mouse model of recessive

myotonia congenita (Becker disease), a muscle force preparation that we used previously was

employed (Dupont et al., 2019; Wang et al., 2020). Mice were anesthetized via isoflurane inhala-

tion and the distal tendon of the triceps surae (gastrocnemius, plantaris, and soleus muscles) was dis-

sected free and attached to a force transduction motor; then the sciatic nerve was stimulated with

45 pulses delivered at 100 Hz. In unaffected littermates, there was no myotonia following 45 pulses

at 100 Hz, such that relaxation was immediate (Figure 1A). In ClCadr mice, stimulation with 45 pulses

caused full fusion of force, but relaxation was slowed, due to the presence of myotonia (Figure 1C).

eLife digest Myotonia is a neuromuscular condition that causes problems with the relaxation of

muscles following voluntary movements. One type of myotonia is Becker disease, also called

recessive myotonia congenita. This is a genetic condition that causes muscle stiffness as a result of

involuntary muscle activity. Patients may also suffer transient weakness for a few seconds or as long

as several minutes after initiating a movement. The cause of these bouts of temporary weakness is

still unclear, but there are hints that it could be linked to the muscle losing its excitability, the ability

to respond to the stimuli that make it contract. However, this is at odds with findings that show that

muscles in Becker disease are hyperexcitable.

Muscle excitability depends on the presence of different concentrations of charged ions

(positively charged sodium, calcium and potassium ions and negatively charged chloride ions) inside

and outside of each muscle cells. These different concentrations of ions create an electric potential

across the cell membrane, also called the ‘membrane potential’. When a muscle cell gets stimulated,

proteins on the cell membrane known as ion channels open. This allows the flow of ions between the

inside and the outside of the cell, which causes an electrical current that triggers muscle contraction.

To better understand the causes behind this muscle weakness, Myers et al. used mice that had

either been genetically manipulated or given drugs to mimic Becker disease. By measuring both

muscle force and the electrical currents that drive contraction, Myers et al. found that the

mechanism underlying post-movement weakness involved a transient change in the concentrations

of positively charged ions inside and outside the cells. Further experiments showed that proteins

that regulate the passage of both sodium and calcium in and out of the cell – called sodium and

calcium channels – contributed to this change in concentration. In addition, Myers et al. discovered

that using a drug called ranolazine to stop sodium ions from entering the cell eliminated transient

weakness in live mice.

These findings suggest that in Becker disease, muscles cycle rapidly between being hyperexcited

or not able to be excited, and that targeting the flow of sodium ions into the cell could be an

effective treatment to prevent transient weakness in myotonia congenita. This study paves the way

towards the development of new therapies to treat Becker disease as well as other muscle ion

channel diseases with transient weakness such as periodic paralysis.
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To determine whether transient weakness was present, the sciatic nerve was additionally stimu-

lated with 15 pulses at 100 Hz every 4 s for 1 min. In unaffected littermates, this caused stable force

production with a mild, gradual reduction that was likely due to fatigue (Figure 1B). In myotonic

mice, the same stimulation protocol revealed transient weakness, as force fell over the first 10–15 s

and then recovered (Figure 1D). To avoid inclusion of fatigue in measurement of transient weakness,

we normalized to force at the end of the 1 min of intermittent stimulation. The plot of the mean nor-

malized force revealed transient weakness, which peaked in severity 15–20 s after the initial stimula-

tion and resolved within 1 min (Figure 1E). These data indicate that transient weakness is present in

ClCadr mice.

Characterization of plateau potentials in genetic and pharmacologic
models of myotonia congenita
In myotonic patients, transient weakness is paralleled by a drop in CMAP amplitude (Ricker and

Meinck, 1972; Modoni et al., 2011). This finding suggests that weakness is due to loss of excitabil-

ity. To look for inexcitability of ClCadr muscle, intracellular current clamp recordings were performed.

In both unaffected littermates and ClCadr mice, stimulation with a 200 ms injection of depolarizing

current triggered repetitive firing of action potentials during the stimulus. In muscle from unaffected

littermates, the firing ceased as soon as the stimulus was terminated (Figure 2A). In muscle from

ClCadr mice, there was myotonia (continued firing of action potentials following termination of the

stimulus) in 100% of fibers (Figure 2B). The myotonia often persisted for many seconds. While most

runs of myotonia ended with repolarization to the resting membrane potential (Figure 2B), in some

instances, myotonia terminated with the development of depolarizations lasting 5 to >100 s to a

membrane potential near �35 mV (Figure 2C,D). During these prolonged depolarizations, there was

a gradual repolarization of the membrane to near �45 mV, followed by sudden repolarization back

to the resting potential. In some cases, the sudden repolarization was preceded by the development

of oscillations in the membrane potential (Figure 2D). The prolonged depolarizations occurred in

30% of ClCadr muscle fibers (n = 36/119 fibers from 10 mice). Of the 36 fibers with plateau poten-

tials, 26 repolarized to within 4 mV of their initial resting potential. The 10 fibers that did not fully

repolarize may have become damaged and thus were not analyzed.

Depolarizations lasting less than 1 s to a membrane potential close to �60 mV have been

described in a toxin-induced model of hyperkalemic periodic paralysis and were termed plateau

depolarizations (Cannon and Corey, 1993b). While the depolarizations we identified could be due

Figure 1. Transient weakness in the ClCadr mouse model of recessive myotonia. (A) Shown is a force trace from a triceps surae muscle group of an

unaffected littermate in response to stimulation of the sciatic nerve with 45 pulses at 100 Hz. (B) The force trace generated by following the initial

stimulus with 15 pulses at 100 Hz delivered every 4 s. (C) In a ClCadr mouse, following the 45 pulses at 100 Hz (indicated by the dotted vertical line)

there was continued force generation secondary to myotonia. (D) With stimulation every 4 s transient weakness was revealed. (E) Plot of the force

normalized to force at 60 s in unaffected littermates and ClCadr mice. Transient reduction in force was present in ClCadr mice (*, p=0.00015 vs

unaffected littermates at 16 s, t-test, 95% confidence interval 110–114 vs 75–93). n = 5 unaffected littermates and n = 9 ClCadr mice. Error bars represent

± SD.
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Figure 2. Plateau potentials in ClCadr muscle. For A–D, the insets show portions of the traces on an expanded

time base. (A) The response of muscle from an unaffected littermate to injection of 200 ms of depolarizing current

(horizontal bar below the voltage trace); note that action potentials stop when current stops. (B–D) Traces of

myotonia triggered by a 200 ms injection of depolarizing current from three different ClCadr muscle fibers. The

following membrane potentials are identified in C and D: membrane potential prior to stimulation, initial

Figure 2 continued on next page

Myers et al. eLife 2021;10:e65691. DOI: https://doi.org/10.7554/eLife.65691 4 of 23

Research article Medicine Neuroscience

https://doi.org/10.7554/eLife.65691


to similar mechanisms as those described in hyperkalemic periodic paralysis, they seemed more simi-

lar to prolonged depolarizations in spinal motor neurons, which can last many seconds, and have

been termed plateau potentials (Alaburda et al., 2002; Heckman and Enoka, 2012; Houns-

gaard, 2017). We thus chose the term plateau potentials to describe them.

To determine whether plateau potentials cause inexcitability, ClCadr muscle fibers were stimu-

lated during the plateau phase. During and immediately following plateau potentials, action poten-

tial generation in response to current injection failed (Figure 2E). At later times following

repolarization, action potential generation was again possible. The inexcitability at earlier times fol-

lowing repolarization is likely due to slow inactivation of Na channels following the many-second

depolarization (Ruff, 1996; Ruff, 1999; Rich and Pinter, 2003). These data are consistent with the

possibility that plateau potentials and the resultant inexcitability of muscle are the mechanisms

underlying transient weakness in myotonia congenita.

In ClCadr muscle, ClC-1 chloride conductance has been absent throughout development such that

plateau potentials could be a compensatory response to muscle hyperexcitability. To test this possi-

bility, we acutely blocked ClC-1 chloride channels in muscle from unaffected littermates with 100 mM

9-anthracene carboxylic acid (9-AC). This dose of 9-AC blocks more than 95% of ClC-1 chloride

channels in skeletal muscle (Palade and Barchi, 1977) and has been used to model myotonia conge-

nita both in vitro and in vivo (van Lunteren et al., 2011; Desaphy et al., 2013; Desaphy et al.,

2014; Skov et al., 2015). Acute blocking of ClC-1 triggered myotonia and plateau potentials in 92%

of fibers (Figure 3A, 49/53 fibers from eight mice). Following acute block of ClC-1 channels with 9-

AC, all plateau potentials terminated with sudden repolarization to within 4 mV of the previous rest-

ing potential (49/49 fibers). These data strongly suggest that the ion channels responsible for devel-

opment of plateau potentials are present in wild-type skeletal muscle.

In contrast to the relative consistency in voltage at onset and termination of plateau potentials,

the duration in both the ClCadr and 9-AC treated models of myotonia was highly variable

(Figure 3B, Table 1, variance = 3131 s for ClCadr and 623 s for 9-AC treated muscles). The reason

for the high variance of duration was that the rate of repolarization during the plateau potential var-

ied by more than 100-fold (Figure 3B, Table 1). It was generally not possible to record multiple pla-

teau potentials in individual ClCadr fibers due to the long median duration. However, it was possible

to record multiple plateau potentials within individual fibers of 9-AC treated muscle, as most lasted

only a few seconds. Within individual fibers, the slope of repolarization of plateau potentials was less

variable such that duration was relatively constant with a mean variance of 0.5 s ± 0.7 s (n = 17 9-AC

treated fibers in which four or more plateau potentials were recorded).

In both ClCadr muscle and 9-AC treated muscle, plateau potentials did not occur following every

run of myotonia (Figure 3C). To determine why some runs of myotonia ended in plateau potentials

while others did not, we compared the mean voltage at the end of runs of myotonia that produced

plateau potentials vs. the mean voltage at the end of runs that did not produce plateau potentials,

in 9-AC treated fibers. There was a strong correlation between the mean membrane potential during

the final 500 ms of runs of myotonia and development of plateau potentials. In 22/22 fibers, the

mean membrane potential was more depolarized in runs of myotonia that produced plateau poten-

tials (mean = �40.1 ± 3.1 mV vs �49.0 ± 4.5 mV, p=5 � 10�11, paired t-test, Figure 3D). This sug-

gested that a voltage-dependent current might be involved. However, another feature of myotonia

that determines whether a plateau potential is triggered is the firing rate, which might correlate with

changes such as build-up of K+ in t-tubules or elevation of intracellular Ca2+. Thus, we examined and

found a strong correlation between the firing rate of myotonia runs and subsequent development of

plateau potentials: In 21/22 fibers, the mean firing rate was higher for runs of myotonia ending in

plateau potentials (mean = 31.2 ± 5.7 Hz vs 23.4 ± 2.9, p=7 � 10�6, paired t-test, Figure 3E). Thus,

while voltage-dependent channels appear to be involved, changes in ion concentrations due to dif-

ferences in firing rates remain a possible contributor.

Figure 2 continued

membrane potential during the plateau potential, membrane potential prior to the termination of the plateau

potential, and membrane potential following repolarization. (E) Development of a plateau potential during

repetitive stimulation at 8 Hz (stimuli represented by vertical hash marks under the recording).
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Another factor that might determine whether plateau potentials are triggered is the duration of

the preceding myotonia. However, recordings of multiple plateau potentials in individual 9-AC

treated muscle fibers did not reveal a consistent pattern of duration of myotonia prior to entry into

plateau potentials (Figure 4). While this does not rule out a contribution of duration of myotonia, it

suggests other factors predominate.

Figure 3. Characterization of plateau potentials. (A) Three examples of plateau potentials of different duration in 9-AC treated muscle. The 200 ms

current injection is indicated by a horizontal bar underneath the trace. Indicated on each trace is the membrane potential at the start and end of the

plateau potential. (B) The duration of plateau potentials in the ClCadr and 9-AC models of myotonia plotted against the rate of repolarization during the

plateau potential. A linear fit was performed on the log–log plot with an R2 value of 0.98 and a slope of �0.93. (C) Shown are two runs of myotonia from

the same muscle fiber, one ending in a plateau potential and one ending with repolarization. The mean membrane potential and firing rate in the final

500 ms of myotonia (horizontal bar) are indicated by the arrows above each trace. (D) Plot of the average membrane potential during the final 500 ms

of myotonia for 22 fibers in which there were both a run of myotonia ending in a plateau potential and a run ending with repolarization (no plateau

potential). (E) Plot of the average firing rate during the final 500 ms of myotonia for the same 22 fibers.
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Ca2+ and Na+ currents contribute to generation of plateau potentials
To determine whether development of plateau potentials is due primarily to opening or closing of

ion channels, we measured the membrane response to injection of hyperpolarizing or depolarizing

square current pulses at baseline and during plateau potentials. Injection of 5 nA of either depolariz-

ing or hyperpolarizing current during plateau potentials led to variable responses that early in the

plateau potential appeared passive, but prior to repolarization triggered an overshoot of membrane

potential after termination of current injection (Figure 5). The presence of an overshoot fits with the

propensity of membrane potential to oscillate prior to termination of plateau potentials (Figure 2D).

Since the response appeared passive during the early phase of plateau potentials we estimated rela-

tive input resistance, which was reduced by 50% following initial depolarization versus baseline

(0.43 ± 0.05 vs 0.90 ± 0.12 MW, p<0.01, paired t-test, n = 14 fibers). While caution must be used in

interpreting these data, they favor the possibility that there is a net increase in membrane conduc-

tance during the early phase of plateau potentials.

One possible explanation for the overshoot in voltage following termination of current injection

during the late phase of plateau potentials is voltage-dependent opening and closing of KV chan-

nels. The voltage near the end of plateau potentials is near the midpoint of activation of rodent skel-

etal muscle KV channels (Beam and Donaldson, 1983). With the injection of hyperpolarizing current,

KV channels would be caused to close, resulting in a depolarizing overshoot following termination of

current injection. With the injection of depolarizing current, the converse would happen. This may

not occur during the initial phase of plateau potentials if KV channels are mostly open or inactivated

(DiFranco et al., 2012).

The finding that membrane conductance is increased during the initial phase of plateau potentials

suggests opening of either Ca2+ or Na+ channels. In spinal motor neurons, L-type Ca2+ channels

play a central role in generation of plateau potentials (Alaburda et al., 2002; Heckman and Enoka,

2012; Hounsgaard, 2017). To determine whether Ca2+ current through skeletal muscle L-type chan-

nel (Cav1.1) triggers plateau potentials, we performed recordings on skeletal muscle fibers from a

mouse model (ncDHPR) in which the pore region of Cav1.1 carries a point mutation leading to abla-

tion of inward Ca2+ current (Dayal et al., 2017). We used voltage clamp of FDB/IO fibers to verify

the absence of inward currents in ncDHPR mice. In wild-type littermate controls, ramp depolarization

following block of Na+, K+, and Cl� channels triggered a large, inward Ca2+ current, which began to

activate at �15.1 ± 6.9 mV (n = 4 fibers) with a mean amplitude of 165 ± 46 nA (Figure 6A,B). Ramp

depolarization triggered no inward Ca2+ current in ncDHPR muscle fibers (mean = 0 ± 0 nA, n = 10

fibers; Figure 6C).

To determine whether current flow through Cav1.1 contributes to generation of plateau poten-

tials, current clamp recordings were performed. Application of 100 mM 9-AC led to

the development of plateau potentials in 41/49 fibers from four wild-type mice and in 47/49 fibers

from three ncDHPR mice (Figure 6D and E). Analysis of the characteristics of plateau potentials sug-

gests that Ca2+ current flow through Cav1.1 channels influences the duration of the plateau. While

there was no difference in the beginning or ending voltages of plateau potentials, the duration was

Table 1. Plateau potential parameters in ClCadrand 9-AC treated unaffected muscle.

Pre-myotonia vm
(mV)

Initial PP vm
(mV)

PP repol slope (mV/
s)

Final PP vm
(mV)

Max repol rate (mV/
s)

Post PP vm
(mV)

Duration of PP
(s)

ClCadr
�80.4 ± 2.9 (-80.0) �35.2 ± 4.2

(�35.8)
�0.25 ± 0.19
(�0.17)

�46.3 ± 2.9
(�46.7)

250 ± 78
(246)

�80.4 ± 2.9
(�79.7)

81.9 ± 47.6
(74.4)

9-AC �81.5 ± 2.6 (-82.4) �31.2 ± 3.1*
(�31.4)

�3.4 ± 1.8** (�3.5) �45.2 ± 2.3
(�45.1)

197 ± 44+

(192)
�80.8 ± 2.9
(�81.6)

11.7 ± 25.0++

(4.1)

Shown are the mean value ± the standard deviation for parameters of plateau potentials in ClCadr fibers and 9-AC treated fibers. Below the mean value is

the median value in parenthesis. n = 26 fibers with plateau potentials from 10 ClCadr mice and 49 fibers with plateau potentials from eight unaffected

muscles treated with 9-AC. Vm is membrane potential, and repol is repolarization. Pre-myotonia Vm is the resting membrane potential prior to stimulation.

Initial PP Vm is the membrane potential at the beginning of the plateau potential. Final PP Vm is the membrane potential prior to the sudden repolariza-

tion terminating the plateau potential. Max repol rate is the maximum rate of repolarization during the sudden repolarization. Post PP Vm is the membrane

potential following termination of the plateau potential. * indicates p<0.05, ** indicates p<1 � 10�20 of log transformed data. + indicates p<0.01. ++ indi-

cates p<1 � 10�18 of log transformed data.
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shorter in ncDHPR muscle (Figure 6D and E, Table 2). The cause of the shorter plateau potential

was an increase in the rate of repolarization (Table 2). These data suggest that Ca2+ influx through

Cav1.1 does not play a role in the initiation of plateau potentials, but is involved in sustaining them.

The Nav1.4-mediated Na+ current responsible for the generation of action potentials in skeletal

muscle inactivates within ms of depolarization, making it highly unlikely that it contributes to devel-

opment of plateau potentials. However, a Na+ current lacking fast inactivation (NaPIC) was found to

be involved in the generation of plateau depolarizations in muscle in a toxin model of hyperkalemic

periodic paralysis (Cannon and Corey, 1993b). We recently determined that NaPIC contributes to

repetitive firing occurring during myotonia (Hawash et al., 2017; Metzger et al., 2020). NaPIC is

present in normal skeletal muscle and likely derives from modal gating in which a small subset of

Nav1.4 channels reversibly enter a mode lacking fast-inactivation (Patlak and Ortiz, 1986;

Gage et al., 1989). We term the Na+ channels responsible for action potentials ‘fast-inactivating

Na+ channels’ and Na+ channels lacking fast inactivation ‘NaPIC’.

To determine whether NaPIC might play a role in the generation of plateau potentials, we

applied ranolazine to 9-AC treated muscle. Ranolazine has been found to preferentially block NaPIC

Figure 4. Lack of correlation between duration of myotonia and development of plateau potentials. Exemplary

prolonged intracellular recordings of plateau potentials from 9-AC treated muscle fibers (n = 5 fibers). There is no

consistent relationship between duration of myotonia and development of plateau potentials. The horizontal lines

under each trace mark 200 ms injections of depolarizing current.
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in brain, heart, peripheral nerve, and skeletal muscle (El-Bizri et al., 2011; Kahlig et al., 2014). We

previously found that ranolazine was effective in eliminating myotonia by blocking NaPIC while spar-

ing enough fast-inactivating Na+ channels to allow for repetitive firing of action potentials triggered

by current injection (Novak et al., 2015; Hawash et al., 2017). As shown in Figure 7A, when myoto-

nia was triggered by the treatment of muscle with 9-AC, 94% of fibers (n = 53 fibers from eight

mice) developed plateau potentials in response to a 200 ms injection of depolarizing current. Follow-

ing treatment with 40 mM ranolazine, 0/22 fibers from three mice developed plateau potentials after

200 ms current injection (Figure 7A, p<0.01 vs untreated). These data were consistent with NaPIC

playing a role in the development of plateau potentials.

However, as myotonia was greatly reduced by ranolazine (Novak et al., 2015; Hawash et al.,

2017), it was possible that elimination of plateau potentials was secondary to a reduction in the

number of myotonic action potentials. We thus changed our stimulation protocol to a 2 s train of 3

ms stimulus pulses delivered at 20 Hz. This firing rate and duration of firing mimics the duration and

rate of firing during runs of myotonia (Hawash et al., 2017). For trains of stimuli, the amplitude of 3

ms pulses of current were first adjusted to find the lowest current required to elicit an action poten-

tial. The current was then increased by 10 nA prior to delivering a train of stimuli. 2 s of 20 Hz stimu-

lation triggered plateau potentials in 46/55 fibers (n = 5 mice, Figure 7B). Out of the 46 fibers with

plateau potentials triggered by 20 Hz trains of stimuli, 11 fibers entered plateau potentials with lim-

ited (three or less myotonic APs) or no myotonia. When 40 mM ranolazine was applied, plateau

potentials developed in 0/68 fibers (n = 5 mice, p<0.01 vs untreated, Figure 7B). These data sug-

gest that ranolazine is not eliminating plateau potentials via a secondary effect of prevention of

repetitive firing.

As shown in Figure 3C and D, the mean membrane potential at the end of a run of myotonia cor-

related with whether myotonia terminated in a plateau potential or with repolarization. Thus, we

Figure 5. Reduced input resistance during the early phase of plateau potentials. Shown are recordings with 200

ms injections of hyperpolarizing (top) or depolarizing (bottom) current during two plateau potentials from a 9-AC

treated fiber. Insets show the trace on an expanded voltage and time axis (scale bars of insets 4.0 mV and 0.02 s).
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tested if ranolazine prevented plateau potentials by hyperpolarizing the mean membrane potential

prior to the development of plateau potentials. Untreated fibers with additional action potentials

and plateau potentials occurring during the 2 s stimulation (myotonia) were excluded from

the analysis to ensure that the presence of myotonia or plateau potentials did not account for the

difference in mean membrane potential. As all untreated fibers initially had plateau potentials or

Figure 6. Current flow through Cav1.1 does not initiate, but helps to sustain, plateau potentials in 9-AC treated muscle. (A) The voltage protocol

applied to FDB/IO fibers consisted of a ramp depolarization from �85 mV to +10 mV applied over 8 s. (B) A large inward current is present in wild-type

muscle when Na+, K+, and Cl� currents were blocked. (C) ncDHPR muscle fibers confirm the absence of inward Ca2+ current as there is only the linear

change in current due to the changing command potential. (D) A plateau potential in a 9-AC treated wild-type muscle fiber. (E) A plateau potential in a

9-AC treated ncDHPR fiber.

Table 2. Plateau potential parameters in 9-AC treated wild-type and ncDHPR muscle.

Pre-myotonia vm
(mV)

Initial plateau vm
(mV)

PP repol slope
(mV/s)

Final PP vm
(mV)

Max repol rate
(mV/s)

Post PP vm
(mV)

Duration of PP
(s)

Wild type �79.3 ± 0.9
(�79.5)

�36.0 ± 1.6
(�36.0)

�3.3 ± 0.7
(�3.1)

�48.1 ± 1.2
(�48.5)

�125 ± 6
(125)

�79.5 ± 0.4
(�79.7)

3.9 ± 0.7
(3.8)

ncDHPR �78.9 ± 0.6
(�79.0)

�37.2 ± 0.8
(�37.1)

�5.4 ± 0.6*
(�5.3)

�49.2 ± 1.1
(�49.7)

�134 ± 10
(138)

�79 ± 0.8
(�79.3)

2.4 ± 0.3*
(2.3)

Shown are the mean value and the standard deviation for parameters of plateau potentials in 9-AC treated wild-type and ncDHPR fibers. Below the mean

value in parentheses is the median value. n = 41 fibers from four wild-type mice and n = 47 fibers from three ncDHPR mice. Vm is membrane potential,

and repol is repolarization. Pre-myotonia Vm is the resting membrane potential prior to stimulation. Initial PP Vm is the membrane potential at the begin-

ning of the plateau potential. Final PP Vm is the membrane potential prior to the sudden repolarization terminating the plateau potential. Max repol rate

is the maximum rate of repolarization during the sudden repolarization. Post PP Vm is the membrane potential following termination of the plateau poten-

tial. * indicates p=0.01 for both significant differences (t-test).
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Figure 7. Block of plateau potentials by ranolazine in 9-AC treated muscle is associated with lessening of depolarization during repetitive firing. (A)

Examples of the response to a 200 ms injection of depolarizing current at baseline and following treatment with 40 mM ranolazine. (B) Examples of the

response to 2 s of stimulation at 20 Hz. The vertical arrow points to the 30th action potential in each trace, which was used for the analysis of

differences between ranolazine untreated and ranolazine treated muscle (D–F). (C) Plots of the membrane potential during the 8 ms encompassing the

Figure 7 continued on next page
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myotonia during repetitive stimulation, the analysis was not possible. To address this issue, the

warm-up phenomenon was induced using 8 Hz 10 s trains, which lessens myotonia due to slow inac-

tivation of Na channels (Novak et al., 2015). It must thus be noted that the untreated muscle was

not at baseline but had already undergone some Na channel inactivation. No induction of warm-up

was necessary following treatment with ranolazine, as no fibers had myotonia or plateau potentials.

In the absence of ranolazine, the mean membrane potential during the 500 ms prior to the plateau

potential was �49.6 ± 2.5 mV (n = 5 muscles, 28 fibers). In the presence of 40 mM ranolazine, the

mean membrane potential was less depolarized (�56.2 ± 2.9 mV, p<0.05 vs untreated, n = 5

muscles, Figure 7D). These data suggest that ranolazine prevents plateau potentials by lessening

depolarization of the mean membrane potential during the 20 Hz stimulation.

There are two contributors to the mean membrane potential during repetitive stimulation: (1) the

membrane potential during action potentials, and (2) the membrane potential during the interspike

interval. We analyzed the contribution of each of these to the hyperpolarization caused by ranola-

zine. By the 30th action potential of the 20 Hz stimulation, action potential duration had increased

to close to 8 ms. This widening of the spike-form was likely due to failure of the membrane potential

to fully repolarize between action potentials, given that depolarization has previously been found to

cause widening of action potentials (Renaud and Light, 1992; Yensen et al., 2002; Miranda et al.,

2017). We examined the mean membrane potential during the 8 ms encompassing the 30th action

potential and found a trend (not statistically significant) toward lessening of depolarization following

treatment with ranolazine (Figure 7C,E: �28.2 ± 3.4 vs �32.9 ± 3.8 mV, p=0.07). With 20 Hz stimula-

tion, there is an action potential every 50 ms. After taking the mean membrane potential for the 8

ms encompassing the 30th action potential, there remained 42 ms in which there was no action

potential. The membrane potential for this 42 ms interspike interval before the 30th action potential

was less depolarized following treatment with ranolazine (Figure 7C,F: �56.0 ± 2.3 vs �61.7 ± 3.0

mV, p<0.05). As the interspike interval accounts for 84% (42/50ms) of the time between spikes dur-

ing 20 Hz stimulation, hyperpolarization of this interval is largely responsible for hyperpolarization of

the mean membrane potential.

Ranolazine prevents transient weakness in vivo
The finding that ranolazine eliminates plateau potentials allowed us to explore whether plateau

potentials are the mechanism underlying transient weakness in vivo. We recorded triceps surae force

in 5 ClCadr myotonic mice before and 45 min after intraperitoneal (i.p.) injection of 50 mg/kg of rano-

lazine. As shown previously (Novak et al., 2015), treatment with ranolazine decreased myotonia

such that muscle was able to more rapidly relax following termination of stimulation (Figure 8A). In

addition to lessening myotonia, treatment with ranolazine eliminated transient weakness in all five

mice (Figure 8A and B, p<0.01 vs untreated at 16 s). The elimination of both plateau potentials and

transient weakness by ranolazine supports the hypothesis that plateau potentials are the mechanism

underlying transient weakness in vivo.

Discussion
Motor dysfunction in recessive myotonia (Becker disease) involves both muscle stiffness and transient

weakness. Using intracellular recordings from a mouse model of myotonia congenita (ClCadr), we dis-

covered that while some runs of myotonia resolved with repolarization, others terminated with a pla-

teau potential; that is, depolarization to a membrane potential between �30 and �45 mV, lasting

up to 100 s. There was gradual repolarization during plateau potentials until the membrane potential

reached �45 mV, at which point a sudden repolarization to the resting membrane potential

Figure 7 continued

action potential and the 42 ms encompassing the interspike interval for the untreated and ranolazine traces shown in B. Each point represents the value

for a single action potential during the 2 s of 20 Hz stimulation. Action potential MP = the mean membrane potential during the 8 ms encompassing

the action potential, Inter-AP MP = the mean membrane potential during the 42 ms interspike interval. (D) Plot of the mean membrane potential during

the last 500 ms of stimulation. Each point represents an animal average derived from at least four fibers without (n = 5) and with treatment with

ranolazine (n = 5). The horizontal line represents the mean. (E and F) Plots of the mean membrane potential during the 30th action potential and the

30th interspike interval. * indicates p=0.005 (t-test), **p=0.01 (t-test).
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occurred. During plateau potentials, muscle fibers were inexcitable. Studies of genetic and pharma-

cologic mouse models suggest both current through voltage-activated CaV1.1 Ca2+ channels and

NaPIC may contribute to plateau potentials. NaPIC through NaV1.4 channels is the key trigger of

plateau potentials and current through CaV1.1 Ca2+ channels contributes to sustaining plateau

potentials. Blocking NaPIC with ranolazine eliminated both plateau potentials in vitro and transient

weakness in vivo. Our results suggest that plateau potentials are the mechanism underlying transient

weakness in Becker disease.

Rapid transition between hyperexcitability and inexcitability in Becker
disease
Our data suggest that muscle from a mouse model of Becker disease undergoes a rapid transition

between the states of hyperexcitability (myotonia) and inexcitability (due to plateau potentials),

shown in Figure 9. Repeated firing of action potentials during voluntary contraction triggers myoto-

nia, which often transitions to a depolarization that forms a plateau potential. During plateau poten-

tials, fibers cannot generate action potentials in response to stimulation, providing an explanation

for the drop in CMAP amplitude reported in patients (Ricker and Meinck, 1972; Brown, 1974;

Aminoff et al., 1977; Deymeer et al., 1998; Drost et al., 2001; Modoni et al., 2011). The reason

for the rapid transition between myotonia (hyperexcitability) and plateau potentials (inexcitability) is

that both states are caused by depolarization secondary to loss of muscle Cl- current. The difference

is one of degree: when depolarization is mild, Na+ channels are not inactivated, such that repetitive

firing of action potentials is triggered. When depolarization worsens, Na+ channels inactivate, such

that inexcitability and paralysis ensue. This proposal is similar to the current understanding of hyper-

kalemic periodic paralysis, in which there is often myotonia at the beginning of attacks (during the

initial, mild depolarization) and weakness at the height of an attack (when depolarization is maximal)

(Cannon, 2015; Statland et al., 2018).

Ion channels contributing to generation and maintenance of plateau
potentials
Involvement of voltage-gated channels in the generation of plateau potentials is suggested by the

strong correlation between membrane potential and the initiation and termination of plateau poten-

tials. In runs of myotonia that terminated in a plateau potential, the mean membrane potentials aver-

aged to include both action potentials and interspike intervals prior to development of a plateau

potential was �40 mV, whereas, within the same fibers, runs of myotonia terminating with repolariza-

tion had a mean membrane potential prior to repolarization of �49 mV. The midpoint of the

Figure 8. Ranolazine eliminates transient weakness in vivo. (A) Shown are the force traces from a triceps surae muscle group before and 45 min after

i.p. injection of 50 mg/kg ranolazine. (B) Shown is the mean normalized force in 5 ClCadr mice before and after injection of ranolazine. p=0.001 for the

difference in force 16 s (*) after the initial stimulation (paired t-test, 95% confidence interval 70–86 vs 102–113). The unaffected littermate data from

Figure 1 is replotted here to allow for comparison.
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difference between these values is close to �44 mV. In ClCadr muscle, the mean membrane potential

prior to termination of plateau potentials was �46 mV, and in 9-AC treated muscle it was �45 mV.

Thus, a mean membrane potential of �44 mV appears to predict both entry into, as well as termina-

tion of, plateau potentials.

Figure 9. Voluntary contraction in myotonia congenita triggers a sequential progression through states of hyperexcitability and inexcitability. Shown on

the left is a motor unit consisting of a motor neuron and the muscle fibers it innervates. At rest, both the motor neuron and muscle fibers are

hyperpolarized and muscle is relaxed. To initiate voluntary contraction, the motor neuron fires repeated action potentials, which activate the

neuromuscular junction (NMJ) to trigger repeated firing of action potentials in muscle (indicated by a yellow outline around the fiber). With the rapid

firing of muscle action potentials, there is sustained contraction and force production (blue line). At the end of voluntary contraction, the motor neuron

stops firing and the NMJ repolarizes, but in myotonic muscle there is continued involuntary firing of action potentials, which slows relaxation of muscle.

When myotonia is terminated by transition into a plateau potential, muscle remains depolarized but cannot fire action potentials (black outline of the

fiber), such that muscle is paralyzed. Finally, there is sudden repolarization and return of muscle to the resting state. Under the voltage trace our

hypothesis regarding the contribution of NaPIC and current through CaV1.1 channels is illustrated. NaPIC begins to turn on at the end of voluntary

contraction and triggers myotonia. In some runs of myotonia, NaPIC continues to increase and contributes to initiation of plateau potentials. The initial

plateau potential voltage is sufficiently depolarized to trigger opening of CaV1.1 channels, which help to sustain plateau potentials. The gradual

repolarization during plateau potentials causes CaV1.1 channels to close prior to termination of the potential. Rapid, voltage-dependent closing of Na+

channels in the NaPIC mode contributes to termination of plateau potentials. ACh = acetylcholine.
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Both Cav1.1 and Nav1.4 are voltage-gated channels that could depolarize muscle to potentials

achieved during plateau potentials. In spinal motor neurons, CaV1.3 channels play a central role

in the generation of plateau potentials that last many seconds (Alaburda et al., 2002; Heckman and

Enoka, 2012; Hounsgaard, 2017). Here, we show that the development of plateau potentials was

not affected in ncDHPR muscle that lack Ca2+ current through Cav1.1. However, there was a reduc-

tion in the duration of plateau potentials in ncDHPR muscle. These data suggest that Ca2+ flux

through Cav1.1 channels contributes to sustaining plateau potentials. This was a surprise, as the

membrane potential during plateau potentials is more negative than voltages at which there is sig-

nificant current through CaV1.1 channels (Garcı́a and Beam, 1994; Bannister and Beam, 2013).

One explanation is that in intact, mature fibers, prolonged depolarization during plateau potentials

allows for activation of CaV1.1 at more negative potentials than during the shorter step depolariza-

tions typically used for voltage clamp studies. Our findings suggest that despite Ca2+ current

through CaV1.1 having no essential role in healthy muscle (Dayal et al., 2017), it may contribute to

pathologic depolarization in muscle channelopathies. It is not clear at this point whether the primary

role of Ca2+ flux through CaV1.1 channels in prolonging plateau potentials is a direct effect of

increased Ca2+ conductance or whether it is due to effects of Ca2+ accumulation on other ion

channels.

Partial block of Nav1.4 channels with ranolazine eliminated plateau potentials, suggesting involve-

ment of NaV1.4. However, the majority of Nav1.4 channels inactivate within ms (fast-inactivating

NaV1.4 channels), such that they cannot contribute to prolonged depolarization during plateau

potentials. There is a NaPIC in skeletal muscle that appears to arise from modal gating whereby,

with very low frequency, any NaV1.4 channel may enter the non-inactivating mode (Patlak and Ortiz,

1986; Gage et al., 1989; Hawash et al., 2017). The subset of NaV1.4 channels in the non-activating

mode appears to play a role in the development of plateau potentials.

Ranolazine has been found to preferentially block NaPIC (El-Bizri et al., 2011; Kahlig et al.,

2014). When myotonic muscle was treated with ranolazine to block NaPIC, depolarization of the

mean membrane potential during repetitive firing was decreased and plateau potentials were pre-

vented. An important contributor was lessening of depolarization of the membrane potential during

the interspike interval. Previously, the only identified contributor to depolarization of the interspike

membrane potential was K+ build-up in the transverse (t)-tubules (invaginations of the sarcolemma),

which depolarizes the K+ equilibrium potential (Adrian and Bryant, 1974; Adrian and Marshall,

1976; Wallinga et al., 1999; Fraser et al., 2011). The finding that block of NaPIC lessens depolari-

zation of the interspike membrane potential suggests that NaPIC is activated during this interval.

We hypothesize that activation of NaPIC combines with K+ build-up in t-tubules to depolarize

muscle to a mean membrane potential of �44 mV during myotonia, such that a plateau potential is

triggered. An additional contributor to this depolarization may be the lessening of inward rectifier

potassium channel (Kir) conductance with depolarization (Standen and Stanfield, 1980; Struyk and

Cannon, 2008). It is unclear whether NaPIC, K+ build-up, and decreased Kir conductance can fully

account for depolarization during plateau potentials. Based on the studies of sustained depolariza-

tions (sometimes termed plateau potentials) in neurons, a family of ion channels that might contrib-

ute is the transient receptor potential (TRP) ion channel family (Yan et al., 2009; Phelan et al.,

2012). Members of the TRP ion channel family are expressed in skeletal muscle (Brinkmeier, 2011;

Gailly, 2012), and we recently found that activation of TRPV4 plays a role in triggering percussion

myotonia (Dupont et al., 2020).

While entry into plateau potentials was often gradual (Figure 4), it could also occur over two to

four action potentials (~100–200 ms, Figure 2, Figure 4). Repolarization occurred over 200–300 ms.

While we do not know all the channels involved, we hypothesize one contributor to the instances of

rapid onset and termination of plateau potentials is activation and deactivation of NaPIC (Figure 9).

NaPIC in muscle can activate and deactivate within 10 ms (Gage et al., 1989). The impression that

gating of NaPIC is slow comes from the slow ramp protocols often used to study NaPIC. These pro-

tocols enable inactivation of fast Na current such that NaPIC can be studied in isolation

(Hawash et al., 2017).

Ion channels promoting repolarization are likely also involved in the sudden termination of pla-

teau potentials. Oscillations in membrane potential often occurred at the beginning or end of pla-

teau potentials. In motor neurons, oscillations in membrane potential are caused by a balance

between two voltage-gated ion channels: one promoting depolarization and one promoting
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hyperpolarization (Iglesias et al., 2011; Sciamanna and Wilson, 2011; Nardelli et al., 2017). Kv

channels could participate in oscillations occurring during plateau potentials given that Kv conduc-

tance in muscle is large and the channels begin to activate at voltages reached during plateau

potentials (Beam and Donaldson, 1983; DiFranco et al., 2012). Thus, it may be possible to prevent

plateau potentials by combining partial block of channels promoting depolarization such as NaPIC

with partial opening of channels promoting repolarization such as Kv channels.

As an example of how such an approach might work, plateau potentials in 9AC treated muscle

were significantly shorter than in ClCadr muscle. Two factors may explain the difference. The first is

that ClC-1 conductance is not completely blocked following application of 100 mM 9-AC

(Palade and Barchi, 1977). While small, the remaining current through ClC-1 channels promotes

repolarization and shortens plateau potentials. The second is that NaPIC current is larger in ClCadr

muscle compared to wild-type muscle (used for the 9-AC model of myotonia) (Hawash et al., 2017).

The combination of slightly higher ClC-1 conductance and slightly smaller NaPIC likely combine to

shorten plateau potentials in the 9-AC model of myotonia. However, despite the shorter duration of

plateau potentials in the 9-AC model of myotonia, they were more frequent (92% of fibers vs 30% of

fibers). The reason for this difference is not known and raises the possibility that currents not yet

identified play a role in development of plateau potentials.

Blocking NaPIC as therapy for transient weakness
In a mouse model of myotonia congenita, ranolazine prevents both development of plateau poten-

tials in vitro and transient weakness in vivo. In open label trials of ranolazine in both myotonia conge-

nita and paramyotonia congenita, there were statistically significant reductions in the degree of self-

reported weakness (Arnold et al., 2017; Lorusso et al., 2019). Taken together, these data suggest

that the clinical benefit of blocking Na+ channels in some diseases with myotonia may result, in part,

from prevention of transient weakness secondary to development of plateau potentials. Our data

also raises the possibility that blocking of Cav1.1 channels might reduce transient weakness by short-

ening the duration of plateau potentials. Since blockers of L-type Ca2+ channels are used clinically to

treat hypertension and have few side effects, a trial of their efficacy in reducing transient weakness

may be worthwhile.

Mutations of NaV1.4 responsible for hyperkalemic periodic paralysis increase NaPIC

(Cannon et al., 1991; Cannon and Strittmatter, 1993a), which appears to play a central role in trig-

gering the depolarization that underlies attacks of transient weakness (Lehmann-Horn et al., 1987;

Jurkat-Rott et al., 2010; Cannon, 2015). This suggests that blocking NaPIC should be effective in

treating hyperkalemic periodic paralysis. However, treating patients with Na+ channel blockers that

are effective in treating myotonia, such as mexiletine, was previously found to be ineffective

(Ricker et al., 1983; Ricker et al., 1986). The finding that blocking NaPIC with ranolazine lessens

depolarization of the interspike membrane potential suggests it might be worth considering a trial

of this FDA-approved drug’s efficacy in hyperkalemic periodic paralysis.

Conclusion
We identified currents contributing to plateau potentials that are responsible for transient weakness

in recessive myotonia congenita. We also determined that blocking a current contributing to plateau

potentials provided effective amelioration of transient weakness. Currents contributing to plateau

potentials are present in wild-type muscle; thus, they might contribute to depolarization in other

muscle channelopathies with transient weakness, such as hyper- and hypokalemic periodic paralysis.

Identification of channels involved in generation of plateau potentials in skeletal muscle may thus

advance understanding of regulation of excitability in both healthy and diseased muscle.

Materials and methods

Key resources table

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Strain, strain background (Mus musculus) Clcn1adr-mto/J (ClCadr) mice Jackson Labs Stock #000939

Continued on next page
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Continued

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Strain, strain background (Mus musculus) ncDHPR mice Dayal et al., 2017
Nat Commun 8:475.

Chemical compound, drug 9-Anthracene-carboxylic acid (9-AC) Sigma Cat. #: A4678 0.1 mM

Chemical compound, drug N-benzyl-p-toluenesulfonamide (BTS) TCI America Prod. #: B3082 0.05 mM

Chemical compound, drug Ranolazine Sigma-Aldrich Cat. #: R6152 0.04 mM

Chemical compound, drug Tetrodotoxin (TTX) Tocris Cat. #: 1069 0.001 mM

Chemical compound, drug 3,4-diaminopyridine (3,4-DAP) Sigma-Aldrich Cat. #:
D7148

0.1 mM

Chemical compound, drug Ouabain Sigma-Aldrich Cat. #: 03125 0.01 mM

Software, algorithm Spike2 http://ced.co.uk/down
loads/latestsoftware

Version 8

Software, algorithm MATLAB https://www.mathworks
.com/downloads

Mice
All animal procedures were performed in accordance with the policies of the Animal Care and Use

Committee of Wright State University and were conducted in accordance with the United States

Public Health Service’s Policy on Humane Care and Use of Laboratory Animals.

The genetic mouse model of myotonia congenita used was Clcn1adr-mto/J (ClCadr) mice, which

have a homozygous null mutation in the Clcn1 gene (Jackson Laboratory Stock #000939). The phar-

macologic model of Becker disease involved treatment of muscle with 100 mM 9-anthracenecarbox-

ylic acid (9-AC). The mouse model of Ca2+ non-conducting CaV1.1 used was ncDHPR, carrying a

point mutation in the Cacna1S gene coding for N617D in pore loop II (Dayal et al., 2017).

Genotyping of ClCadr mice was performed as previously described to select heterozygous mice

for breeding (Dupont et al., 2019). Otherwise, homozygous myotonic mice were identified by

appearance and behavior as previously described (Novak et al., 2015). Unaffected littermates were

used as controls. Genotyping for selection of homozygous ncDHPR was performed as previously

described (Dayal et al., 2017). Both male and female mice were used from 2 months to 6 months of

age. As mice with myotonia have difficulty climbing to reach food, symptomatic mice were supplied

with moistened chow paste (Irradiated Rodent Diet; Harlan Teklad 2918) on the floor of the cage.

Electrophysiology
Current and voltage clamp recordings were performed at 20–22˚C.

Current clamp
Mice were sacrificed using CO2 inhalation followed by cervical dislocation, and both extensor digito-

rum longus (EDL) muscles were dissected out tendon-to-tendon. Muscles were maintained and

recorded at 22˚C within 6 hr of sacrifice. The recording chamber was continuously perfused with

Ringer solution containing (in mM) NaCl, 118; KCl, 3.5; CaCl2, 1.5; MgSO4, 0.7; NaHCO3, 26.2;

NaH2PO4, 1.7; glucose, 5.5 (pH 7.3–7.4 at 20–22˚C), and equilibrated with 95% O2 and 5% CO2.

Intracellular recordings were performed as previously described (Novak et al., 2015;

Hawash et al., 2017; Dupont et al., 2019). Briefly, muscles were loaded with 50 mM N-benzyl-p-tol-

uenesulfonamide (BTS, Tokyo Chemical Industry) for at least 30 min prior to recording to prevent

contraction. BTS was dissolved in DMSO and added to the perfusate prior to bubbling with 95% O2

and 5% CO2, as we have found that BTS is more soluble at a basic pH. Prior to recording, muscles

were stained for 3 min with 10 mM 4-(4-diethylaminostyrl)-N-methylpyridinium iodide (4-Di-2ASP,

Molecular Probes) to allow imaging muscle with an upright epifluorescence microscope (Leica DMR,

Bannockburn, IL).

Micro-electrodes were filled with 3M KCl solution containing 1 mM sulforhodamine to visualize

the electrodes with epifluorescence. Resistances were between 15 and 30 MW, and capacitance
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compensation was optimized prior to recording. Fibers with resting potentials more depolarized

than –74 mV were excluded from analysis.

In cases where there was failure of action potentials during trains of stimulation, we did not deter-

mine whether the failure was due to the presence of an absolute or relative refractory period by

altering current injection during the train of stimuli. Successful repolarization following a plateau

potential was defined as a return to within 4 mV of the resting potential prior to the plateau poten-

tial. Fibers that did not fully repolarize may have become damaged and were thus discarded from

further analysis.

Voltage clamp
Flexor digitorum brevis (FDB) and interosseous (IO) muscle fibers were isolated as previously

described (Waters et al., 2013; Hawash et al., 2017). Briefly, muscles were surgically removed and

enzymatically dissociated at 37˚C under mild agitation for ~1 hr using 1000 U/mL of collagenase

type IV (Worthington Biochemical). Mechanical dissociation was completed using mild trituration in

buffer with no collagenase. The fibers were allowed to recover at 20–22˚C for 1 hr before being

used for electrical measurements.

Both the current-passing and voltage-sensing electrodes were filled with internal solution (see

below) and had resistances of ~15 MW. After impalement, 10 min of hyperpolarizing current injection

was allowed for equilibration of the electrode solution. Data were acquired at 20 kHz and low-pass

filtered with the internal Axoclamp 900A filters at 1 kHz. The voltage clamp command signal was

low-pass filtered with an external Warner LFP-8 at 1 kHz.

Internal solution (in mM) was as follows: 75 aspartate, 30 EGTA, 15 Ca(OH)2, 5 MgCl2, 5 ATP di-

Na, five phosphocreatine di-Na, five glutathione, 20 MOPS, and pH 7.2 with CsOH.

Extracellular solution (in mM) was as follows: 144 NaCl, 4 CsCl, 1.2 CaCl2, 0.6 MgCl2, five glucose,

1 NaH2PO4, 10 MOPS, 0.05 BaCl2, 0.1 9-AC, 0.001 TTX, 0.01 Ouabain, 0.1 3,4-diaminopyridine (3,4-

DAP), and pH 7.4 with NaOH.

In vivo muscle force recording
In vivo muscle force recordings were performed as previously described (Dupont et al., 2019;

Wang et al., 2020). Briefly, mice were anesthetized via isoflurane inhalation; then the distal tendon

of the triceps surae muscles was attached to a force transduction motor and the sciatic nerve was

stimulated while isometric muscle force generation was measured. The sciatic nerve was stimulated

with constant current injection. The amplitude of the current pulse was adjusted to 150% of the cur-

rent required to trigger a single action potential. To induce myotonia, 45 pulses of 1 ms duration

were delivered at 100 Hz. To follow the development of transient weakness, 15 pulses delivered at

100 Hz were delivered every 4 s. Muscle temperature was monitored with a laser probe and main-

tained between 29˚C and 31˚C with a heat lamp. The muscle was kept moist by applying mineral oil.

Ranolazine was administered via intraperitoneal (i.p.) injection at a dose of 50 mg/kg dissolved in

water. The typical volume of water injected was 100 ml.

Statistics
Sample size was determined by past practice, where we have found that an n of 5 muscles from five

different mice, studied on different days, yields statistically significant differences in muscle action

potential properties. At least five muscle fibers were recorded from each muscle. However, for stud-

ies of plateau potentials in ClCadr mice we obtained recordings with adequate preservation of rest-

ing membrane potential in only a subset of fibers, so fewer fibers per muscle were included in the

final analysis. This was due to the prolonged duration of plateau potentials, which required maintain-

ing prolonged impalement of individual fibers with two electrodes. No outlier data points were

excluded. Intracellular recording data from different mice were analyzed using nested analysis of var-

iance with n as the number of mice, with data presented as mean ± SD. p<0.05 was considered to

be significant. The numbers of animals and fibers used are described in the corresponding figure

legends and text. For parameters that were not normally distributed, such as duration of the plateau

potential and slope of the repolarization, differences between two data sets were analyzed after

applying a log transformation, which yielded normally distributed data.
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For comparisons of data within individual muscle fibers (mean membrane potential and mean fir-

ing rate for runs of myotonia, without and with plateau potentials), the paired Student’s t-test was

used with n as the number of fibers. For force recording comparisons before and after ranolazine

treatment, the paired Student’s t-test was used with n as the number of mice. For comparisons of

force recordings between myotonic mice and unaffected littermates, a two-sample Student’s t-test

was used.
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weakness and compound muscle action potential decrement in Myotonia congenita. Muscle & Nerve 21:1334–
1337. DOI: https://doi.org/10.1002/(SICI)1097-4598(199810)21:10<1334::AID-MUS16>3.0.CO;2-1, PMID:
9736066

DiFranco M, Quinonez M, Vergara JL. 2012. The delayed rectifier potassium conductance in the sarcolemma and
the transverse tubular system membranes of mammalian skeletal muscle fibers. Journal of General Physiology
140:109–137. DOI: https://doi.org/10.1085/jgp.201210802

Myers et al. eLife 2021;10:e65691. DOI: https://doi.org/10.7554/eLife.65691 20 of 23

Research article Medicine Neuroscience

https://doi.org/10.5061/dryad.bvq83bk7q
https://doi.org/10.5061/dryad.bvq83bk7q
https://doi.org/10.5061/dryad.bvq83bk7q
https://doi.org/10.1113/jphysiol.1974.sp010620
https://doi.org/10.1113/jphysiol.1976.sp011410
https://doi.org/10.1007/978-1-4615-0713-0_27
https://doi.org/10.1007/978-1-4615-0713-0_27
http://www.ncbi.nlm.nih.gov/pubmed/12171115
https://doi.org/10.1212/WNL.27.9.812
http://www.ncbi.nlm.nih.gov/pubmed/561337
https://doi.org/10.1212/WNL.0000000000004229
https://doi.org/10.1212/WNL.0000000000004229
https://doi.org/10.1016/j.bbamem.2012.09.007
https://doi.org/10.1085/jgp.81.4.485
https://doi.org/10.1007/978-94-007-0265-3_39
https://doi.org/10.1007/978-94-007-0265-3_39
http://www.ncbi.nlm.nih.gov/pubmed/21290325
https://doi.org/10.1136/jnnp.37.12.1336
https://doi.org/10.1016/0896-6273(91)90064-7
http://www.ncbi.nlm.nih.gov/pubmed/1849724
https://doi.org/10.1002/cphy.c140062
http://www.ncbi.nlm.nih.gov/pubmed/25880512
http://www.ncbi.nlm.nih.gov/pubmed/8105077
https://doi.org/10.1016/0896-6273(93)90321-H
https://doi.org/10.1038/s41467-017-00629-x
http://www.ncbi.nlm.nih.gov/pubmed/28883413
https://doi.org/10.1016/j.neuropharm.2012.09.006
https://doi.org/10.1016/j.neuropharm.2012.09.006
https://doi.org/10.1016/j.expneurol.2014.02.023
http://www.ncbi.nlm.nih.gov/pubmed/24613829
https://doi.org/10.1002/(SICI)1097-4598(199810)21:10%3C1334::AID-MUS16%3E3.0.CO;2-1
http://www.ncbi.nlm.nih.gov/pubmed/9736066
https://doi.org/10.1085/jgp.201210802
https://doi.org/10.7554/eLife.65691


Drost G, Blok JH, Stegeman DF, van Dijk JP, van Engelen BG, Zwarts MJ. 2001. Propagation disturbance of
motor unit action potentials during transient paresis in generalized myotonia: a high-density surface EMG
study. Brain 124:352–360. DOI: https://doi.org/10.1093/brain/124.2.352, PMID: 11157562

Dupont C, Denman KS, Hawash AA, Voss AA, Rich MM. 2019. Treatment of myotonia congenita with retigabine
in mice. Experimental Neurology 315:52–59. DOI: https://doi.org/10.1016/j.expneurol.2019.02.002,
PMID: 30738808

Dupont C, Novak K, Denman K, Myers JH, Sullivan JM, Walker PV, Brown NL, Ladle DR, Bogdanik L, Lutz CM, A
Voss A, Sumner CJ, Rich MM. 2020. TRPV4 antagonism prevents mechanically induced myotonia. Annals of
Neurology 88:297–308. DOI: https://doi.org/10.1002/ana.25780, PMID: 32418267

El-Bizri N, Kahlig KM, Shyrock JC, George AL, Belardinelli L, Rajamani S. 2011. Ranolazine block of human na v 1.
4 sodium channels and paramyotonia congenita mutants. Channels 5:161–172. DOI: https://doi.org/10.4161/
chan.5.2.14851, PMID: 21317558

Fraser JA, Huang CL-H, Pedersen TH. 2011. Relationships between resting conductances, excitability, and
t-system ionic homeostasis in skeletal muscle. Journal of General Physiology 138:95–116. DOI: https://doi.org/
10.1085/jgp.201110617

Gage PW, Lamb GD, Wakefield BT. 1989. Transient and persistent sodium currents in normal and denervated
mammalian skeletal muscle. The Journal of Physiology 418:427–439. DOI: https://doi.org/10.1113/jphysiol.
1989.sp017850, PMID: 2559972

Gailly P. 2012. TRP channels in normal and dystrophic skeletal muscle. Current Opinion in Pharmacology 12:326–
334. DOI: https://doi.org/10.1016/j.coph.2012.01.018, PMID: 22349418

Garcı́a J, Beam KG. 1994. Measurement of calcium transients and slow calcium current in myotubes. Journal of
General Physiology 103:107–123. DOI: https://doi.org/10.1085/jgp.103.1.107

Hawash AA, Voss AA, Rich MM. 2017. Inhibiting persistent inward sodium currents prevents myotonia. Annals of
Neurology 82:385–395. DOI: https://doi.org/10.1002/ana.25017, PMID: 28833464

Heckman CJ, Enoka RM. 2012. Motor unit. Comprehensive Physiology 2:2629–2682. DOI: https://doi.org/10.
1002/cphy.c100087, PMID: 23720261

Hounsgaard J. 2017. Motor neurons. Comprehensive Physiology 7:463–484. DOI: https://doi.org/10.1002/cphy.
c160025, PMID: 28333379

Iglesias C, Meunier C, Manuel M, Timofeeva Y, Delestrée N, Zytnicki D. 2011. Mixed mode oscillations in mouse
spinal motoneurons arise from a low excitability state. Journal of Neuroscience 31:5829–5840. DOI: https://doi.
org/10.1523/JNEUROSCI.6363-10.2011, PMID: 21490224

Jurkat-Rott K, Holzherr B, Fauler M, Lehmann-Horn F. 2010. Sodium channelopathies of skeletal muscle result
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