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Abstract

Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to
environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature.
This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies
tacitly assume that traits measured from fossils reflect the environment at the time of their deposition, even during periods
of rapid climate change. We measured leaf size and shape in Acer rubrum derived from four seed sources with a broad
temperature range and grown for two years in two gardens with contrasting climates (Rhode Island and Florida). Leaves in
the Rhode Island garden have more teeth and are more highly dissected than leaves in Florida from the same seed source.
Plasticity in these variables accounts for at least 6–19 % of the total variance, while genetic differences among ecotypes
probably account for at most 69–87 %. This study highlights the role of phenotypic plasticity in leaf-climate relationships.
We suggest that variables related to tooth count and leaf dissection in A. rubrum can respond quickly to climate change,
which increases confidence in paleoclimate methods that use these variables.
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Introduction

Plant traits are determined by a combination of genetic heritage

(genotype) and the capacity for responding to environmental

change within a single genotype (phenotypic plasticity). Consid-

erable attention has been given to unraveling the relative roles of

plasticity and genotype in a wide array of leaf traits, in part to help

understand how plants may respond to global climate change. For

example, common garden experiments demonstrate that in most

species both plastic and genetic factors are important for

determining how photosynthetic efficiency, leaf area, and leaf

mass per area respond to altitude [1–5]. Experimental treatments

and other common garden experiments also typically find joint

plastic-genetic control over how stomatal distributions, photosyn-

thetic efficiency, leaf area, and/or leaf mass per area respond to

irradiance [6,7], temperature [8–10], water availability [9], and

disturbance [11].

Leaf traits that can be measured in fossils are commonly used to

reconstruct aspects of paleoclimate and paleoecology. For

example, the site-mean leaf area among woody dicotyledonous

taxa commonly scales with mean annual precipitation (MAP)

[12,13], and paleobotanists have applied this relationship for

decades to reconstruct paleo-MAP [14–16]. The recognition that

leaf area can exhibit a plastic response to environmental change is

important for the paleobotanical community because it supports

the required assumption that the measured trait values of a fossil

reflect, without exception, the environment at the time of

deposition [3,17]. In other words, if the capacity for a trait to

exhibit a plastic response were weak, trait values may instead

reflect the environmental conditions of a variety of times prior to

deposition; this time-lag effect may be particularly important

during periods of rapid climate change [18,19].

There are other leaf traits for reconstructing paleoenvironments

for which the relative roles of plasticity and adaptation are

unknown. Most notably, aspects of leaf teeth are commonly used as

paleoenvironmental proxies. For example, the percentage of woody

dicot species with leaf teeth at most sites worldwide inversely relates

to mean annual temperature (MAT) [16,20–25]. Recently, Huff

et al. [26] and Royer et al. [27] found that site means of variables

related to tooth count and tooth size also inversely relate to MAT.

Additionally, Royer et al. [27] observed that the site mean of tooth

area/leaf perimeter inversely correlates with leaf mass per area,

thus opening the possibility for reconstructing leaf mass per area

from fossils. The preponderance of teeth in colder climates is

probably an adaptation to boost whole-plant carbon assimilation

early in the growing season via the delivery of nutrients from

enhanced sap flow [28] (see also refs. [29,30]) and/or to prevent

freeze-thaw embolisms via guttation [31]. Despite these advances

towards clarifying the functional basis of leaf teeth, as well as their

underlying genetic control [32–36], it is not clear how important

phenotypic plasticity is for explaining many of the leaf-environment

relationships observed by Huff et al. [26] and Royer et al. [27].

Royer et al. [27] also found that leaf dissection (e.g., perimeter:

area ratio) inversely scales with MAT. A traditional explanation

PLoS ONE | www.plosone.org 1 October 2009 | Volume 4 | Issue 10 | e7653



for this linkage, but in the opposite direction from the observations

of Royer et al. [27], is that highly dissected leaves more efficiently

shed heat [37]. Alternatively, highly dissected leaves (and including

highly toothed leaves) can have high rates of transpiration [38,39],

which may be functionally linked to cold temperatures in the

manner described in the previous paragraph. Some studies have

investigated the phenotypic plasticity of leaf dissection. Gurevitch

[40] discerned both a genetic and plastic component in the

responses of leaf dissection to altitude in the herb Achillea

millefolium. Similarly, phenotypic plasticity can partly explain the

positive relationships that link nutrient availability to lobing in the

tree Crataegus monogyna [41] and to leaf dissection in the aquatic

herb Sagittaria latifolia [42]. Sack et al. [7] also reported a plastic

component in the responses of leaf dissection to irradiance in three

of six tree species; in contrast, Semchenko and Zobel [43]

observed no plastic component in the responses of leaf lobation to

irradiance in the herb Serratula tinctoria. Importantly, none of the

above studies directly addressed temperature, a critical shortcom-

ing for the paleobotanical community because aspects of leaf

dissection are useful, along with other size and shape variables, for

reconstructing climate [27].

As a first step towards investigating temperature in this context,

Royer et al. [44] measured traits related to tooth count, tooth size,

and leaf dissection in mature, native stands of two species with

broad MAT ranges (Acer rubrum and Quercus kelloggii). Few

correlations with MAT were found within Q. kelloggii, but within

A. rubrum there were strong correlations that mirrored the across-

species site-level patterns of Royer et al. [27]: plants growing in

colder climates tend to have leaves that are more highly dissected

and contain more teeth. Royer et al. [44] thus demonstrated that

the leaf-climate relationships observed across species are also

present within some (but not all) species. While the more limited

genetic variability within species (compared to across species)

suggests a role for plasticity in explaining these leaf-climate

relationships, Royer et al. [44] could not exclude the possible

influence of genetic differences across climatically-zoned ecotypes.

Here, in an attempt to quantify directly how plasticity affects the

responses of leaf teeth and leaf dissection to MAT, we measured

the leaf shape of A. rubrum saplings that came from four

climatically-distinct seed sources (MAT = 8.9220.0uC) and were

grown in two common gardens with contrasting MAT (9.8 and

20.0uC). Our goal was not to erect transfer functions for

reconstructing climate from single species, but to use A. rubrum

as a model species for exploring the relative influences of

phenotypic plasticity and genotype on leaf shape variables that

are pertinent for paleobotanists.

Materials and Methods

Seed sources and common gardens
Seed collection sites for Acer rubrum L. span an 11.1uC

temperature gradient across the eastern U.S. and Canada (Fig. 1,

Table 1). A. rubrum L. var. rubrum is present at the Ontario and

Pennsylvania sites, while A. rubrum L. var. trilobum Torr. & A. Gray

ex K. Koch is present at the two southern sites. These varieties are

distinguished largely by morphology: A. rubrum var. rubrum produces

more highly dissected leaves with more prominent teeth [45,46].

Seeds were gathered from natural forests, rather than in plantations

or yards where they may have a non-local origin. At each seed

collection site, .10 seeds were collected from underneath each of

.20 trees dispersed over 4 to 8 ha. Seeds were vernalized, planted

in pots containing standard planting medium, and germinated in

greenhouses near each garden in Spring 2006 prior to being

transplanted to the gardens in July 2006.

The two common gardens are in Rhode Island and Florida

(Fig. 1). Both gardens are arranged in a grid pattern, with a

2.562.5 m spacing between plants; this spacing minimizes

competition for above- and belowground resources, and facilitates

site management in terms of mowing and weeding. Both gardens

are on nearly level ground and are protected by deer fencing. A.

rubrum shares space in the gardens with five other species not

considered in the present study (Liriodendron tulipifera, Quercus alba,

Q. montana, Q. phellos, Q. rubra). Plant assignments within the

common gardens were random to control for microsite differences.

The Rhode Island garden occupies 1.6 ha of the Greene H.

Gardner Crop Research Farm on the campus of the University of

Rhode Island (41.40uN, 71.48uW, elevation = 22 m; MAT = 9.8uC;

MAP = 1316 mm). Soils are Bridgehampton silt loam (Typic

Dystrudept), a well-drained to moderately well-drained soil on

glacial outwash plains and terraces. The garden is bordered on all

sides by agricultural fields. Creeping red fescue (Festuca rubra) was

planted as a ground cover to suppress weed growth. Irrigation was

provided by an automated drip-line system with 0.6 m spacing.

The Florida garden is at the Tall Timbers Research Station

near Tallahassee (30.65uN, 84.18uW; elevation = 30 m; MAT

= 20.0uC; MAP = 1606 mm). The 2.5 ha garden is located in the

middle of a 5 ha field that had been maintained with annual

harrowing for purposes of wildlife management. The soil is

Figure 1. Map of seed collection sites (circles) and common
gardens (large squares). ON = Burlington, Ontario; PA = Erie, Penn-
sylvania; RI = University of Rhode Island; SC = Savannah River, South
Carolina; FL = Tall Timbers Research Station, Florida. Maps generated
using GMT software (http://www.aquarius.ifm-geomar.de; Lambert
azimuthal equal-area projection). Bar = 100 km.
doi:10.1371/journal.pone.0007653.g001
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somewhat poorly drained Albany loamy sand (Grossarenic

Paleudult). Plants were watered regularly using a pumper truck,

but in general they experienced more drought than plants in the

Rhode Island garden, despite growing in a more poorly-drained

soil. This drought factor partly explains the higher mortality of A.

rubrum in Florida (74 vs. 29 % in Florida and Rhode Island

gardens, respectively), but it probably does not affect our

interpretations because water availability does not significantly

impact variables related to tooth count, tooth size, and leaf

dissection in A. rubrum [44].

Leaf sampling and image analysis
Fully-expanded leaves were sampled at both gardens in October

2008. Plants thus experienced over two years of growth in their

respective gardens. Across both gardens, 157 plants were sampled;

for each seed source, 21–38 plants were sampled in the Rhode

Island garden and, due to higher mortality, 3–15 in the Florida

garden (Table 1). Because of the small stature (,2 m) and wide

spacing (2.5 m) of the plants, all leaves are sun morphotypes.

Leaves were dried, pressed, and photographed against a black

velvet background (326462448 pixel resolution). Two leaves per

plant were usually analyzed, although up to five leaves were used

when there were ,10 plants for a seed source 6 garden

combination. Leaves were prepared for image analysis in Photoshop

10.0 (Adobe Systems, San Jose, CA, USA) following the protocols of

Huff et al. [26] and Royer et al. [27]. In short, petioles are removed

and any minor defects along the leaf margin are repaired using the

line and eraser tools (e.g., Fig. 2A). After duplicating the prepared

leaf, its teeth are detached; typically, this is done with a straight line

between the bounding sinuses of each tooth (see ref. [27] for

exceptions). When completed, there are two versions of the leaf: the

complete leaf (with detached petiole) and the leaf with its teeth

detached. Next, leaf size and shape variables that are mechanisti-

cally linked to MAT [28,31] (see Introduction) are measured or

calculated using Image-J (http://rsb.info.nih.gov/ij/). These vari-

ables can be grouped into three categories: leaf dissection (shape

factor [4p6leaf area/perimeter2], compactness [perimeter2/area],

perimeter ratio [perimeter/internal perimeter, where internal

perimeter is the perimeter after the detachment of teeth]), tooth

count (number of teeth, number of teeth/leaf perimeter, number of

teeth/leaf area), and tooth size (tooth area, average area of a single

tooth, tooth area/leaf perimeter, tooth area/leaf area). These are

the same variables used by Huff et al. [26] and Royer et al. [27,44].

For reference, highly dissected leaves have a low shape factor and a

high compactness and perimeter ratio. All measured leaf variables

are provided in Table S1 and leaf images are available by request

from D.L.R.

Statistics
Two-way analysis of variance (ANOVA) was used to test the

influence of growth site and seed source on each leaf size and

shape variable. Number of plants (n = 157) was the unit of

replication for these tests. All size and shape variables are

homoscedastic (Levene’s Test of Equality of Error Variances;

P.0.05) and normally distributed (one-sample Kolmogorov-

Smirnov Test; P.0.05) after log-transforming five of the variables

(compactness, number of teeth, number of teeth/leaf area, tooth

area, and average area of a single tooth).

Table 1. Summary of seed collection sites used in study.

Site name Location Elevation (m) MAT (uC) MAP (mm) n (RI) n (FL)

Burlington, Ontario 43.32uN, 79.88uW 150 8.9 879 21 3

Erie, Pennsylvania 42.12uN, 80.08uW 200 10.0 1086 33 5

Savannah River, South Carolina 33.45uN, 81.85uW 120 17.3 1132 38 13

Tall Timbers Research Station, Florida 30.65uN, 84.18uW 30 20.0 1606 29 15

Note.—MAT = mean annual temperature; MAP = mean annual precipitation; n (RI) = number of plants measured in Rhode Island garden; n (FL) = number of plants
measured in Florida garden; climate data from stations with long-term records (.25 years; U.S. stations: U.S. National Climatic Data Center, http://www.ncdc.noaa.gov/
oa/ncdc.html; Canadian station: Canadian Climate Data and Information Archive, http://www.climate.weatheroffice.ec.gc.ca/).
doi:10.1371/journal.pone.0007653.t001

Figure 2. Representative leaves of Acer rubrum used in study. Leaf derived from Ontario seed stock grown in (A) Rhode Island and (B) Florida;
leaf derived from Florida seed stock grown in (C) Rhode Island and (D) Florida. For all leaves, petioles have been removed and minor damage along
the margin has been corrected with white lines. Bar (for all leaves) = 1 cm.
doi:10.1371/journal.pone.0007653.g002
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Separately, the partial r2-statistic from a multiple linear

regression model was used to calculate the proportion of leaf size

and shape variation within A. rubrum that can be explained by

growth site and by seed source. For these models, the MATs of the

growth site and seed source were the two independent variables

and a leaf size or shape variable was the dependent variable.

Growth site6seed source combinations was the unit of replication

(n = 8). Multiple linear regression was used because correlations

between MAT and leaf size and shape tend to be linear [27,44]

(see also Results).

Results

There are many strong differences in leaf shape between the two

gardens and among the four seed sources. In general, plants

growing in the colder Rhode Island garden and seeds native to

colder climates produce leaves that have more teeth (Figs. 2, 3D–

F) and are more highly dissected (Figs. 2, 3A–C; low shape factor,

high compactness and perimeter ratio). When growth site and seed

source are scrutinized independently from one another using two-

way analysis of variance, the influence of both factors on tooth

count and leaf dissection remain statistically significant (Table 2).

Importantly, there are no statistically-significant (a= 0.05) inter-

actions between growth site and seed source except for average

area of a single tooth (P = 0.006; Table 2).

Leaf size can affect the number of teeth, although in our data set

leaf area does not vary significantly between growth sites or among

seed sources (Fig. 3G; Table 2). Nonetheless, after taking leaf size

into account, the influence of seed source and growth site on tooth

count remains statistically significant (‘number of teeth/leaf peri’

and ‘number of teeth/leaf area’; Figs. 3E–F; Table 2). Of the total

measured variance in the statistically-significant leaf-shape vari-

ables in Table 2, growth site alone explains 6–19 % of the variance

while seed source explains 65–87% (Table 3).

In contrast to tooth count and leaf dissection, growth site does

not significantly influence any variables related to tooth size

(Fig. 3H–K; Table 2). Similarly, seed source does not significantly

influence tooth area or tooth area/leaf area, but the average area

of a single tooth and tooth area/leaf perimeter are more likely to

be larger in plants with a warmer seed source (Fig. 3H–K; Table 2).

Discussion

After two years of growth, site of growth has an impact on the

leaf shape of A. rubrum that is independent of genetic stock. In

short, plants growing in the colder Rhode Island garden produce

leaves that have more teeth and are more highly dissected than

genetically-similar plants grown in Florida (Figs. 2, 3A–F; Table 2);

moreover, these patterns mostly hold regardless of seed source

(Table 2). These results reveal an important source of phenotypic

plasticity within A. rubrum that covaries with MAT in a predictable

manner. The patterns are also consistent with studies that find a

functional link between leaf teeth and cold climates [28,31] (see

Introduction). Regression analyses indicate that phenotypic

plasticity, as represented by growth site, can explain 5–19% of

the variance observed for variables related to tooth count and leaf

dissection (Table 3). Given that two years of growth may be too

short to generate a full response of phenotypic plasticity to a one-

step change in environment, these values in our opinion represent

minima.

An even larger share of the variance in tooth count and leaf

dissection variables can be explained by seed source (69–87%;

Table 3), with plants from colder seed sources producing more

highly dissected leaves with more, but smaller teeth (Table 2). This

variance likely reflects differences among genetically-distinct A.

rubrum populations. Thus, we detect both plastic and genetic

responses to climate for leaf traits related to tooth count and

degree of dissection. In combination with Royer et al. (2008), who

observed continuous gradients in leaf shape across MAT and

different ecotypes (e.g., Fig. 4), our results suggest that the shape

differences used to discriminate between A. rubrum var. rubrum

(Pennsylvania and Ontario seed stock) and A. rubrum var. trilobum

(Florida and South Carolina seed stock) can be partly explained by

phenotypic plasticity. The magnitudes of the plastic responses

across different seed sources are broadly similar, although they

tend to be weakest in plants from the South Carolina seed stock

(Fig. 3), signaling a possible genetic gradient in plasticity. However,

across our whole sample, there are no statistically significant

interactions between growth site and seed source for our size and

shape variables with the exception of average area of a single

tooth.

The leaf-climate relationships observed here largely match that

of Royer et al. [44] (e.g., Fig. 4), who measured the responses of

leaf size and shape to MAT in mature A. rubrum populations along

the U.S. east coast (from northern Vermont to southern Florida).

Royer et al. [44] found that plants native to colder climates have

more dissected leaves with more, but smaller teeth; moreover, they

found no significant relationship between MAT and tooth area/

leaf area. The congruence in patterns between these two studies

suggests that potential confounding factors in the current study

(e.g., differences in water availability between gardens, using

saplings instead of mature plants) were probably not significant.

The biggest contrast between the studies is leaf area: we find no

correlation between leaf area and MAT, while Royer et al. [44]

observed a significant negative relationship (r2 = 0.38; P,0.001;

n = 77; least-squares linear regression). It is not clear what

underlies this difference: if inadequate access to water were

important at the Florida site, one would expect smaller leaves

[12,13,15,16]. However, in both studies, tooth area strongly tracks

leaf area (e.g., Fig. 3G–H); after taking into account leaf size, the

impact of MAT on tooth size is minimal in both studies (‘tooth

area/leaf peri’ and ‘tooth area/leaf area’; Figs. 3J–K; Table 2)

[44]. The similarity across studies in these latter responses also

speaks to a general and consistent relationship between leaf teeth

and climate in A. rubrum. The lack of a strong plastic component in

the tooth area responses suggests that tooth size variables may

respond more slowly to periods of rapid temperature change; this

caveat should be considered when interpreting paleotemperature

estimates based on such variables.

Concluding remarks
Our study demonstrates that variables related to leaf dissection

and tooth number in A. rubrum respond plastically to their

environment. Our results are consistent with other studies that find

both plastic and genetic responses to environmental change in

other leaf traits such as photosynthetic performance and leaf mass

per area (see Introduction). Together, these studies indicate that

leaf traits in many species can respond quickly to environmental

change.

This is welcome news for paleobotanists who measure leaf traits in

fossils as proxies for paleoclimate and paleoecology; in particular, leaf

teeth are central to several paleoenvironment proxies [16,24,27].

Our results thus support the tacit assumption that fossil leaf traits

faithfully reflect the environmental conditions at the time of

deposition, and increase the confidence in paleoclimate reconstruc-

tions based on leaf size and shape. However, it is important to

acknowledge that plasticity is but one process that determines the

distribution of leaf traits at a fossil locality; other processes, which all

operate on slower timescales, may include evolutionary changes

Plasticity of Leaf Shape
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within populations and the dispersal of ecotypes and species. Also,

single localities in different depositional settings may contain fossils

deposited over varying intervals of time, ranging from instantaneous

to 102–103 years [47]. Thus, the importance of plasticity at a given

fossil locality may be subordinate to these other factors; indeed, in

our more limited extant study, plasticity accounts for 5–19 % of trait

variation, although this is probably an underestimate (see earlier

discussion). In addition, it is not known how other environmental

factors that may have varied greatly over geological timescales such

as atmospheric CO2 [48,49] and UV-intensity impact our measured

traits. Nevertheless, the recognition that leaf teeth respond plastically

to MAT in a predictable fashion increases confidence that individual

fossil localities render accurate, temporally-resolved snapshots of

paleoenvironments.

Figure 3. Leaf size and shape of Acer rubrum. Plants come from four different seed stocks and were grown in two gardens with contrasting
climates. Variables are clustered into three groups: (A–C) leaf dissection; (D–F) tooth number, and (G–K) leaf and tooth size. ON, Ontario; PA,
Pennsylvania; SC, South Carolina; FL, Florida; RI, Rhode Island; peri, perimeter. See Table 1, Figs. 1, and Materials and Methods for details about seed
collection sites and gardens. Differences between gardens reflect phenotypic plasticity, while differences among seed stock probably mostly reflect
genetic differences among ecotypes. Standard errors are plotted.
doi:10.1371/journal.pone.0007653.g003
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Supporting Information

Table S1 Size and shape data for all leaves used in study

Found at: doi:10.1371/journal.pone.0007653.s001 (0.02 MB

TXT)
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Note.—Variables are grouped by relatedness to leaf dissection, tooth number, or leaf and tooth size. Two-way analysis of variance (ANOVA) used for all tests; ‘growth site’
and ‘seed source’ test for no differences in a leaf variable between the two sites of growth and among plants with different seed sources, respectively; ‘growth6seed’ tests
for no differences in a leaf variable due to the interaction between growth site and seed source; outcomes indicating significant differences (P,0.05) are in bold.
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Table 3. Proportion of leaf size and shape variation within
Acer rubrum that can be explained by growth site (phenotypic
plasticity) and seed source (ecotypic variation).
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Tooth area/leaf perimeter (cm) 0.06 0.72

Tooth area/leaf area 0.73 0.11

Note.— Variables are grouped by relatedness to leaf dissection, tooth number,
or leaf and tooth size. Results for each leaf size and shape variable are based on
a multiple linear regression model (see Materials and Methods for details); r2-
statistic reflects the individual (partial) contribution of growth site or seed
source; r2 of the full model is the sum of the two partials. For convenience,
significant effects from Table 2 (P,0.05) are in bold.
doi:10.1371/journal.pone.0007653.t003

Figure 4. Sensitivity of number of teeth/leaf perimeter to mean
annual temperature in Acer rubrum. RI = Rhode Island; FL = Florida.
See Fig. 1 and Materials and Methods for details about gardens.
Differences within a single seed source reflects plasticity within a
genotype; differences within a single garden, and within the Royer et al.
[44] data set, probably mostly reflect genetic differences among
ecotypes. Garden data are identical to Fig. 3E.
doi:10.1371/journal.pone.0007653.g004
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