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Abstract

Ciliopathies presenting as inherited hepatorenal fibrocystic disorders are rare in humans

and in dogs. We describe here a novel lethal ciliopathy in Norwich Terrier puppies that was

diagnosed at necropsy and characterized as diffuse cystic renal disease and hepatic fibro-

sis. The histopathological findings were typical for cystic renal dysplasia in which the cysts

were located in the straight portion of the proximal tubule, and thin descending and ascend-

ing limbs of Henle’s loop. The pedigree of the affected puppies was suggestive of an autoso-

mal recessive inheritance and therefore, whole exome sequencing and homozygosity

mapping were used for identification of the causative variant. The analyses revealed a case-

specific homozygous splice donor site variant in a cilia related gene, INPP5E: c.1572

+5G>A. Association of the variant with the defect was validated in a large cohort of Norwich

Terriers with 3 cases and 480 controls, the carrier frequency being 6%. We observed that

the identified variant introduces a novel splice site in INPP5E causing a frameshift and for-

mation of a premature stop codon. In conclusion, our results suggest that the INPP5E:

c.1572+5G>A variant is causal for the ciliopathy in Norwich Terriers. Therefore, genetic test-

ing can be carried out in the future for the eradication of the disease from the breed.

Introduction

Hepatorenal fibrocystic disorders (HRFCDs) are characterized by developmental portobiliary

and renal fibrocystic abnormalities such as polycystic kidneys and congenital hepatic fibrosis.

HRFCDs belong to a larger group of diseases called ciliopathies that are caused by structural or

functional defects in the primary cilium. Ciliopathies are an expanding group of diseases that

are clinically and genetically very heterogeneous and can manifest as a congenital developmen-

tal syndrome or as progressive single organ dysfunction. Autosomal recessive and dominant
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polycystic kidney diseases (ARPKD and ADPKD respectively) are the most common forms of

HRFCDs in humans. Kidney and liver lesions also variably occur in other syndromic ciliopa-

thies like Joubert, Meckel, Bardet-Biedl and Jeune syndrome [1].

To date pathogenic variants in two genes for ARPKD (OMIM #264200) and ADPKD

(OMIM #173900), 33 in Joubert syndrome (OMIM #213300), 13 in Meckel syndrome (OMIM

#249000), 21 in Bardet-Biedl (OMIM #209900) and 19 genes in Jeune syndrome (OMIM %

208500) are reported in OMIM [2]. In these disease groups, the syndromic phenotype and the

name of the disease can be caused by differing functional variants in a same gene.

In ciliopathies, the variants are located in genes that encode proteins associated with the

structure or function of the primary cilium, an antenna like structure, which is present at the

cell surface of almost all vertebral cell types. Primary cilia are composed of a 9+0 microtubule

axoneme, which is anchored to the basal body and covered by a membrane that is a continuum

of the plasma membrane [3]. The importance of this structure has become evident as increas-

ing amount of data on its role in cellular signaling pathways and function as a sensor of extra-

cellular environment have become available. Normal ciliary function is also crucial for

organogenesis and developmental defects caused by various functional abnormalities can

range from severe congenital syndromes to progressive disorders [4].

The rapid advances in sequencing technologies have been crucial in the acceleration of dis-

ease causing variant discovery and concomitant genetically overlapping phenotypes in ciliopa-

thies have been revealed. These new technologies have also accelerated the unraveling of

pathobiology and genetic background of naturally occurring inherited diseases in mammals,

where dogs have become an important source in biomedical research [5–7]. HRFCDs have

previously been reported only in two dog breeds. Polycystic kidneys with ductal plate malfor-

mations have been diagnosed in two litters of West Highland White (WHW) Terriers by the

same dogs [8] and in two closely related Cairn Terrier litters [9]. In this study, we describe the

pathology and genetic background of a congenital HRFCD in Norwich Terriers with a more

severe phenotype than the previously reported cases in dogs.

Results

Pathology reveals diffuse cystic renal dysplasia and hepatic fibrosis

Complete necropsy was performed on the three affected puppies. The abdomen was distended

due to markedly enlarged kidneys. The normal reniform shape of the kidneys was somewhat

retained but the kidneys were diffusely cystic. The demarcation between the cortex and

medulla was not evident, the calyces were poorly formed and the renal pelvis was poorly

defined (Fig 1A). The cysts were small and fairly even in size and varying between 0.5–1.5 mm

in diameter. The lower urinary tract was normal in all affected puppies. There was marked var-

iable subcutaneous edema, hydrothorax and ascites. The lungs were hypoplastic in all three

puppies. There were additional variable macroscopical malformations in each puppy including

cleft palate (cases 1 and 3), diaphragmatic eventration (case 2) and diaphragmatic hernia (case

3). There were no macroscopic findings in the liver.

In the histological examination, the renal parenchyma was largely replaced by cystic struc-

tures (Fig 1B). The cortex appeared thin and contained immature glomeruli and normal

appearing convoluted proximal tubules, distal tubules and collecting ducts. Occasional collect-

ing duct was mildly dilated. In addition, there were a few dysplastic glomeruli surrounded by

markedly dilated Bowman’s space. There was no clear demarcation between the cortex and

medulla nor between the inner and outer medulla and the medullary rays were not visible. The

medulla was composed of markedly dilated tubules lined by cuboidal epithelium in the outer

medulla and by flatted epithelium in the inner medulla. Some of the tubules contained
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hyperplastic epithelium. Between the dilated tubules, there was increased amount of loose

connective tissue (mesenchyme) that contained scattered capillaries. The capillary network

appeared poorly developed.

Fig 1. Macroscopic and histological changes of the affected kidneys. (A) Photograph of the cross-section of an

affected kidney. Cortex and medulla are poorly demarcated and the parenchyma is nearly diffusely cystic. (B) Masson

trichrome stain. There are immature glomeruli (black arrowheads) and normal appearing tubules in the cortex. The

demarcation between the cortex and medulla is poorly defined. The tubules in the medulla are dilated and there is

increased amount of loose connective tissue (black star) between the cystic tubules (4X). (C) IHC staining for AQP-1

as a marker for epithelial cells (red) of the convoluted and straight part of the proximal tubule and the thin descending

limb of Henle’s loop. The convoluted portions of proximal tubules appeared morphologically normal. In the upper

part of the cysts, the epithelium was positively stained indicating their origin as the straight portion of the proximal

tubule and thin descending limb of Henle’s loop. The lower part of the cysts was not stained (10X). (D) IHC staining

for AQP-2 as a marker for epithelial cells (red) of the collecting ducts. The collecting ducts were mainly normal. There

were a few slightly dilated collecting ducts in the cortex (10X). (E) IHC staining for calbindin-D28K as a marker for

epithelial cells (red) of the distal convoluted tubule. The distal convoluted tubules were morphologically normal (10X).

(F) IHC double staining for α-SMA for mesenchymal cells (red) and vWF for endothelial cells (blue). The connective

tissue (black star) contains scattered capillaries (black arrowheads). Only a very few capillaries are in close proximity to

the tubules (20X).

https://doi.org/10.1371/journal.pone.0204073.g001
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The lobular structure of the liver was normal but the portal areas were expanded and con-

tained numerous bile ducts surrounded by connective tissue. In some portal tracts, the bile

ducts were arranged circumferentially. There was no bile stasis. The findings were typical for

ductal plate malformation and consistent with congenital hepatic fibrosis.

Immunohistochemistry of the kidneys further characterizes the novel

diffuse cystic dysplasia

In order to identify the affected parts of the nephron, a panel of antibodies specific for the dif-

ferent segments was used for immunohistochemical (IHC) staining of the kidneys. In renal

diseases with severe morphological changes, it is often difficult to discern where exactly in the

nephron the lesions are located without the help of immunohistochemistry. As controls for the

IHC stainings, morphologically normal kidneys from adult dogs (n = 2) and puppies under 8

weeks old (n = 2) were used.

In the adult dogs, the staining for anti-aquaporin-1 (AQP-1, localization in the proximal

convoluted tubule (PCT) and straight portion of proximal tubule), anti-aquaporin-2 (AQP-2,

localization in the collecting ducts), anti-Tamm-Horsfall (TH, localization in the thick ascend-

ing limb of the loop of Henle and straight portion of distal tubule) and anti-calbindin- D28K

(CalD, localization in the distal convoluted tubule (DCT)) was identical to that reported previ-

ously [10, 11], however, the anti-α-glutathione-S-transferase (GSTA1) antibodies stained the

epithelium of the straight part of proximal tubules only in one of the adult dogs and anti- KIT

proto-oncogene tyrosine-protein kinase (CD117) did not stain renal cells in any of the dogs.

This variability of GSTA1 expression in dogs was expected, as individual and breed differences

have been previously reported [10, 11]. Also in humans, glutathione S-transferaces (GSTs) are

highly polymorphic and have variable functional expression in different ethnic populations

[12]. To our knowledge, anti-θ-glutathione-S-transferase (GSTT1) antibody has not been pre-

viously utilized as a renal marker in dogs. In the adult dogs, GSTT1-antibodies stained posi-

tively the epithelium of the small tubules located in inner and outer medulla, and these tubules

were identified as the thin segment of Henle´s loops. CD117, anti-von Willebrand factor

(vWF) and anti-cluster of differentiation 31 (CD31) antibodies were utilized for the identifica-

tion of blood vessels. In the adult dogs, positive staining with CD117 was present along the

capillary lumen in the inner medulla and the endothelial cells in the capillary network and the

larger blood vessels were positive for vWF and CD31. The anti- α –smooth muscle actin (α-

SMA) antibodies (for identification of connective tissue) stained positively the connective tis-

sue in the portal tracts in liver and in the medulla of the kidneys as well as the wall of blood

vessels.

In the 8-weeks-old control puppies the staining with AQP-1-, AQP-2-, TH-, CalD-, vWF-,

CD31- and α-SMA-antibodies was similar to the adult kidneys, but CD117-, GSTA1-, and

GSTT1-antibodies did not stain any cells of the nephron segments. The observed negative

staining of GSTs in this age group could also be due to genetic as well as age-related differences

in the canine kidney, or the expression level may be too low in young animals to be detected

by immunohistochemistry [13]. Overall, the variability in the expression of GSTs makes them

less useful as a marker for specific nephron segments.

In the affected puppies, the localization of the used antibodies was similar to the control

puppies except for CD31. AQP-1 positive epithelium was present in morphologically normal

tubules in the cortex (proximal convoluted tubules and some straight portions of proximal

tubules). Epithelium in the upper part of the large cysts stained positively for AQP-1 (Fig 1C).

The epithelium in the lower part of the large cysts did not stain with any of the used antibodies.

The epithelium of normal and occasionally dilated collecting ducts in the cortex were positive
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for AQP-2 (Fig 1D). CalD and TH stained positively the epithelium of normal appearing distal

convoluted tubules and straight portion of distal tubules, respectively (Fig 1E). The endothe-

lium of capillaries and larger blood vessels stained positively with vWF whereas CD31 staining

was negative in the affected puppies. There were only a few capillaries around the tubules and

ducts confirming the histological finding of poorly developed capillary network. In the inner

medulla, the capillaries were surrounded by α-SMA positive excessive loose connective tissue

and very few capillaries were in close proximity to the tubules (Fig 1F).

In the affected puppies the staining, localization and morphology of the cysts are compati-

ble with the straight portion of the proximal tubule, and thin descending and ascending limbs

of Henle’s loop. The findings in the affected Norwich Terriers are typical for diffuse cystic

dysplasia.

Exome sequencing and homozygosity mapping revealed a variant in INPP5E
The three affected puppies were from three litters with a common ancestor (Fig 2). Therefore,

the disease was suspected to be inherited with an autosomal recessive manner. Whole exome

Fig 2. Pedigree of the affected Norwich Terrier puppies. The pedigree is suggestive of an autosomal recessive

inheritance. The INPP5E genotyped dogs are denoted as affected A/A (black symbol), heterozygous G/A (half black

symbol), wild-type G/G (white symbol) and gray symbol denotes the dogs that were not available for testing. Closest

common ancestor to the affected puppies is surrounded with a blue square.

https://doi.org/10.1371/journal.pone.0204073.g002
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sequencing (WES) was used for the identification of variants in HRFCD affected Norwich Ter-

rier puppies. Two affected puppies, two obligate carriers and three non-affected unrelated

Norwich Terrier control samples were sequenced yielding in average 72.6 million reads with

36X coverage. On average 96.8% of the total number of reads of each sample mapped to the

reference genome CanFam3.1. The variant calling resulted in 214691 variants in total with

181233 SNVs and 31981 insertions and deletions across the samples (S1 Table). The variants

were further analyzed by filtering according to a recessive model. This filtering yielded alto-

gether 956 homozygous variants in the affected puppies. Since the number of remaining vari-

ants was considerably high, we decided to analyze the runs of homozygosity (ROH) in the

affected animals. We performed genome-wide genotyping using Illumina´s Canine HD SNP

arrays for two affected puppies, one non-affected full sibling and four close relatives and ana-

lyzed the case-specific ROH’s. This yielded nine ROH loci with more than 200 consecutive

homozygous SNPs (S2 Table). The Ensembl Variant Effect Predictor (VEP) [14] was next used

to predict the effects of homozygous variants within ROH regions and eight missense and

eight splice-region variants in eleven different genes were identified (S4 Table). Fifteen of

these variants were previously known (gene specific variant table [15]) and therefore excluded.

The only remaining variant, chr9 g.49069064G>A, was at the 5´splice donor site of intron 9 in

inositol polyphosphate-5-phosphatase E, INPP5E:c.1572+5G>A (Fig 3.) The hypothesis that

this gene variant is the causative variant of HRFCD is supported by the known functional role

of INPP5E in primary cilia and the malfunction of INPP5E results in ciliopathies.

The INPP5E variant is rare in the Finnish Norwich Terrier population

The presence of the INPP5E c.1572+5G>A homozygous variant in the three affected puppies

was confirmed by Sanger sequencing. For further validation, we genotyped the variant in a

cohort of 480 Finnish Norwich Terriers. No other homozygous dogs were found in this cohort

while 29 of the analyzed dogs were heterozygous and the association of the variant to the dis-

ease was significant (p = 8,377 x 10−37). The carrier frequency was 6% (29 / 483) and all carrier

dogs were close relatives to the affected puppies (Fig 2). In addition, the variant was investi-

gated in 200 dogs from 69 breeds and 3 wolves using publicly available whole genome sequenc-

ing data (S3 Table). The variant was not observed in any of the samples.

INPP5E expression is altered in affected animals

Since INPP5E:c.1572+5G>A resides in a splice site, we investigated the effect on gene expres-

sion and possible functional change in the protein sequence (Fig 4A). The assessment of

INPP5E expression by RT-PCR demonstrated a shorter mRNA product in affected puppies

compared to controls (Fig 4B). Sequencing of the product revealed that the INPP5E:c.1572

+5G>A variant in the 5´splice donor site of intron 9 caused a shift in the reading frame of

INPP5E and activated a novel splice donor site within exon 9 deleting 50 bp from the 3´ end of

exon 9 and introducing a premature stop codon (Fig 4A, S1 Text). If the abnormal transcript is

translated, the protein product is predicted to be 594 aa (normal protein 613 aa) out of which

the last 85 aa have an aberrant amino acid sequence (S2 Text). Subsequently, we performed

Western blotting to examine the expression of the protein product. The INPP5E antibody we

used targets the 530–603 amino acids of dog INPP5E, however, the predicted truncated pro-

tein contains only the first 509 amino acids of the canonical sequence. Although our Western

blotting clearly demonstrates that the full-length form (72 kDa) of the INPP5E protein is not

present in the affected puppies, shorter forms may be expressed. The used antibody binds

amino acids 530–603 and therefore only shows the lack of the C-terminal part of the protein in
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the affected kidney (Fig 4C). This result supports the assumption that the premature stop

codon disrupts the translation of the INPP5E protein in HRFCD affected puppies.

Ciliogenesis in the kidney epithelial cells appears to be affected by the

splice site variant INPP5E:c1572+5G>A

For the characterization of the possible morphological changes caused by the INPP5E: c.1572+

5G>A variant in the cilia of kidney tubular epithelial cells, we used immunofluorescence (α-tubu-

lin) and confocal microscopy on FFPE kidney tissue of affected (n = 2) and control (n = 2) pup-

pies. In the control puppies, the cilia appeared to be even in length with a normal slender

morphology (Fig 5A) whereas in the affected puppies the detached tubular epithelium of the cysts

mostly lacked a primary cilium (Fig 5B). In the cyst lining epithelial cells that were still anchored

to the basement membrane, the cells lacked a cilium or the length varied (Fig 5C and 5D).

Discussion

The congenital syndrome that we have characterized in the Norwich Terrier is novel both in

its pathology and in its genetic background. The disease-associated variant in INPP5E has not

Fig 3. Regions of homozygosity in two affected puppies. ROH analysis revealed nine homozygous chromosomal

regions (red) of over 200 continuous SNPs. The variant in the position chr9:49,069,064, INPP5E:c.1572+5G>A is

indicated in blue.

https://doi.org/10.1371/journal.pone.0204073.g003
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been previously linked to this type of polycystic kidney disease, which is best described as dif-

fuse cystic dysplasia. In dogs, inherited polycystic kidneys are extremely rare and have previ-

ously been reported only in three other breeds. In Bull Terriers the disease macroscopically

resembles human ADPKD and the causal variant resides in the polycystin 1, transient receptor

potential channel interacting (PKD1) gene [1, 16, 17]. In the WHW Terrier there is mild bilat-

eral hydronephrosis without anatomical obstruction of the ureters and the renal parenchyma

contains multifocal cysts. In the Cairn Terrier, the kidneys are enlarged by cysts that radiate

through the cortex and medulla and the demarcation between cortex, corticomedulla and

medulla is retained [8, 9]. The kidneys of the affected Norwich Terrier puppies were diffusely

cystic without clear demarcation between cortical and medullary components. The unique

macroscopic appearance of the kidneys differs from all previously described polycystic kidneys

in dogs as well as humans and is explained by the location of the cyst in the proximal-mid sec-

tion of the nephron. The closest macroscopic resemblance is to the neonatal form of ARPKD

in humans, however, in this disorder the cysts are cylindrical because the cysts are in the col-

lecting ducts [1].

The cysts in the human ARPKD, as well as in WHW- and Cairn Terriers, have also a fusi-

form, cylindrical shape and they are perpendicular to the cortex and medulla and extend close

Fig 4. INPP5E mRNA and protein expression in the affected and control kidney tissue. (A) The variant causes a

frameshift in INPP5E and activates a novel splice site in exon 9 deleting 50 bp from the 3´ end of exon 9 (indicated

with orange box) and introducing a premature stop codon (B) A shorter mRNA product is produced in the affected

kidney compared to control. (C) No wild-type INPP5E protein was detected in the Western blot of the affected kidney.

α–tubulin was used as loading control.

https://doi.org/10.1371/journal.pone.0204073.g004
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to the renal capsule [1, 8, 9, 18, 19]. ARPKD in humans as well as the disease in WHW Terriers

affects the distal nephron and the cysts originate from the collecting ducts [8, 20]. In the Nor-

wich Terrier, the cysts are most prominent in the medulla with few smaller cysts present in the

cortex. Other distinguishing features in the Norwich Terrier are a poorly developed capillary

network around the tubules, hyperplasia of tubular epithelium and the presence of increased

amount of mesenchyme. Using the previously established [10, 11] IHC panel for specific neph-

ron segments of the dog kidney, we were able to identify the location of the cysts in the Nor-

wich puppies. The cysts originated from the straight portion of the proximal tubule and thin

descending and ascending limbs of Henle´s loop. In comparison, the cysts in human ADPKD

have variable origin and they have been shown to originate from both the proximal and distal

nephron as well as from collecting ducts. During fetal development in human ARPKD, a tran-

sient phase of cystic dilatation of the proximal tubules has been reported, while the majority of

the cysts were in the collecting ducts [20]. Similar finding of early phase of small, multifocal

and transient cysts in the proximal tubules has also been reported in murine models of the

Fig 5. Immunofluorescence of the cilia of kidney epithelial cells in the affected and control puppies. (A) Age

matched control kidney: Normal tubular epithelial cells with primary cilia. (B) Affected kidney, (case 1): Cyst lining

epithelial cells with only sporadic primary cilia at the apical cell membranes. (C) Affected kidney, (Case 2): the length

of the cilium varies from 2,97 to 9,25 μm in the tubular cyst lining epithelium. (D) Affected kidney, (case 2): Many of

the cyst lining epithelium cells lacked a primary cilium. The length of the sparse observed cilia varied from 3,83 to

16,7 μm in the epithelial cells that had retained the cilium. For C interstitial collagen (purple) was visualized with

nonlinear optical effect, second-harmonic generation (SHG). For A, B and D nucleus is shown with blue and in C with

red staining, μ-tubulin was used as a marker for primary cilium (green). Scale bar 20μm.

https://doi.org/10.1371/journal.pone.0204073.g005
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polycystic kidney disease [21, 22]. The dilation of the proximal tubular segments in these cases

may represent a developmental phenomenon or a transient consequence of the cystic process

affecting the collecting ducts [20]. The cystic dilatation limited to the proximal-mid portion of

the nephron in Norwich Terrier puppies differs from all previously described polycystic kidney

diseases.

It is possible that the severity of the disease in the affected Norwich Terrier puppies may be

explained by the localization of the cysts to the straight portion of the proximal tubule, and

thin descending and ascending limbs of Henle´s loop. In the proximal tubule, the electrolytes

and nutrients are reabsorbed from the urine, whereas the descending and ascending limbs of

Henle´s loop are responsible for creating the extracellular tonicity gradient and concentration

of the urine. The exact mechanisms involved in abnormal lung development in polycystic kid-

ney disease in utero are still not well understood. There are several postulations how this could

occur. One explanation is that the enlarged kidneys mechanistically compress the diaphragm,

reducing the thoracic space and in this way inhibit the normal development of the lungs [23].

Another postulation is that due to decreased urine production less amniotic fluid is produced

with less trophic factors that are needed for normal lung development [24]. It is possible that

both these mechanisms are involved in the severe cases of human ARPKD patients and

affected Norwich Terriers as research on the possible interaction of renal disease causing

genetic variants and lung development is still pending.

Ductal plate abnormalities in human HRFCDs are characterized by developmental porto-

biliary defects, most often as congenital hepatic fibrosis [25]. In the affected Norwich Terrier

puppies the histology of the liver was compatible to human cases of congenital hepatic fibrosis

as well as what has been reported in dogs as a single organ lesion [26, 27]. In human HRFCDs

as well as in our affected puppies, congenital hepatic fibrosis was subclinical at the time of pre-

sentation and debilitating disease was caused by renal insufficiency. Congenital hepatic fibrosis

typically causes clinical symptoms later in life both in humans as well as in dogs [27, 28].

We have found a novel disease-associated variant in the INPP5E gene in dog that encodes a

72 kDa protein which belongs to 5-phosphatase class of enzymes that are wildly expressed and

take part in the regulation of many cellular processes including embryonic development [29].

In cells, INPP5E localizes to the primary cilium where it is involved in maintaining the normal

ciliary membrane phosphoinositide content and distribution [30]. In humans, variants in

INPP5E are linked to recessively inherited ciliopathies, Joubert Syndrome 1 (JBTS1) and clini-

cally a very different syndrome Mental retardation, Truncal obesity, Retinal dystrophy and

Micropenis (MORM) [31, 32]. The hallmark lesions in JBTS1 are structural anomalies of the

brain i.e. the lack of decussation of the superior cerebellar peduncles that can be visualized as

the “molar tooth sign” in MRI imaging. The brains of the affected Norwich Terriers were mac-

roscopically normal, however, small changes in the cerebellar peduncles might have been

missed since the brains were routinely dissected perpendicularly to the cranio-caudal axis. The

canine cerebellum is located caudally to the cerebrum, which is in contrast to the human brain

where the cerebellum is ventral to the cerebrum, thus in MRI the “molar tooth sign” would not

be present in a dog. Ocular, renal and hepatic lesions in JBTS1 patients are less common [33,

34]. In an Inpp5e knockout mouse model, the mice died soon after birth with an extreme phe-

notype with multiple anomalies such as anencephaly or exencephaly, bilateral anophthalmos,

multiple kidney cysts, postaxial hexadactyly, bifid sternum and delayed ossification of metacar-

pals and phalanxes. In these mice, majority of the cysts (84%) were in the distal nephron while

14% were located in the proximal nephron. The cyst location was determined by IHC staining

for AQP1 and AQP2. There were no hepatic abnormalities in these mice [32].

In 2009, Bielas et al [31] showed that variants in INPP5E cause defects in the primary cilium

signaling and stability. The specialized ciliary membrane differs in composition from the cell
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membrane due to the presence of a diffusion barrier at the ciliary transition zone. INPP5E

maintains the specific distribution of phosphatidylinositol 4-phosphate (PtdIns(4)P) at the cili-

ary membrane and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) at the ciliary base

[30]. Hedgehog signaling is directed by INPP5E as it keeps PtdIns(4,5)P2 at normal low level

by limiting the signaling inhibitors tubby like protein 3 (TULP3) and G protein-coupled recep-

tor 161 (GPR161), which are localized to the cilium [35, 36]. In the absence of INPP5E the lev-

els of PtdIns(4,5)P2 and TULP3 with its binding molecules GPR161 and Intraflagellar

Transport Complex-A increase in the cilium. The buildup of these molecules restricts the nor-

mal ciliary transduction of Hedgehog signaling [30, 36] and the bulges in the ciliary shaft and

tip seen in the SEM and TEM of the renal cyst-lining epithelium of Inpp5e knockout mice [32]

may be changes relating to the buildup. In a recent study, Hardee et al [34] showed that JBTS1

patient fibroblasts with a missense INPP5E variant had fewer and shorter cilia compared to

controls. Furthermore, in recent reports [37, 38] the importance of INPP5E has been linked to

the initiation of ciliogenesis as well as the reversal of abnormal ciliogenesis by phosphatidyli-

nositol (3,4,5)-triphosphate (PtdIns(3,4,5)P3) inhibition in Inpp5e zebrafish morphants. Simi-

lar mechanism can be expected to be affected by the INPP5E variant in dogs. Our α-tubulin

immunofluorescence study on the kidney tissue of the affected puppies suggests a problem in

ciliogenesis and cilia length control. Unfortunately at the time of necropsy, we were unable to

obtain tissue samples for EM or fibroblasts for cell culture, thus the exact morphology of the

cilia remains elusive in the affected puppies.

Human INPP5E has an N-terminal proline rich domain, Class I and II SH3 binding sites,

inositol polyphosphate phosphatase catalytic domain (IPPc) and a C- terminal CAAX motif.

In JBTS1, nonsense and missense variants are clustered within or flanking the IPPc domain. In

MORM syndrome a variant causes the loss of a highly conserved CAAX motif [32, 33]. The

variant identified in our study resides in the IPPc domain of dog INPP5E similar to the human

JBTS1 patients, but splice site variants have not been reported in humans so far [33, 34]. The

phenotypic difference between humans and Norwich Terriers with INPP5E variants could be

due to the differences in the genetic background or depletion of different functional sites or

isoforms of the protein.

In this study, we have described the detailed pathology and genetic background of renal cys-

tic dysplasia and congenital hepatic fibrosis that cause neonatal mortality in Norwich Terriers.

The genetic and functional studies confirmed the INPP5E: c.1572+5G>A as a causal variant

for HRFCD in Norwich Terriers. The three cases and the heterozygous carriers belonged to an

isolated family of Finnish Norwich Terriers. The common ancestor that links this family to the

overall breed population in Finland could be traced back to 15 generations. To our knowledge,

this is the first report of a genetically defined syndromic ciliopathy in a dog breed that results

in neonatal mortality. The variant described here can be utilized as a preventive gene test when

breeding Norwich Terriers.

Materials and methods

Ethics statement

All tissue samples used in this study were collected at necropsy from animals that were volun-

tarily sent for pathological examination by the breeders. These animals had died or had been

humanely euthanized due to a disease. Blood samples from immediate family members of the

affected Norwich Terrier puppies were collected with the owners’ consent and with an ap-

proval by Regional State Administrative Agency for Southern Finland ESAVI/7248/04.10.07/

2014. Buccal swab samples from Norwich Terriers were voluntarily collected and submitted to

the study by their owners.
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Study cohort

The three affected puppies (cases 1, 2 and 3) were from three different but closely related lit-

ters. Cases 1 (male) and 2 (bitch) were delivered at term by cesarean section. They both failed

to thrive and died at two days of age. The delivery of case 3 (bitch) was normal and at term.

The puppy was born alive but died within minutes after birth due to severe respiratory failure.

A full necropsy was performed on the three affected puppies.

Tissue samples were collected from the three affected puppies during necropsy and blood

samples were obtained from their three parents and one grandparent for DNA extraction. We

collected buccal swab samples from 271 adult dogs and utilized previously collected tissue

samples from 209 necropsied Norwich Terrier puppies. These samples were utilized in the var-

iant segregation and allele frequency analysis in the Norwich Terrier population. Furthermore,

publicly available whole genome sequencing data from 200 dogs representing 69 breeds and

three wolves was utilized for the screening of the variant (S3 Table).

The Finnish Kennel Club´s pedigree registry KoiraNet [39] was used to obtain the pedigree

information and individual dog owners provided additional information that was missing in

this registry. GenoPro genealogy software [40] was used to establish a combined pedigree of

the affected puppies.

Tissue samples for histology

Samples from all major organs and macroscopically abnormal tissues were collected during

necropsy. For histology, samples were fixed in 10% buffered formalin, routinely processed and

embedded in paraffin. 4 μm sections were cut and stained with Hematoxylin and Eosin (HE).

Special stains Masson Trichrome (MTRI) for fibrosis and Hall´s stain for bile were used.

Immunohistochemistry

For immunohistochemistry, the following primary antibodies and dilutions were used. Anti-

aquaporin-1 (AQP-1) rabbit polyclonal antibody (Merck, AB2291) diluted at 1:1000; Anti-

aquaporin-2 (AQP-2) rabbit polyclonal antibody (Sigma-Aldrich, A7310) diluted at 1:500;

Anti-α-glutathione-S-transferase (GSTA1) rat polyclonal antibody diluted at 1:500 (Biorbyt,

orb157401) diluted at 1:100; Anti-θ-glutathione-S-transferase (GSTT1) rabbit polyclonal anti-

body (Thermo Fisher Scientific, PA5-43186) diluted at 1:1000; Anti-Tamm-Horsfall (TH) gly-

coprotein sheep polyclonal antibody (Merck, AB733) diluted at 1:250; Anti-calbindin-D28K

(CalD) mouse monoclonal (Sigma-Aldrich, SAB4200543) diluted at 1:1000; Anti-α-smooth

muscle actin (α-SMA) mouse monoclonal antibody (Sigma-Aldrich, A5228) diluted at 1:200;

Anti-CD31/PECAM-1 rabbit polyclonal antibody (Thermo Fisher Scientific, RB-10333-P1)

diluted at 1:25; Anti-CD117 rabbit polyclonal antibody (Dako, A4502) diluted at 1:100; and

Anti-von Willebrand Factor (vWF) rabbit polyclonal antibody (Dako, A0082) diluted at 1:100.

Formalin-fixed, paraffin embedded tissue sections were deparaffinized in UltraClear (J.T.

Baker) and rehydrated in graded ethanol series. Heat induced antigen retrieval was used for all

except α-SMA and vWF. The sections were heated in a microwave for 20 minutes in citrate

buffer (pH 6). For CD117 Dako target retrieval solution (pH 9) was used. No antigen retrieval

was used with α-SMA. For vWF the sections were incubated with proteinase K for 10 minutes

at 37 oC. All primary antibodies were incubated for 60 minutes at room temperature, except

AQP-1, GSTA1 and vWF antibodies which were incubated 14 hours at 4 oC. Ultravision ONE

HRP polymer and AEC chromogen detection system kits (Thermo Fisher Scientific, TL-

015-PHJ) were used according to manufacturer´s instructions with all but sheep anti-Tamm-

Horsfall antibody for which anti-sheep IgG rabbit secondary antibody HRP (Thermo Fischer
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Scientific, 31480) was used. The sections were counterstained with hematoxylin and mounted

with aqueous mounting medium.

Immunofluorescence

For immunofluorescence, formalin-fixed, paraffin-embedded kidney tissues were cut into

8 μm thick sections. The samples were first deparaffinised in xylene or Ultraclear (J.T. Baker)

and rehydrated in graded ethanol series. For heat induced antigen retrieval, the sections were

pretreated with pH 6 citrate buffer in a microwave oven for 20 minutes or in 10 mM Citrate

buffer + 0,05% Tween 20 in a pressure cooker. After a blocking step with goat normal serum

for five minutes or with blocking buffer (10% NDS, 3% BSA in 0,01% Triton in PBS) for 1h,

the sections were incubated overnight at +4˚ with monoclonal mouse anti-acetylated-α-tubu-

lin [6-11B-1] (Abcam, ab24610, 1:200 or Thermo Fisher Scientific, MS-581-P0, 1:1000). Some

sections were treated with image-iT1FX-signal enhancer (Thermo Fisher Scientific) for 30

minutes at RT and then incubated for 1 hour with Alexa Fluor1 488 goat anti-Mouse IgG (H

+L) secondary antibody (Thermo Fisher Scientific, Molecular probes) diluted at 1:200 at 37˚C

or 1:500 at RT, respectively. Nuclei were counterstained using DAPI (Sigma-Aldrich, D9542)

and the slides were mounted using ProLong Diamond Antifade Mountant (Life Technologies,

P36970) before imaging. Prior to mounting the slides with ProLong1 Gold Antifade reagent

with DAPI (Thermo Fisher Scientific) some of the sections were counterstained with Erio-

chrome Black solution (Sigma-Aldrich) for 30 minutes at RT.

Immunofluorescence images were obtained using Leica TCS SP5 AOBS MP SMD confocal

microscope with HCX APO 63xNA 1.3 glycerol immersion objective and LAS AF 2.7 software.

Acetylated-α-tubulin images were obtained by using z-stack and the projections were rendered

with Bitplane Imaris 7.6.5. Nonlinear optical effect, second-harmonic generation (SHG), was

used to visualize collagen.

DNA extraction

Genomic DNA from peripheral EDTA whole blood samples was extracted using QIAamp1

DNA Mini Kit (Qiagen). For fresh frozen tissue we used DNeasy1 Blood and Tissue Kit (Qiagen)

and for formalin-fixed paraffin-embedded tissue AllPrep1 DNA/RNA FFPE Kit (Qiagen). Buc-

cal cells were collected with buccal swabs (Eurotubo1, Deltalab) and gDNA was extracted with

Gentra1 Puragene Buccal Cell Kit and QIAamp1 DNA Mini Kit (both from Qiagen). Manufac-

turer´s protocols were followed in all extractions. The quantity and quality of DNA was estimated

by spectrophotometric measurement (Nanodrop 1000, Thermo Fisher Scientific).

Exome sequencing and bioinformatics analysis

Genomic DNA from two affected puppies (cases 2 and 3), dam of case 2, sire of case 3 and

three control Norwich Terriers was sent to Otogenetics Corporation (Norrcross, GA, USA) for

whole- exome sequencing. Standard Illumina library preparation (Illumina, USA) with quality

control was performed and the coding sequences were captured with Agilent´s All Exon

Canine Capture Kit (Agilent, CA, USA). This exon capture kit is a 54Mb design based on

canine reference genome CanFam2 and the kit covers the UCSC tracks for Ensembl and

Refseq, including human protein alignments and spliced ESTs that lie outside of Ensembl

annotated gene regions. The library preparation and capture were performed according to the

manufacturer´s instructions. The sequencing was performed using Illumina HiSeq2500 with

100-bp paired-end reads.

The data was aligned to CanFam3.1 reference (UCSC) and transferred to Classic DNA-

nexus [41] for further analysis and storage. The Classic DNAnexus exome pipeline included
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quality control and variant calling. The DNAnexus pipeline for variant calling [42] utilizes a

probabilistic model of variation that takes into account the similarity of the sample to the refer-

ence genome (P(H|G)) and the possible sequencing errors (P(R|H)) (H is the probability of the

genotype, G is the reference genome and R is the observed reads). Thus the probability of the

genotype can be computed (P(H|G,R) = P(H|G) x P(R|H) / P(R|G)) and further utilized to

choose the most likely genotype H� (H� = argmaxH {P(H|G,R) } = argmaxH {P(H|G) x P(R|H)

}). This variant calling pipeline takes into consideration all possible genotypes with two or

more reads. Assuming a recessive mode of inheritance, two affected puppies as homozygous,

two obligate carriers as heterozygous or with a missing variant and controls as normal, hetero-

zygous or with a missing variant as genotypes, were further filtered using Golden Helix 1

(Bozeman, MT, USA) SNP & Variation Suite software with call rate>0.2 and MAF >0.05. In

addition, the Ensembl Variant Effect Predictor (VEP) [14] that utilizes the CanFam3.1.78

annotation was used to examine the functional consequences of the variants.

The normal and affected INPP5E protein and INPP5E nucleotide sequences were aligned

with EMBL-EBI Pairwise Sequence alignment tool [43]. Ensembl annotation of the INPP5E
gene (ENSCAFG00000019664; ENSCAFT00000031269.3) has been used all over the study.

SNP genotyping and homozygosity mapping

A genome-wide genotyping was performed on two affected, one non-affected full sibling and

four close relatives by using Illumina’s CanineHD BeadChip (Illumina, CA, USA) containing

173,662 SNP markers. The genotyping was performed by GeneSeek (Neogen, NE, USA) and

the loci of the SNP markers were transformed to the CanFam3.1. reference genome using the

UCSC lift-over tool [44], prior to analysis. Candidate regions were determined by analyzing

the homozygosity at each loci by using R 3.2 [45]. First, monomorphic loci across the whole

study population as well as loci with missing data were removed from the analysis. The set of

candidate loci was then limited to the set of SNPs that were homozygous for the cases. Then,

the loci of the candidate SNPs were merged to candidate regions by combining sets of consecu-

tive candidate SNPs. To prioritize the candidate regions, the MAF of the carriers within each

candidate region was determined and a priority value for each region was calculated as

2�MAF_r � length_r / max (length_r�) where MAF_r is the MAF of carriers within region r,

length_r is the length of the region r in kB and max (length_r�) is the maximum length across

all candidate regions. Regions with a priority value larger 0.15 were then considered further.

Regions with more than 200 consecutive candidate loci were selected as candidate regions for

the defect. The genotype data is available for further use upon request.

PCR and Sanger sequencing

For Sanger sequencing, DNA fragments were amplified with INPP5E gene-specific primers

(forward GCTCACCCAGGAAATGAAGA (exon 8), reverse CCCAGCAGTCTCAGA
GAGGT (in intron 9)). The specificity of PCR amplicons was confirmed on agarose gel and 5-

20ng of the PCR product was purified with Exonuclease I (10u, Thermo Fischer Scientific) at

37˚C for 15 min. Purified PCR product was used for sequencing amplification with the gene-

specific primers and BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fischer Scien-

tific). Prior to sequencing, the amplicons were precipitated with ethanol and diluted in form-

amide. The sequencing reaction was conducted in both directions with the same primers that

were used for amplification. Sequencing was performed on a MegaBace 500 capillary DNA

sequencer (Amersham Biosciences). The data was analyzed using the Variant Reporter v1.0

program (Applied Biosystems) and Sequencer 5.2.3 (Gene Codes Corporation).

INPP5E causes cystic renal dysplasia and hepatic fibrosis in dogs

PLOS ONE | https://doi.org/10.1371/journal.pone.0204073 September 20, 2018 14 / 18

https://doi.org/10.1371/journal.pone.0204073


Analysis of RNA expression

Tissue samples were collected to RNAlater1 (Thermo Fischer Scientific) at necropsy and

stored at -20˚C until extraction. RNA was extracted from kidney tissue of one affected and one

unaffected Norwich Terrier stillborn control puppy. For analysis of gene expression with

RT-PCR, RNA was extracted by using RNeasy Midi kit (Qiagen). Total RNA was reverse-tran-

scribed with oligo T primers and an RT-PCR kit (ImProm-II Reverse Transcription System;

Promega) according to the manufacturer’s instructions. Synthesized cDNA was diluted to 20

ng/μl prior to amplification using INPP5E specific primers (forward CGATGGGGTGTTCT
GGTTTG (in the beginning of exon 8), reverse CCAGGGCAGGAAGAATAC
CT (approx. in the middle of exon 10)). The housekeeping gene RPL8 (forward GTCCGG
TTCAAAGAAGGTCA, reverse GGATGCTCCACAGGATTCAT)was used as reference gene

to control the equal amount of RNA in each sample. Expression of gene fragments was

assessed by gel electrophoresis.

Western blot

Kidney tissue from an affected and control puppy were homogenized using UltraTurrax

homogenizator in lysis buffer [50 mM Tris–HCl pH 8.0, 170 mM NaCl, 1% Triton X-100, 5

mM EDTA, 1 mM DTT and protease inhibitors (Complete mini; Roche diagnostic)] and incu-

bated on ice for 20 min. After centrifugation at 13000 rpm for 20 min at +4˚C, 100 μg of total

protein was loaded into 12% Mini-PROTEAN 1 TGX Precast Gels (Bio-Rad). The gel was

run at 90 V for 2 hours and electroblotted on methanol activated Hybond membrane. The

membrane was first blocked with 5% non-fat milk in PBS with 0,1% Triton X-100 (PBST) for

1 hour at RT. Primary antibodies INPP5E (1:200, Biorbyt, orb184295) and α-tubulin (1:4000

NeoMarkers, MS-581-P) were diluted in 1% non-fat milk in PBST and incubated overnight at

+4˚C. After washes with PBST, membranes were incubated with HRP-conjugated secondary

antibody [(1:3000, HRP linked anti-rabbit IgG (GE Healthcare Life Sciences)] for 1 hour at

RT. Membranes were developed with ECL Plus western blotting detection system (Amersham

Pharmacia) and visualized using LAS4000 (FujiFilm). Similar method has been previously

used for analyses of protein expression in the testis [46]
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