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Abstract

Car-borne surveys were carried out in metropolitan Tokyo, Japan, in 2015, 2016, 2017 and

2018 to estimate the transition of absorbed dose rate in air from the Fukushima Daiichi

Nuclear Power Plant accident. Additionally, the future transition of absorbed dose rates in

air based on this five-year study and including previously reported measurements done in

2014 by the authors was analyzed because central Tokyo has large areas covered with

asphalt and concrete. The average absorbed dose rate in air (range) in the whole area of

Tokyo measured in 2018 was 59 ± 9 nGy h-1 (28–105 nGy h-1), and it was slightly decreased

compared to the previously reported value measured in 2011 (61 nGy h-1; 30–200 nGy h-1).

In the detailed dose rate distribution map, while areas of higher dose rates exceeding 70

nGy h-1 had been observed on the eastern and western ends of Tokyo after 2014, the dose

rates in these areas have decreased yearly. Especially, the decreasing dose rate from radio-

cesium (Cs-134 + Cs-137) in the eastern end of Tokyo which is mainly covered by asphalt

was higher than that measured in the western end which is mainly covered by forest. The

percent reductions for the eastern end in the years 2014–2015, 2015–2016, 2016–2017 and

2017–2018 were 49%, 21%, 18% and 16%, and those percent reductions for western end

were 26%, 18%, 6% and 3%, respectively. Additionally, the decrease for dose rate from

radiocesium depended on the types of asphalt, and that on porous asphalt was larger than

the decrease on standard asphalt.

Introduction

The distribution of environmental radiation in eastern Japan was dramatically changed after

the Fukushima Daiichi Nuclear Power Plant (F1-NPP) accident that occurred in March 2011
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[1]. This accident was a level 7 nuclear accident on the International Nuclear and Radiological

Event Scale. During the accident, large amounts of fission products were released into the

atmosphere and the Pacific Ocean. The released total amounts of artificial radionuclides were

estimated to be 100–500 PBq of 131I and 6–20 PBq of 137Cs and they are about 10% and 20% of

the respectively estimated amounts emitted in the Chernobyl accident [2]. Eight years after the

F1-NPP accident, Cs-134 (half-life 2.06 y) and Cs-137 (half-life 30.17 y) remain as the major

concern from a radiological safety viewpoint.

In metropolitan Tokyo, 220 km southwest of the F1-NPP, such artificial radionuclides as I-

131, Cs-134 and Cs-137 were wet-deposited on March 21–23, 2011 by rainfalls [3, 4]. Accord-

ing to the Tokyo Metropolitan Government, the average absorbed dose rate in air (range) that

was observed in June 2011 was 61 ± 24 nGy h-1 (30–200 nGy h-1) based on the measurements

at 100 locations in Tokyo [5]. The authors measured and reported detailed data in 2003 for

absorbed dose rates in air (n = 669) for Tokyo that were obtained based on a car-borne survey

using a 2-in × 2-in NaI(Tl) scintillation spectrometer (excluding the Pacific Ocean islands that

are within the Tokyo Government’s jurisdiction) [6] and found that the average absorbed dose

rate in air was 49 ± 6 nGy h-1 (Fig 1). The area with the highest dose rate due to radionuclides

deposited from the F1-NPP accident was Katsushika Ward which is located in the northeast-

ern part of Tokyo (#22 in Fig 1). The absorbed dose rate in air measured in July 2011 in Kat-

sushika Ward was 268 nGy h-1, which was 6.9 times higher than the value before the accident

(i.e., 39 nGy h-1) [7].

The distribution of environmental radiation for metropolitan Tokyo was observed by air-

borne monitoring after the F1-NPP accident in September 2011 and May 2012 by the Nuclear

Regulation Authority, Japan [8]. However, the observed dose rates for Tokyo were below

0.1 μSv h–1 almost everywhere, meaning that a detailed discussion of contamination in the

metropolitan area was not possible. The authors carried out measurements in 2014 and made

a detailed dose rate distribution map for the whole area of Tokyo. Higher dose rate areas

exceeding 70 nGy h-1 were observed on the eastern and western ends of Tokyo [5].

Fig 1. Location of Tokyo municipalities consisting of 23 wards (A1) and 30 cities, towns and villages (A2). The number for each

administrative district (#1 - #53) is an ID number that is given in this paper by reference to the Japanese Industrial Standards. The

color scale gives the altitudes within the districts. This map was drawn using the GMT [15] and GSI maps of the Geospatial

Information Authority of Japan [16].

https://doi.org/10.1371/journal.pone.0224449.g001
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The continuous monitoring for environmental radiation is required to understand the dif-

fusion, deposition, migration and situation of released artificial radionuclides, and to assess

external and internal exposure doses for residents from just after the accident and in the

future. Some researchers have reported the reduction of dose rate or radioactivity concentra-

tion after the Chernobyl and F1-NPP accidents [7, 9–13]. In metropolitan Tokyo, the dose

rates have been continually observed at eight monitoring posts [14]. However, these “point”

data are not sufficient to obtain a complete view of the absorbed dose rate in air in Tokyo and

to serve the above purposes. Especially, there have been no reports about the continually

observed reduction of absorbed dose rates in air measured in a big metropolitan center such as

Tokyo which has large areas covered with asphalt and concrete, and it is expected that there is

a difference in the reduction of absorbed dose rates compared to that of the countryside which

is mainly covered with forests or is bare ground.

In this paper, car-borne surveys were carried out for the whole metropolitan Tokyo area in

November of the four years 2015, 2016, 2017 and 2018. The changes of impact on absorbed

dose rates relating to the F1-NPP accident were observed by including data measured in

December 2014 [5], and the future transition of absorbed dose rates in air was analyzed based

on this five-year study.

Materials and methods

The fixed-point observations were carried out on private land after obtaining specific permis-

sion from the land owners. The field studies did not involve endangered or protected species.

Survey area

The measurements of the count rates were carried out during November of the four years

2015, 2016, 2017 and 2018, in Tokyo, excluding its Pacific island chain that lies in a southeast-

ern direction from the main Japanese island. The survey route encompassed the 23 wards (A1

in Fig 1) and suburban Tokyo (30 cities, towns and villages; A2 in Fig 1). Main roads excluding

expressways were used to the extent possible, and selection was primarily centered on residen-

tial areas (Fig 2). The survey route had a total distance of 725 km. The weather was sunny or

cloudy throughout the measurement days. The route map was drawn using the Generic Map-

ping Tools (GMT) [15] and GSI maps of the Geospatial Information Authority of Japan [16].

Car-borne survey

A car-borne survey technique is very useful to make a fast assessment of the dose rate in a large

area [17]. In this study, car-borne surveys were carried out over asphalt pavements using a

3-in × 3-in NaI(Tl) scintillation spectrometer with a global positioning system (EMF-211,

EMF Japan Co., Osaka, Japan). This survey system combined the NaI(Tl) scintillation spec-

trometer and a multi-channel analyzer (GAMMA-RAD5, AMPTEK, Bedford, MA, USA).

This was the same system as had been used by the authors in 2014 [5] and all procedures were

the same in every survey. The NaI(Tl) scintillation spectrometer was positioned 1 m above the

ground surface at the center of the car (Aqua for 2015 and Prius for 2016–2018, Toyota,

Japan). Measurement of count rate inside the car was performed every 30 s while the car was

moving with a speed around 35 km h-1. The car windows were kept closed during those mea-

surements. Latitude and longitude at each measurement point were measured at the same

time as the count rates. The count rates within gamma-ray energies of 50 keV– 3.2 MeV were

recorded. The photon peaks of K-40 (Eγ = 1.464 MeV) and Tl-208 (Eγ = 2.615 MeV) were used

for gamma-ray energy calibration from the channel number and gamma-ray energy before the

measurements. The peak position was determined accurately by smoothing the gamma-ray
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pulse height distribution. Because count rates were measured inside the car, shielding by the

car body was also estimated by making measurements inside and outside the car at 30-s inter-

vals during 2 min at 61 locations (circles in Fig 2). Those measurements were done above

asphalt surfaces because so much of the metropolitan area has been extensively covered with

asphalt and concrete, making it impossible to find open fields near roadsides for the measure-

ment. The distance from the car was at least 5–15 m for the measurement depending on the

situation. The shielding factor (SF) was calculated from the correlation between count rates

inside and outside the car. In this study, SF was obtained from the slope of the regression line

in the relation between inside and outside count rates. The count rates inside the car was then

multiplied with this SF.

The gamma-ray pulse height distributions were also measured outside the car for 10 min, at

61 locations (circles in Fig 2) for estimating the dose rate conversion factor (DCF) (nGy h-1/

cps). The gamma-ray pulse height distributions were then unfolded using the 22 × 22 response

matrix method [18] and absorbed dose rates in air were calculated. These calculated dose rates

were used to estimate DCF as the correlation between dose rates and count rates outside the

car because it is difficult to obtain the photon peaks in the 30-s measurement of the car-borne

survey [19]. In this study, the dose conversion factor was obtained from the slope of the regres-

sion line in the relation between corrected outside count rates and absorbed dose rates in air

obtained at 61 locations. The obtained DCF was multiplied by the corrected count rates outside

the car, and the absorbed dose rates (nGy h-1) were calculated. Thus, the absorbed dose rate in

air outside the car at 1 m above the ground surface (Dair) can be calculated using the following

equation:

Dair ¼ Cin � SF � DCF ð1Þ

where Cin is the count rate (cps) inside the car obtained by the measurements for every 30-s

interval. All obtained data from the car-borne surveys were plotted on the distribution of

absorbed dose rates in air in Tokyo using a minimum curvature algorithm of GMT [15]. This

Fig 2. The survey routes for measuring the count rates in metropolitan Tokyo. Car-borne surveys were carried out using a

3-in × 3-in NaI(Tl) scintillation spectrometer in November of the four years, 2015, 2016, 2017 and 2018. Total distances traveled

were 725 km for each year. The circles represent the locations where fixed-point measurements were made outside the car (n = 61).

https://doi.org/10.1371/journal.pone.0224449.g002
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is the method for interpolating data by presuming a smooth curved surface from the data of

individual points.

For more detailed analysis, the calculated absorbed dose rates in air obtained at 61 locations

(Fig 2) were separated as artificial radionuclides (Cs-134 and Cs-137) and natural radionu-

clides (K-40, U-238 series and Th-232 series) using the 22 × 22 response matrix method to

assess the changes of impact on dose rate from the F1-NPP accident and the seasonal variation

of dose rate from natural radionuclides. The obtained gamma-ray pulse height distribution

was converted to the energy bin spectrum of incident gamma-rays which is a distribution of

gamma-ray flux density to each energy bin. The energy intervals for the bins were given from

the literature [18]. The calculation for the 22 × 22 response matrix for the 3-in × 3-in NaI(Tl)

scintillation spectrometer was done using the Monte Carlo code, SPHERIX [20]. The gamma-

ray flux density and dose rate per unit solid angle were assumed to be almost isotropic in a nat-

ural environment. In the location that has a mixture of artificial and natural radionuclides, it is

necessary to remove the interference of higher energy peaks from each energy bin for each

radionuclide. In this study, the distribution ratio of gamma-ray flux from artificial and natural

radionuclides to each energy bin was estimated using the same Monte Carlo code and the

interference with each radionuclide was removed. A total of one million histories were traced

for each natural radionuclide. After unfolding the gamma-ray pulse height distribution, clear

peaks from Cs-134 (energy range: 0.55–0.65 MeV and 0.75–0.85 MeV), Cs-137 (energy range:

0.65–0.75 MeV), K-40 (energy range: 1.39–1.54 MeV), Bi-214 (energy range: 1.69–1.84 MeV

and 2.10–2.31 MeV) and Tl-208 (energy range: 2.51–2.27 MeV) were observed in the spec-

trum. The absorbed dose rates in air from natural and artificial radionuclides could be sepa-

rated using those techniques. The details of the analysis using the 22 × 22 response matrix

method have been described previously [5, 18].

Results and discussion

Shielding and dose conversion factors

The SFs values for each measurement year were obtained to calculate absorbed dose rates in

air as shown in Table 1. The SFs ranged from 1.35 to 1.56. The SF is influenced by the type of

car used in a survey, the number of passengers and the scintillation spectrometer position

inside the car. In previous reports, SFs have ranged from 1.1 to 1.9 [5–7, 17, 19, 21–25], and

the presently obtained SFs were in this range. The coefficient of determination (R2) from mea-

surement correlations ranged from 0.661 to 0.774 and the calculated R2 for metropolitan

Tokyo had lower values compared to those measured in another Japanese report (R2 = 0.967,

n = 35) [23]. In the measurement of count rates outside the car, a scintillation spectrometer

ideally should be placed in an open space at a distance of 10–20 m from the car and nearby

artificial structures to eliminate the impact on count rates outside the car from these structures.

The population density of metropolitan Tokyo is ranked first in the world and there are many

Table 1. Calculated shielding factors SFs and dose conversion factors DCFs.

Year na SF Standard uncertainty of SF DCF

(nGy h-1/cps)

Standard uncertainty of DCF

2015 61 1.35 0.08 0.16 0.01

2016 61 1.56 0.08 0.16 0.01

2017 61 1.52 0.07 0.16 0.01

2018 61 1.52 0.08 0.16 0.01

a Number of measurements

https://doi.org/10.1371/journal.pone.0224449.t001
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artificial structures. Therefore, measurements at such an ideal place were impossible, and that

resulted in mid-level correlations being exhibited by the metropolitan Tokyo measurements.

The DCFs were then obtained from the correlation between count rate outside the car and

absorbed dose rate in air calculated from software using the 22 × 22 response matrix method

[18] (Table 1). The DCF (nGy h-1/cps) was evaluated as 0.16. In the method for determining

the ambient dose rate from count rate, the dispersion of dose conversion coefficient is affected

by the abundance ratio of K-40, U-238, Th-232, Cs-134 and Cs-137. Thus, this effect resulted

in a negligible change in this study. The obtained R2 from measurements ranged from 0.728 to

0.876. The dispersion of DCF is affected by the abundance ratios of K-40, U-238 series, Th-232

series [26], Cs-134 and Cs-137. Lower R2 values were exhibited in the Tokyo metropolitan area

measurements compared to those for other areas in Japan [23].

Changes of distribution of absorbed dose rates in air in metropolitan Tokyo

The absorbed dose rates in air (nGy h-1) outside the car 1 m above the ground surface were cal-

culated using both SF and DCF (Eq 1). The changes of absorbed dose rates in air measured in

2014 [5], 2015, 2016, 2017 and 2018 are shown in Fig 3. The outliers were defined as: < lower

quartile– 1.5 × distance from upper quartile to lower quartile (IQD) or > upper quartile

+ 1.5 × IQD (KaleidaGraph, Synergy Software, USA). The average absorbed dose rates in air

Fig 3. Calculated absorbed dose rates in air from natural and artificial radionuclides measured in 2014 [5]– 2018

in metropolitan Tokyo based on the measurements by the car-borne survey technique. The measurement was done

on the same route (red line in Fig 2) using the same 3-in × 3-in NaI(Tl) scintillation spectrometer.

https://doi.org/10.1371/journal.pone.0224449.g003
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(ranges) in metropolitan Tokyo were 60 ± 11 nGy h-1 (23–142 nGy h-1; n = 4,018) for 2014 [5],

59 ± 10 nGy h-1 (24–118 nGy h-1; n = 4,018) for 2015, 59 ± 9 nGy h-1 (28–106 nGy h-1;

n = 4,346) for 2016, 58 ± 8 nGy h-1 (26–97 nGy h-1; n = 4,717) for 2017 and 59 ± 9 nGy h-1

(28–105 nGy h-1; n = 5,138) for 2018. The detailed absorbed dose rates in air in all municipali-

ties in Tokyo are shown in S1 Table. According to the Tokyo Metropolitan Government, the

average absorbed dose rate measured at 100 locations in June 2011 was 61 nGy h-1 (30–200

nGy h-1) [5]. The average absorbed dose rate in metropolitan Tokyo has not significantly

changed in the past seven years but the number of high outliers (i.e., higher dose rates) has

decreased yearly (Fig 3).

Fig 4 shows average absorbed dose rate in air from natural radionuclides measured at 61

locations (Fig 2). Those dose rates were calculated using the 22 × 22 response matrix method

[18]. Those dose rates were increased in the last 10 years compared to the measured dose rate

in 2003 for Tokyo (49 ± 6 nGy h-1) [6], especially in A1 area. The construction of buildings

and hotels has increased sharply since 2015 as Tokyo prepares to host the 2020 Olympics, and

that has resulted in the increased dose rate because many natural radionuclides are contained

in the building materials. In fact, the respective numbers of newly completed units for sky-

scrapers (i.e., more than twenty-story building) in metropolitan Tokyo in 2014 and 2015 were

5620 and 14738 according to the statistical data published by the Ministry of Land, Infrastruc-

ture, Transport and Tourism of Japan [27]. Additionally, absorbed dose rate in air from natu-

ral radionuclides changes depending on environmental conditions such as soil moisture and

Fig 4. Changes of absorbed dose rate in air from natural radionuclides in the eastern (A1) and western (A2) ends

of Tokyo in 2014 [5]– 2018. The gamma-ray pulse height distributions were measured outside the car for 10 min, at

61 locations (Fig 2). The gamma-ray pulse height distributions were then unfolded using the 22 × 22 response matrix

method, and separated as natural radionuclides (K-40, U-238 series and Th-232 series).

https://doi.org/10.1371/journal.pone.0224449.g004
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radon concentration. Thus, it is difficult to make a simple comparison on dose rates before

and after the F1-NPP accident.

Fig 5 shows distribution maps of absorbed dose rate in air measured in 2015–2018 in met-

ropolitan Tokyo. Those maps were drawn with the same magnification and altitude color gra-

dation scale using GMT [15] and interpolated measured dose rates using a minimum

curvature algorithm because the measurements of dose rate could not be performed at some

areas. While absorbed dose rate in air in all municipalities in Tokyo are shown in S1 Table,

there is limitation to the details that can be shown on the dose distribution map, especially in

the mountain area at the western end of Tokyo. Additionally, changes of absorbed dose rate in

air from natural radionuclides need to be considered to compare dose distribution maps as

shown in Fig 4. In reported measurements of 2014 that were done in a car-borne survey on the

same route and used the same NaI(Tl) scintillation spectrometer [5], higher dose rates exceed-

ing 100 nGy h-1 were observed in Katsushika Ward (#22 in Fig 1) and Okutama Town (#53 in

Fig 1), and their heterogeneous distributions were shown to be due to the presence of artificial

radionuclides. The maps in Fig 5, however, showed the differences in dose rates yearly became

smaller on the eastern and western ends of metropolitan Tokyo. The average absorbed dose

rates in A1 and A2 in Fig 1 measured in 2014 were 60 ± 12 nGy h-1 (23–142 nGy h-1;

n = 2,010) and 61 ± 10 nGy h-1 (32–102 nGy h-1; n = 2,255), respectively. After four years,

those values measured in 2018 became 60 ± 9 nGy h-1 (28–105 nGy h-1; n = 2,216) and 58 ± 8

nGy h-1 (34–100 nGy h-1; n = 2,922), respectively, and those ranges of dose rates became

smaller.

To allow more detailed discussion on changes of absorbed dose rates in air in metropolitan

Tokyo, Fig 6 shows distribution maps of absorbed dose rates in air from two artificial radionu-

clides (Cs-134 + Cs-137). Those dose rates were calculated using the 22 × 22 response matrix

method [18]. The average dose rates from artificial radionuclides for A1 and A2 areas are

shown in Fig 7, and these values decreased yearly. The percent reductions for A1 area in the

years 2014–2015, 2015–2016, 2016–2017 and 2017–2018 were 49%, 21%, 18% and 16%, and

those percent reductions for A2 were 26%, 18%, 6% and 3%, respectively. The differences of

percent reduction between A1 and A2 areas might be explained from the differences of the

environment around measurement points. The percentages of road area [28] and green space

[29] to total area of the administrative district are 16.5% and 3.8–23.1% for A1 area whereas

those for A2 area are 6.7% and 30–97%. The deposited radionuclides on sealed surfaces such

as asphalt or concrete pavements can be easily washed away by rainfall compared to bare

ground or lichen-covered areas [5, 17, 30, 31]. Thus, a different reduction of dose rate between

A1 and A2 areas was observed that was related to the two environment extremes. Additionally,

the reduction ratios in 2014–2015 for both areas were the highest compared to other time peri-

ods (i.e., after 2016), and percent reductions then became lower yearly. Thus, it seems that the

reduction of absorbed dose rate in air in A1 area was related to ecological effects such as weath-

ering that occurred during the early term after the F1-NPP accident. These findings corre-

sponded to those of the previous report for the F1-NPP accident [32]. In the Chernobyl

accident, reduction ratios of Cs-137 contamination on street pavements were faster than that

on a reference surface (a cut lawn) [33], and the same tendency was observed after the Fukush-

ima accident as well [34].

For a more detailed evaluation, the reduction ratio of absorbed dose rate in air related with

type of asphalt was analyzed using measured data from the Joto district (#6 –#8 and #21 –#23

in Fig 1) which is a highly contaminated area in metropolitan Tokyo compared to that in other

nearby wards. Fig 8 shows the transition of absorbed dose rate in air from artificial radionu-

clides measured at 1 m above porous asphalt (n = 3, #21 –#22 in Fig 1) and standard asphalt

(n = 5, #6 –#8 and #23 in Fig 1) surfaces. The percent reductions of dose rate in the years

Changes of dose rates in metropolitan Tokyo
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2014–2015, 2015–2016, 2016–2017 and 2017–2018 were 21%, 18%, 7% and 7% for porous

asphalt, and those ratios for standard asphalt were 21%, 37%, 18% and 21%, respectively.

Therefore, the reduction of dose rates measured on standard asphalt was occurring faster than

Fig 5. The distribution maps of absorbed dose rates in air in metropolitan Tokyo measured in 2015 (A), 2016 (B),

2017 (C) and 2018 (D). A minimum curvature algorithm was used for the data interpolation using the GMT [15].

Those maps were drawn using 4,018 data for 2015, 4,346 data for 2016, 4,717 data for 2017 and 5,138 data for 2018.

https://doi.org/10.1371/journal.pone.0224449.g005
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Fig 6. The distribution maps of absorbed dose rates in air from artificial radionuclides in 2015 (A), 2016 (B),

2017 (C) and 2018 (D). The gamma-ray pulse height distributions were measured for 10 min, at 61 locations (Fig 2).

The gamma-ray pulse height distributions were then unfolded using the 22 × 22 response matrix method, and

separated as artificial radionuclides (Cs-134 and Cs-137).

https://doi.org/10.1371/journal.pone.0224449.g006
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that on porous asphalt. This can be explained from the structure difference of both asphalt

types. The coarse aggregate diameters of the two are different (Fig 9). The porous asphalt mate-

rial consists of coarse aggregates with a diameter of more than 2.36 mm, and the drainage

function is high, resulting in its wide use recently for highways and main roads. However, it

can be quickly clogged by dust depending on the amount of traffic, and deposited radiocesium

that became attached to the dust particles has the property of binding strongly with the dust

particles and not being easily washed away by rainfall. [31]. On the other hand, standard

asphalt is low porosity asphalt consisting of fine aggregates having diameters of 0.075–2.36

mm and it is utilized for local roads and public parking areas. This type of asphalt has a water

repellency effect and the deposited radiocesium and dust particles are easily washed out by

rainfall compared to high porosity asphalt. Thus, the dose rate measured on standard asphalt

decreased more quickly compared with that on porous asphalt. When the changing dose rates

are locally evaluated, it seems that the dose rates would not be homogeneously decreased due

to the asphalt type dependency.

Uncertainties on car-borne survey technique and fixed-point observation

The relative standard uncertainties for the shielding factor, dose conversion factor, traceability

of the dose rate (calculated by Pony Industry Co., Ltd., Osaka, Japan) and the dose calculation

procedure by the response matrix method (calculated by EMF Japan Co., Osaka, Japan) were

obtained as 5.3%, 6.2%, 4.1% (k = 2) and 5.0%, respectively. Additionally, the relative standard

uncertainties of one-time measurement (30 s) and fixed-point observation (10 min) were

Fig 7. Changes of absorbed dose rate in air from artificial radionuclides in the eastern (A1) and western (A2) ends of

Tokyo in 2014 [5]– 2018.

https://doi.org/10.1371/journal.pone.0224449.g007
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calculated to be 3.0% and 0.2%, respectively. The combined relative standard uncertainties of

the car-bone survey and fixed-point observation in the present study were calculated to be

10.8% and 10.4%, respectively. However, the real combined relative standard uncertainty

would be estimated as more than 10.4% because the uncertainty for the separation of absorbed

dose rate in air from natural and artificial radionuclides could not be considered in this study.

Conclusion

Car-borne surveys with a NaI(Tl) scintillation spectrometer were carried out for metropolitan

Tokyo during 2015–2018 and the changes of absorbed dose rate in air related to the radionu-

clide releases from the F1-NPP accident were discussed, including data measured in 2011 and

2014. While absorbed dose rates in air in higher contaminated areas exceeding 70 nGy h-1

have been decreasing yearly, the average absorbed dose rate in air from natural and artificial

radionuclides for the whole metropolitan Tokyo area was not significantly changed during the

seven years from 2011 (61 ± 24 nGy h-1) to 2018 (59 ± 9 nGy h-1). The decreasing rate of

absorbed dose rate in air from artificial radionuclides in the eastern end of Tokyo which is

mainly covered by asphalt was higher than that measured in the western end of Tokyo which

is mainly covered by forests. The decreased dose rates strongly depended on type of asphalt

pavement, and the reduction ratio of dose rate measured at 1 m above the porous asphalt sur-

face was longer than that of standard asphalt.

Fig 8. Changes of absorbed dose rate in air from artificial radionuclides measured at 1 m above the surface of

porous and standard asphalt surfaces. The gamma-ray pulse height distributions were measured 1 m above the

surface of porous (n = 3) and standard asphalt (n = 5) materials for 10 min. The gamma-ray pulse height distributions

were then unfolded using the 22 × 22 response matrix method, and dose rates were calculated for the artificial

radionuclides.

https://doi.org/10.1371/journal.pone.0224449.g008
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