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Approaches to furthering our understanding of the bioeffects, behavioral changes, and

treatment options following exposure to blast are a worldwide priority. Of particular

need is a more concerted effort to employ animal models to determine possible sex

differences, which have been reported in the clinical literature. In this review, clinical

and preclinical reports concerning blast injury effects are summarized in relation to

sex as a biological variable (SABV). The review outlines approaches that explore the

pertinent role of sex chromosomes and gonadal steroids for delineating sex as a

biological independent variable. Next, underlying biological factors that need exploration

for blast effects in light of SABV are outlined, including pituitary, autonomic, vascular,

and inflammation factors that all have evidence as having important SABV relevance.

A major second consideration for the study of SABV and preclinical blast effects is the

notable lack of consistent model design—a wide range of devices have been employed

with questionable relevance to real-life scenarios—as well as poor standardization for

reporting of blast parameters. Hence, the review also provides current views regarding

optimal design of shock tubes for approaching the problem of primary blast effects and

sex differences and outlines a plan for the regularization of reporting. Standardization and

clear description of blast parameters will provide greater comparability across models,

as well as unify consensus for important sex difference bioeffects.

Keywords: blast, animal models, sex differences, brain injury, standardization, common data elements

INTRODUCTION

Traumatic brain injury (TBI) is a significant military health problem, with the Defense and
Veterans Brain Injury Center reporting ∼384,000 worldwide cases from the years 2000 to 2018
in the US forces (1), supporting many studies suggesting a TBI incidence rate of ∼20% in service
members in Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) (2, 3). The
incidence of blast-related TBI, specifically, rose in military personnel during OIF/OEF compared
to previous conflicts due to the increased use of explosive materials [e.g., improvised explosive
devices (IEDs), rocket-propelled grenades], and explosions have been determined to be the leading
causal agent of TBI in Iraq and/or Afghanistan (4–7). Blast-related injuries have also increased in
civilian populations worldwide; conservative estimates from the RAND R© Memorial Institute for
the Prevention of Terrorism state a fourfold increase in the number of terrorist incidents employing
explosive devices between 1999 and 2006, with the number of injuries resulting from those acts
increasing eightfold (8, 9).
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The increasing participation of women in the US military
and the lifting of the Combat Exclusion Policy in 2013,
officially giving women eligibility to participate in full combat
operations, have placed women at greater risk of sustaining a
military-related TBI, including blast-related TBI. The number of
women using the Veterans Administration in the United States
increased by 46% between 2005 and 2015 (10), confirming
female veterans are a rapidly growing patient population.
Furthermore, many countries enforce mandatory conscription
for women (e.g., Israel, Norway), with women occupying combat
positions globally, making TBI in female military populations
an international health concern. Although there have been a
substantial number of studies comparing outcomes following
TBI betweenmen andwomen in clinical populations, particularly
in sports-related contexts [for recent reviews, see (11–13)],
specific attention to the potentially special needs of women
who have sustained TBI in the military is a growing concern
(14, 15). There is substantial evidence that women may be
more at risk than men for many neurological and psychiatric
conditions following military-acquired TBI [e.g., (16–20)], and it
has been recently shown that up to 50% of older female veterans
(>55 years old) with a diagnosed TBI also had a psychiatric
diagnosis of depression or posttraumatic stress disorder (PTSD)
(21). Furthermore, the authors reported that a diagnosed TBI
increased the risk of dementia by 50%, and the risk increased
twofold for women who suffered from any two of those
conditions (21).

Animal models of TBI, including models of blast injuries,
have aided in our understanding of the pathophysiology and
symptomology of brain injuries for decades [for reviews, see
(22–25)]. Since the National Institutes of Health (NIH) mandate
requiring inclusion of both sexes in biomedical research (26),
the number of preclinical TBI studies including females has
increased. There have been several recent reviews on sex
differences following TBI in animalmodels (13, 27–29). However,
the majority of translational TBI work employing both male and
female animals has been performed with more severe and/or
surgically invasive TBI models such as controlled cortical impact
[CCI; e.g., (30–35)], fluid percussion injury [FPI; e.g., (36, 37)], or
repetitive concussive brain injury [CBI; e.g., (38, 39)]. Although
blast injury models have been studied in male animals of many
species (23, 40), there is a near absence of female inclusion in blast
models of neurotrauma.

The purpose of this review is to discuss TBI, particularly
as inflicted by a blast event, in the context of sex as a
biological variable (SABV).What are known about the functional
consequences of military-acquired blast TBI are discussed,
followed by a description of the present experimental approaches
that have had utility in manipulating sex chromosomes and
gonadal steroids as independent variables. Dependent variables,
including pituitary, autonomic, vascular, and inflammation
factors, are then discussed because these focus on the most
reported systems that are perturbed by blast. Finally, relevant
to the study of blast and SABV in preclinical studies, the
review makes an appeal for investigators to apply the highest-
quality experimental principles, because the study of SABV
in this field is complex and requires the derivation of the

uppermost-quality information for asking further questions and
laying the groundwork for translational relevance. Suggestions
and guidelines are provided for the use and reporting of sufficient
information about blast animal models that will aid in the
interpretation of data and generation of conclusions.

CONSEQUENCES OF MTBI IN MILITARY
POPULATIONS

Mild TBI Symptoms
Mild TBI (mTBI) as a result of an explosion often leads to
symptoms that are well-studied in military populations. The
symptoms are most often short-term, resolving within 7–10
days, and often include physical (e.g., headache, dizziness,
nausea), cognitive (e.g., memory and concentration problems),
and behavioral (e.g., anxiety, irritability) complaints (41, 42).
However, a small percentage of patients (∼10–25%) will have
symptoms persisting >3 months and will be diagnosed with
postconcussive syndrome (PCS), which can include a variety of
symptoms ranging from psychiatric (anxiety and depression) to
physical (headache, fatigue, dizziness) and sleep disturbances,
among others (43, 44).

In addition to potential long-term symptoms following mTBI,
there is a clear link between military-acquired TBI and PTSD
[e.g., (4, 45, 46)]. PTSD has many overlapping symptoms with
mTBI and PCS (e.g., irritability, fatigue, poor sleep, memory,
and attention problems), but PTSD is often referred to as an
“abnormally sustained stress response” with added symptoms
of nightmares, hyperarousal, avoidance, and re-experiencing
phenomena (47). Fully understanding the relationship between
TBI and PTSD, andwhether blast-related TBI carries a higher risk
of a PTSD development than TBI incurred by other mechanisms,
has been a challenge for researchers, and discussion of this
complex topic is beyond the scope of this article (47). However,
blast exposure clearly puts individuals at risk of the development
of PTSD (4, 48–52) and other psychiatric conditions such as
depression (4, 48–50).

Comparisons of Blast vs. Non-blast TBI
It has been noted that the study of head trauma in military
populations is difficult. Although blast has been the most
common cause of mTBI in recent conflicts, military personnel are
simultaneously at risk of TBI from other causes such as motor
vehicle accidents, rigorous training exercise and sports, falls,
fights, etc. (53), making it possible or even likely that a subject
in a study has sustained more than one TBI of different types
(blast, concussion, etc.) over their deployment, or earlier in their
lifetime. Greer et al. (54) recently conducted a meta-analysis of
the literature comparing clinical and functional outcomes in blast
and non-blast TBI in USOIF/OEF servicemembers and veterans.
For most outcome measures studied (i.e., vision loss, vestibular
dysfunction, depression, sleep disorders, alcohol abuse), there
were no differences between blast and non-blast TBI groups.
For other outcome measures (i.e., PTSD diagnosis and symptom
severity, headache, hearing loss, and neurocognitive function),
results were inconsistent (54). Thus, there were no functional
measures that could be definitively linked to blast-induced TBI.
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Importantly, the authors also reported that the majority of the
studies used varying definitions of “blast” and “non-blast” injury,
and there was often little information about the blast injury,
including how close the individual was to the explosion, if he/she
was in a vehicle or dismounted, whether there was a loss of
consciousness, additional trauma, etc. (54). Indeed, it has been
noted that the majority of sustained blast injuries include a
mixture of secondary and tertiary injuries (sometimes called
“blast-plus” see Blast Events), making the contributions of the
primary blast wave to the subsequent outcomes difficult to clearly
establish (55, 56).

Several publications, however, employed in vivo imaging
and discovered morphological or functional differences between
blast-exposed cases and other forms of TBI. An initial key
observation was evidence of white matter tract changes.
Davenport et al. (57) examined white matter tract integrity
with diffusion tensor imaging (DTI) in service members with a
reported blast-related TBI and with no reported blast exposure
or signs of mTBI. Twenty subcortical white matter tracts
were evaluated for differences in fractional anisotropy (FA; a
measure of white matter integrity). Ten white matter tracts
had significantly lower FA measures in the cases with blast-
related TBI. The authors noted that the analysis required a
close assessment of the regions of interest, and the differences
were diffuse and widespread, and the specific tracts with
alterations varied across the cases. Levin et al. (58) performed
DTI assessments and an extensive characterization of veterans
and service members with exposure to blast and a group with
no TBI or blast-exposure history. No differences were found
between the groups, but FA measures in some brain regions
were associated with impairments of verbal memory. DTI was
employed by MacDonald et al. (59) to compare alterations in
service members who had a history of blast exposure, as well
an additional blast-related trauma (e.g., impact with objects, a
fall, or motor vehicle crash). The control group in this study
comprised individuals with blast exposure and other injuries, but
who had not received a TBI diagnosis (59). DTI changes were
seen in the service members with a diagnosis of TBI. Alterations
in DTI were employed by Bazarian et al. (60) to assess the
relationship of white matter tract alterations and mTBI with the
severity of PTSD symptoms. FA measures were associated with
blast exposure, and PTSD severity was associated with stress
symptoms and abnormal DTI, but not with an assessment of
mTBI, suggesting DTI changes were observed in “subclinical
TBI” cases (60). Taber et al. (61) compared white matter changes
in veterans with primary blast exposure (but no TBI symptoms),
individuals with reported primary blast exposure consistent with
no TBI symptoms or a lack of signs to indicate mTBI, or no
exposure to blast. Compared to veterans who had no history
of blast exposure, veterans who had sustained a blast event,
with or without a diagnosis of TBI, were found to have lower
FA and higher radial diffusivity [a general correlate of myelin
damage; (62)]. Similar to the observations of Davenport et al.
(57), the changes were heterogeneous and widely dispersed. A
significant observation from this report is that the changes were
seen even in participants with no presenting TBI complaints.
Trotter et al. (63) also examinedwhitematter integrity in veterans

with a history of blast exposure or with no reported incidence.
The participants were 19–62 years of age and had sustained
severe blast injury and were compared with service members
who had no exposure to blast. In each group, some of the
participants had a diagnosis of TBI (69 and 53%, respectively).
Alterations in white matter integrity were associated with the
intensity of blast exposure, and decreased degree of FA was
associated with the number of years since the most severe
blast injury.

Several studies have employed functional magnetic resonance
imaging (fMRI) to assess cerebral blood flow as a correlate
of cerebral activity. Han et al. (64) found blast-related TBI
disrupted resting-state cortical network function compared to
participants who also had experienced blast exposure but were
not diagnosed with TBI. Robinson et al. (65) described a
difference between functional connectivity within components
of the default mode network when service members were close
to a blast (<10m) compared to individuals located at a site
that was farther from the blast. fMRI was used by Fischer
et al. (66) while participants attended to the Stop Signal Task,
a measure of response inhibition/impulse control (67, 68).
Participants included individuals who sustained blast-related
TBI, control (uninjured) military personnel, civilians with no
TBI, and civilians with non-blast TBI. fMRI activation was
lower in service personnel during correct inhibition responses
compared to military controls personnel in brain regions
associated with response inhibition and the default mode
network. Interestingly, the service members with blast-related
TBI exhibited greater activation than controls in trials where
the respondent failed to appropriately inhibit their response
during the Stop Signal Task. In contrast, non-blast civilians
displayed an opposite process where TBI civilians had less
activation compared to civilian controls. As noted later (see
Vascular Alterations From TBI), vascular changes are noted in
clinical and preclinical studies of blast effects. Sullivan et al.
(69) applied arterial spin labeling to assess possible changes after
blast. An increase in the total number of blast exposures was
associated with increased cerebral perfusion, but there was no
noted relationship to blast proximity or a diagnosis of mTBI or
PTSD (69).

Several trends, then, are gained from MRI. First, alterations
in white matter integrity have been observed, and the findings
suggest these cases exhibit diffuse changes and variability in the
location of changes (60, 63, 65, 66), although there is perhaps
overlap with impact-related mTBI cases [e.g., (61, 70, 71)].
Second, there are intriguing hints of differential metabolic, gray
matter, alterations, particularly for fMRI analyses where the
injuries from blast are associated with milder impairments on
some performance tests. The finding of a variance in the default
mode network response pattern in blast and non-blast TBI cases
may point the way to differences in mechanism (66). Lastly, some
observations suggest MRI differences are observed in cases where
clinical diagnoses of mTBI are not reported (60, 61). Relative to
sex differences (most of the cited studies had few or no female
participants), white matter alterations and fMRI changes may
provide important clues, including potential differences related
to activity during performance tasks (66).
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Women and Military-Related TBI
Research on military health and blast-induced brain injuries
has largely focused on males, as they have historically made
up the majority of service members of the US military and
have been more likely to occupy combat roles. However,
∼300,000 female service members were deployed to Iraq and/or
Afghanistan between 2001 and 2013 (72), and they currently
make up 15% of active-duty armed forces. The incidence
rate of TBI in deployed women is estimated at ∼10%, about
half that of deployed men (16, 20, 45, 73–75). It should
be noted that the causes of TBI in military women differ
substantially from those of men; intimate partner violence
(including physical and sexual assault) is recognized as a
significant risk factor for TBI in military women compared to
their nonmilitary peers (14, 19, 76). However, the increasing
participation of women in combat operations during deployment
in recent years continues to put them at greater risk of
combat-related TBI (77), and like male service members, blast
events have been identified as the greatest cause of combat-
related injuries, including mTBI, in women during OIF/OEF
(16, 78).

Overall, following combat-related mTBI, women are likely
to suffer the same symptom clusters as their male military
peers, such as PCS, PTSD, psychiatric complaints (i.e., anxiety
and depression), and somatic symptoms (e.g., vestibular and
somatosensory dysfunction) (16–19, 45). However, several
studies comparing the outcomes of male and female service
members following mTBI have reported differences in the
frequencies of specific diagnoses and symptoms between men
and women. In a recent scoping study describing the literature
addressing gender differences in outcomes following TBI in
military populations, Cogan et al. (19) identified 29 relevant
articles from 2000 to 2018. One clear conclusion was that
women are very underrepresented; most of the studies were
not specifically focused on gender differences, and women
represented <20% of the sample. The most consistent finding
to date was that following a TBI, females in the military are
subsequently more susceptible to depression than male service
members and veterans (16, 19, 45, 79, 80).

In addition to depression, there is evidence that female service
members may have increased susceptibility to anxiety disorders
and/or PTSD following mTBI. The literature describing gender
differences in PTSD symptoms in military personnel is relatively
broad and reports mixed results, possibly as a result of variations
in the definition of TBI or methodological differences (18). In
an earlier study, Iverson et al. (16) reported that although men
were more likely to be diagnosed with PTSD alone following
mTBI, women were more likely to have PTSD with comorbid
depression. Women were also more likely to suffer from a non-
PTSD anxiety disorder and/or to have more than one psychiatric
diagnosis compared tomen. By subsequently adjusting the model
for blast exposure, the authors were able to provide some
insights into the potential specific contributions of blast injury
to sex differences in outcomes following TBI; there were no
longer differences in the likelihood of a PTSD diagnosis alone,
frequency of non-PTSD anxiety disorders, or diagnosis of more
than one psychiatric condition (16). These results suggest that

blast may uniquely contribute to the female susceptibility to
anxiety disorders and PTSDwith comorbid depression and to the
diagnosis of multiple psychiatric diagnoses.

Because of the complexity of ascertaining relevant variables
for blast mTBI etiologies, it is important to supplement the
clinical literature by applying preclinical animal research. To
further understand the role of sex-related variables as proximate
causes for sex differences, animal modeling enables greater
control of conditions and the ability to more invasively explore
cellular response mechanisms from blast exposure. Following an
overview of approaches to the study of SABV as an independent
variable for blast TBI preclinical work, there is a summary of what
is presently known concerning blast bioeffects on pituitary and
the hypothalamic–pituitary–adrenal (HPA) axis, the autonomic
nervous system, the vasculature, and inflammation.

In addition to the NIH mandate regarding consideration of
SABV in clinical and preclinical research, a second policy relates
to scientific rigor by employment of preclinical experimental
practices that derive valid and reliable findings to adequately
address research gaps, set the stage for discovering important
mechanisms underlying sex difference and properly modeling
translational testing (81–83). Accordingly, there is discussion for
a second important feature of preclinical blast research related
to principles for application of shock tubes, the most common
approach for preclinical modeling.

SABV IN BLAST MTBI RESEARCH

SABV
Approaches to the study of SABV in animals has been clearly
articulated in several reviews (84–87). With respect to TBI,
data summarized by Gupta from 43 studies that examined sex
differences, using many different outcome criteria following a
variety of TBI models (CCI, FPI, CBI), concluded that females
fared better in 55% of the studies, and none indicated males had
a better outcome (13). Their Table 2 included a single preclinical
blast paper by Russell and colleagues; reviewed below in HPA
Axis Dysfunction in Laboratory Animals After Blast. The review
by Rubin and Lipton (29) of 50 articles found high variability
in outcomes, but they too concluded that generally females fared
better after injury by FPI, CCI, and weight drop.

For preclinical study of SABV and blast effects, Table 1

summarizes the main dimensions for investigation of sex
as an independent variable. The aforementioned publications
regarding experimental design are excellent summaries, and the
most salient issues related to sex chromosomes and steroid
hormone status are discussed. Subsequently, what are perhaps the
most relevant bioeffects of blast exposure, as dependent variables,
are outlined, with particular attention to previous preclinical
findings in blast TBI experiments.

Gonadal Hormone Effects
Some evidence suggests there is no relationship for estrous
phase as a significant impact on outcomes after TBI (88–
90). However, potentially subtle endocrine factors that have
important mechanistic ramifications may be overlooked when
studies do not account for potential differences related
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TABLE 1 | Approaches to sex as a biological variable in preclinical blast research.

Sex-related variable Experimental approach Relevancy

Sex chromosomes Male testis-determining gene, Sry mouse model,

X* mouse strains

Permit study of the impact of Sry and possibly other Y chromosome–encoded

genes; X chromosome (single X, XX, models) permit study of the genetic load of

the X chromosome

Estrous cycle factors Assessment and comparison of endocrine status Ascertainment of ovarian cycle effects with injuries sustained at a particular stage

of the ovarian cycle may lead to insights regarding differential effects on outcome

Gonadal hormone status “Endocrine ablation” by gonadectomy; hormone

replacement

Assess gonadal steroid effects upon dependent variables. Other factors include

reproductive status, possible relevancy to contraceptives, hormone replacement

therapies, steroid or anabolic steroid use, exposure to endocrine disrupting

chemicals (e.g., phthalates, bisphenol), menopause, eating disorders, intense

physical activities

to estrous cycle stage in females (84). There is strong
evidence supporting the neuroprotective roles of estrogen and
progesterone, suggesting that female animals may be more
resistant to the deleterious effects of injury during the proestrous
phase of the cycle, when levels of hormones are at their
highest. If there is specific interest in estrous cycle effects, initial
studies to evaluate SABV related to blast can be directed to
the basic hormone status of laboratory animals by assessment
of menstrual cycle. Becker et al. (84) suggest the experimental
design could compare male rodents with four groups of females,
one group at each stage of the estrous cycle. This allows the
researcher to determine if sex and/or the variable levels of
steroid hormones across the estrous cycle affect the dependent
variable(s) in question. To evaluate the estrous cycle stage,
vaginal smear examination should be performed daily, and it has
been suggested to perform the examination for at least 8 days
immediately prior to an experiment (91). Likewise, for better
assignment to hormone status, it is suggested that animals be
excluded should they not exhibit regular cyclicity (91). When
experimental questions relate to the estrous cycle, these are
important considerations, and care should be taken in defining
estrous cycle stage, as hormone levels change very rapidly during
the day, particularly during proestrous when progesterone levels
are peaking (84).

There has been speculation concerning the significance of
estrous status in laboratory animals, and some have warned that
this is challenging in rodents with shorter cycles where there is
inherent variability, even across time of day. Disregarding cycle
effects was considered problematic because females may exhibit
greater data variability, perhaps complicating interpretation.
Alternatively, it is argued that employing female animals at
random/cycling stages of estrous more accurately represents
the clinical condition. Nonetheless, comparisons of measures
in female and male mice and rats suggest variability may
not be a significant factor (92–94). Shansky (94) has pointed
out other related factors that affect hormone status should be
considered, including housing conditions, which was found to
affect variability and that group housing of male rodents can alter
testosterone levels. Circadian or seasonal factors may also come
into play as a variable (95, 96). In addition, some reports relate
changes due to female hormonal status, and findings from an
initial study of sex differences may suggest the need for closer
examination of estrous cycle as an important variable.

Sex Chromosomes
The pioneering observations of Nettie Maria Stevens
documented the spermatozoa of Tenebrio molitor mealworms
contain nine similarly sized chromosomes and a smaller
chromatin element related to male offspring; in contrast to
spermatozoa with 10 chromosomes of equal size associated
with female progeny (97). Thus began the intriguing pursuit of
sex chromatin differences, subsequent XY nomenclature, and
attention to their potential significance in sex-linked disorders
(98). The genetic sex of neurons, glia, the cerebral vasculature,
and other support cells of the central nervous system and
the response of peripheral organ systems to blast injuries are
important variables for investigation. Potential differences
attributable to sex chromosome effects relate to X chromosome
exclusion, where in female progeny the maternal X chromosome
(XM) or the paternal X chromosome (XP) is silenced by X
chromosome inactivation (XCI) to partially rebalance the level
of expression (99). XCI leads to a mosaic expression pattern in
females where the cells in an organ express XM or XP, although
across the female population there is further complexity related
to the degree of mosaicism and that a proportion of genes on
the “silenced” X chromosome escape inactivation (99). Genes
encoded on the male Y chromosome may also have differential
effects on cell phenotype and responses to injuries if the pathways
are not also homologously encoded on X chromosomes (84).

The mammalian Y chromosome encodes the testis-
determining gene, Sry, which initiates testes formation and
spermatogenesis, as well as a small number of additional genes
with X-linked homologs that, in females, escape XCI (99).
One approach to understand the differential contributions of
hormone effects and sex chromosome effects employs the “four
core genotype” design in mice (100). The four genome design
includes deletion of Sry from the male Y chromosome and
insertion of the gene in an autosome. This allows the creation
of four genomes: (1) an XY complement with the Sry gene
for XY mice with testes; (2) an XY complement without Sry,
resulting in XYmice with ovaries; (3) an Srymouse with the gene
incorporated into an autosome resulting in an XX mouse with
testes; and (4) an XX mouse with no copy of Sry, resulting in
XX mice with ovaries. The mice with similar gonadal forms then
permit investigation of the sex chromosome complementation
(XX vs. XY) in the context of gonad-related hormonal status
(101). To date, this paradigm has not been employed in
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preclinical blast studies. However, sex chromosome differences
have been associated with pathological effects. Li et al. (102) used
a cardiac ischemia/reperfusion model and found infarct size was
greater with two X chromosomes, independent of gonadal status,
compared to XY mice. A second study in this report employed
the XY∗ mouse model that allows comparisons for the number
of X chromosomes and likewise found XX mice exhibited poorer
recovery than 1X females (102). Other sex chromosome–related
models available, and more complex genomic analyses can be
applied (98, 103, 104). No preclinical studies have examined sex
chromosome effects after blast injuries.

Gonadal Steroid Effects and Steroid Receptors
Despite some debate regarding menstrual cycle status as a
significant factor in TBI outcome (see Gonadal Hormone Effects),
gonadal steroid action has been a main, classic focus for the
study of sex differences. This is particularly relevant because
there is strong evidence of neuroprotective roles of estrogen
and progesterone after a range of brain injuries (105–108). As
an initial procedure for the study of SABV, Becker et al. (84)
describe a standard “two-step approach” for the study of SABV
that comprises an initial effort to determine steroid action by
gonadectomy, followed by procedures to provide replacement of
the hormone. In the first procedure, male and female animals
receive a gonadectomy as a comparison to endocrinologically
intact animals. Separate groups of animals receive a sham
procedure where the identical surgery is performed to externalize
the gonads followed by replacement in situ. At specified times
after the procedure, animals are utilized in the study. If the
gonadectomy resulted in an experimental change for the variables
under study, the second step is undertaken where gonadal
steroids are administered to gonadectomized animals, whereas
a control group receives similar treatment by administration
of the vehicle diluent for the hormone(s). Becker et al. (84)
note that a third group can be incorporated in this step by
including gonadally intact animals as a comparison. Differences
are preliminarily interpreted as indication of a gonadal steroid
contribution to the biological process under study.

There are additional variables to consider for the two-
step approach, including the timing of testing (e.g., surgical
treatment or hormone replacement following brain injury)
following gonadectomy in the first step as well as after hormone
replacement in the second phase of the study. Experienced
investigators suggest that the administration of gonadal steroids
should be monitored to ensure the replacement procedure
provides levels of steroid within the physiological range. Further
studies can employ the same approach with compounds that
block steroid synthesis or that disrupt steroid receptor effects,
or to determine the role of clinically relevant intervening effects
on steroid action such as contraceptives. Maintenance on the
contraceptives, desogestrel and drospirenone, e.g., was found to
reduce the severity of stroke neuropathology in ovariectomized
mice (109). Finally, further experiments can be performed to
determine the role of specific steroid receptors subtypes. In one of
the first articles to explore the role of the two estrogen receptors
(ERs), Dubal et al. (110) employed a stroke model that occluded
the anterior cerebral artery in ovariectomized mice. Some of

the mice were given estrogen replacement in Silastic capsules
or the vehicle alone, sesame oil. In the ERα knockout mice
provided with physiological levels of 17β-estradiol, level of injury
was equivalent to what was observed in wild-type mice or ERβ

knockout mice that were not provided with estradiol, indicating
the α receptor mediates the neuroprotective effects of estrogen.

Bioeffects of Blast Exposure
A second level of inquiry relates to blast-related mechanisms—
the dependent variables—that may be differentially affected by
sex differences. Outlined below are the most salient biological
effects known to date for the impact of blast exposure
relevant to SABV. The discussion for some effects begins
with clinical descriptions, but some of the reportage concerns
findings with non–blast-related methods that may help point to
relevant effects, including sex-relevant differences of pituitary
and HPA axis function, and blast effects on the autonomic
nervous system function, the vasculature, and inflammation.
Although researchers often focus on a single dimension of
outcome, investigators have recognized that TBI consequences
demonstrate it manifests as a systemic condition (111, 112).
Likewise, it is probably a significant truism that blast exposures
should be considered a polytrauma. High-energy shock wave
exposure injures, or at least perturbs, all organ systems, leading
to complex, reciprocal interaction between peripheral organs and
tissues and central nervous system networks.

Clinical HPA Axis Dysfunction After TBI and Blast

Exposure
Although more studies of military-acquired, particularly blast-
related, mTBI in women are required, a picture is emerging of
a gender dichotomy in the stress response following mTBI. There
are clear sex differences in non-TBI civilian populations in the
lifetime susceptibility to depression and anxiety disorders (113,
114), as well as evidence from the civilian literature that women
may be more susceptible to psychiatric disorders following mTBI
[e.g., (115–118)], although data are not entirely consistent (13).
Anxiety and depression, as well as PTSD, are linked to the HPA
axis, the major neuroendocrine system that controls responses to
stress (119–122).

The primary stress hormone is cortisol (CORT; corticosterone
in laboratory rodents), which is released by the HPA axis
when activated by a physical or psychological stressor. The
stress response is characterized by release of corticotropin-
releasing factor (CRF) from the paraventricular nucleus (PVN)
of the hypothalamus, which binds to CRF receptors on the
anterior pituitary gland. The anterior pituitary gland secretes
adrenocorticotropic hormone (ACTH) into the bloodstream,
where it reaches the adrenal cortex and binds to receptors to
stimulate the synthesis and release of the steroid hormones,
glucocorticoids (e.g., CORT), and mineralocorticoids (e.g.,
aldosterone). Steroid hormone receptors are located throughout
the brain [see (123) for more detailed review], including limbic
regions involved in emotion and responses to stressful stimuli.

Clinical studies have demonstrated HPA axis dysfunction in a
proportion of individuals several months to years following mild
to moderate TBI (119, 120, 124). The pituitary gland is especially
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vulnerable to damage, with multiple potential syndromes
resulting from hormonal deficiencies (e.g., hypogonadism,
hypothyroidism, central diabetes insipidus) (125, 126). Little
is known about HPA axis disruption following blast injury,
although there are reports indicating decreases in pituitary
function up to 2 years following blast-related mTBI (127)
or moderate to severe blast TBI (128). A follow-up study
found that pituitary dysfunction following blast-related mTBI
was associated with increased neuropsychiatric symptoms (i.e.,
anxiety, irritability) compared to individuals with mTBI and
normal pituitary hormone levels (129).

HPA Axis Dysfunction in Laboratory Animals After

Blast
In addition to the insight provided by clinical studies,
translational studies employing animal models have allowed
further probing of the pathological underpinnings of TBI-
induced HPA axis dysfunction (122, 130–136), as well as the use
of validated and controlled behavioral paradigms for measuring
anxiety- and depressive-like symptoms following experimental
TBI (137, 138). Serum levels of ACTH have been shown to
decrease 1 month following blast injury in male rats, followed by
an increase at 3 months postinjury, suggesting a biphasic blast-
induced hypothalamic–pituitary dysfunction (139). Recently,
Zuckerman et al. (140) evaluated the CORT response in male
rats at more acute time points following blast exposure. Animals
exposed to blast had elevated CORT levels 3 h following blast
that returned to baseline within 5 h. However, rats with a PTSD-
like phenotype, as assessed by their behavior 1 week following
injury in the elevated plus maze (EPM; a test for anxiety) and
the acoustic startle response (tests for heightened responses to
a sensory stimulus), had blunted CORT responses compared to
blast-exposed rats with a “well-adjusted” phenotype (140).

Although investigators have recently turned their attention to
sex factors in a variety of TBI models [for reviews, see (13, 27–
29)], preclinical studies of blast effects, and specifically on the
effects of blast on HPA axis function and/or the development of
anxiety and depressive disorders, remain essentially nonexistent.
In fact, Russell et al. (136, 141) are the only investigators to date
to assess sex differences in the effects of blast-induced TBI in an
animal model. In two publications, they reported the effects of
mild blast TBI on central and HPA axis function (136) and on
CRF receptor gene expression and anxiety-like behaviors (141).
Sex differences following exposure to blast overpressure in the
advanced blast simulator (ABS; described in more detail below)
were reported in both studies.

First, the authors employed a restraint-induced stress model
and demonstrated that while blast injury increased the restraint-
induced rise in CORT levels in males, the opposite effect was
observed in female mice, with blast attenuating CORT levels in
restrained animals compared to sham-treated mice. Blast did not
alter CORT suppression in the dexamethasone-suppression test
or affect the expression of pituitary or adrenal genes involved
in ACTH or CORT synthesis or secretion, suggesting a central
disruption in feedback, rather than a peripheral effect, as the
more likely source of the sexually dimorphic response to injury.
Examining potential central nervous system sources, it was first

determined that there were no effects of blast injury in either
males or females on mRNA expression of mineralocorticoid
and glucocorticoid receptors at central feedback regulation sites:
the PVN or other brain limbic structures [e.g., amygdala,
hippocampus, bed nucleus of the stria terminalis (BNST)].
However, a restraint-induced increase in CRF neuron activation
was differentially altered by blast injury in male and female
mice: in males with restraint treatment, blast (compared to
sham treatment) reduced CRF neuron activation in the PVN;
in females, restraint-treated mice receiving blast treatment had
increased levels of CRF neuron activation in the PVN. Retrograde
tracing determined that there was a TBI-related decrease of
CRF neurons in female mice primarily in preautonomic (non-
neuroendocrine) neurons in the PVN, suggesting a decreased use
of the preautonomic system in dealing with stressors, leading to
a possible blast-induced disruption in CRF outputs to brainstem
structures regulating autonomic function. There were no blast-
induced changes in the percentage of activated CRF neurons that
were endocrine projecting or preautonomic projecting in male
mice, and the authors hypothesized that disruption in limbic
structures of the HPA axis may result from blast-induced TBI.

A second study was designed to measure changes in the
expression of CRF receptor subtypes 1 and 2 (CRFR1, CRFR2,
respectively) in limbic structures following blast-induced brain
injury in male and female mice, as well as to assess the sex-
dependent effects of blast on anxiety-like behaviors (141). CRFR1
is widely distributed throughout the brain, and blocking these
receptors reduces psychiatric symptoms, whereas expression of
CRFR2 is more localized, and activation of these receptors
dampens stress responses (142, 143). Blast did not affect CRFR1
expression in either male or female mice, but the injury altered
CRFR2 expression in limbic structures in a sexually dimorphic
way. The restraint-induced increase in CRFR2 expression was
reduced by blast injury in the dorsal hippocampus in females, and
in the amygdala and anterior BNST of male mice. In addition,
in males, blast injury increased basal CRFR2 (non–restraint-
induced) expression in the ventral hippocampus. These changes
in CRFR2 expression were paralleled by decreased time spent
in the open arms of the elevated plus maze by both males
and females, indicating elevated levels of anxiety. The authors
suggest that the increase in anxiety following blast injury results
from the downregulation of CRFR2 and reduced compensation
for the angiogenic effects of the CRFR1 (141). This hypothesis
is supported by the observation that CRFR2 knockout mice
have increased anxiety-like behaviors (144). Furthermore, the sex
differences observed in regional changes in CRFR2 expression
post-TBI suggest that male and female mice employ different
limbic circuits to cope with the effects of TBI.

Autonomic Nervous System Function After TBI
During the acute period following TBI, systemic effects
appear to result from excessive catecholamine release and
subsequent autonomic dysfunction. In more severe cares,
autonomic dysfunction leads to transient episodes of paroxysmal
sympathetic hyperactivity (PSH), which includes tachycardia,
hypertension, hyperthermia, spasticity, and tachypnea (145–
147). A recent review by Baguley and colleagues (148) provides
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support for an excitatory:inhibitory ratio model. TBI that
includes damage to the mesencephalon results in the loss of
descending inhibitory inputs to spinal pathways, resulting in
acute, non-nociceptive stimulatory, autonomic overreactivity.
Fernandez-Ortega et al. (149) studied 179 severe TBI patients
and found ∼10% of the sample exhibited PSH; all were male
patients. For blast wave exposure, acute autonomic responses
are elicited from pulmonary injuries (“blast lung”), an organ
particularly susceptible to damage, resulting in cardiorespiratory
distress [c.f., (150)]. Blast lung symptoms include bradycardia
and prolonged hypotension, as well apnea episodes followed by
rapid, shallow breathing, where bradycardia and hypotension
are a result of vagal reflex responses, whereas the hypotension
results from autonomic changes, direct heart damage, and
the acute release of the potent vasodilator, nitric oxide [cf.,
(151, 152)]. Pulmonary hemorrhage and edema, as well as
later proinflammatory mediators, are activated, which further
compromise pulmonary function (152, 153). To date, there
appear to be no publications that have explored PSH after blast
injuries, as well as no studies of PSH and more severe cases of
blast lung that compared the sexes.

Evidence for persistent cardiovascular changes after milder
cases of TBI has been reported, with alterations in cardiac
rhythm variability providing an overall, integrated indicator
of autonomic function (154–156). In milder insults, it is
hypothesized that injury results in subtle anatomical lesions in
central autonomic networks that give rise to functional changes
seen in potentially unhealthful or lethal cardiac irregularities
(154). Manifestation of dysregulation may only be evident
with close physiological monitoring of autonomic response
challenges, such as standing, but less conspicuous changes are
also reported during the resting, supine state (154). The six
studies reviewed by Bishop et al. (156) appear to have focused
on male athletes. "However, Hilz et al. (154) reported on three
females and 17 males. La Fountaine et al. (157) studied three
subjects (two females, one male), and Senthinathan et al. (158)
studied seven females and four males, but none of the reports
analyzed sex differences. For blast injury, there appear to be no
studies that have examined SABV for cardiac variability or other
autonomic changes. However, SABV for autonomic differences
is important. In general, females exhibit greater vagal activity,
whereas males generally manifest higher sympathetic activity [cf.,
(155) for review], and uninjured females exhibit a greater baseline
of heart rate variability (159). Likewise, gonadal hormones are
known to modulate autonomic nervous system networks, where,
e.g., estrogen administration to male and ovariectomized rats
increased cardiac baroreflex response (160, 161).

Vascular Alterations From TBI

Evidence of physical damage
Perhaps on par with reports of significant changes in
neuroinflammation after blast exposure (see below), vascular
alterations from blast exposure have received the greatest
research attention. A particularly vulnerable organ to blast
exposure is the pulmonary system, where more energetic shock
waves result in significant lung contusions and accompanying
autonomic dysregulation (see Autonomic Nervous System

Function After TBI) and further trauma with leukocyte
recruitment and the release of proinflammatory signals [(153)
and see Inflammatory Factors]. However, in addition to lung
response, other effects are observed throughout the vasculature.

An oft-cited hypothesis for the initial physical effects for
brain injury relates to “hydrodynamic pulse through venous
vasculature,” a mechanism purported mainly by Cernak (162,
163). Briefly, the energy from a blast exposure is transferred
to the body causing a rapid alteration in abdominal, thoracic,
and central venous pressure. Cernak (163) cites Gelman’s
(164) report that ∼70% of blood volume in humans is in
the venous compartment compared to 18% in arteries and
the remaining 3% in terminal arteries and arterioles. The
abrupt pressure change in the arterial and venous vasculatures
further contributes to rapid pressure changes in the common
carotid artery and inferior vena cava, inducing fluid sheer
stress that may result in platelet-activating factor–induced
neutrophil activation (163, 165), as well as additional complex
interactions (163). Some reports have described peripheral
organ damage for endothelial barriers (166). However, a blast-
mimicking pulse to the thorax of anesthetized rats also causes
widespread neuroinflammation, evident by tumor necrosis factor
α in perivenular regions in the brain and activated microglia
and macrophages adjacent to veins (167). Investigations in
rodents also have described cases of blast exposure resulting
in signs of minor cerebral injury, including instances of tears
of penetrating cortical vessels, microhemorrhages, swelling, and
end-feet degeneration of perivascular astrocytes (168–170). All
of the aforementioned studies have employed male laboratory
rodents. Finally, the injury effects of blast exposure, having
an impact on central functions, including central autonomic
networks and immunomodulation, are potentially complex
interactions where peripheral injuries affect cerebral functions
and reciprocal links from brain to peripheral organs (112).

Cerebral vasospasm
A common sequelae to blast exposure is cerebral vasospasm
(171). The publication by Armonda and colleagues was one
of the first clinical reports to describe this phenomenon, most
frequently evident in more severe cases (172). Of interest was
that the vasospasm occurred as a delayed phenomenon, peaking
about 2 weeks after blast injury and lasting for at least a
month, the length of the study (172). In the report of Armonda
et al., the sex of the casualties was not reported, but ∼50% of
the injured patients exhibited vasospasm. Although there have
been no descriptions of sex differences in vascular reactivity
after blast exposure, young females admitted to hospitals
after impact-related TBI were found to show vulnerabilities.
Czosnyka et al. (173) observed that after accidents young
women exhibited greater cerebral hypertension and reactivity.
In severely injured patients [requiring intubation, mechanical
ventilation, intracranial pressure (ICP) monitoring], Sorrentino
et al. (174) likewise reported a vulnerability, where a more
favorable outcome was observed if younger female patients had
lower ICPs and lower pressure–reactivity index (PRx; a measure
of cerebral autoregulation), perhaps in line with reports of higher
vulnerability in females (and older patients) with ICP. Hamer
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et al. (175) recently reported observations in young athletes
(19–21 years of age) who had sustained single or multiple
concussions. Males were found to exhibit lower cerebral blood
flow in temporal regions, whereas female athletes with a history of
concussions were not different from uninjured females. However,
females who had sustained multiple concussions, compared
to women who sustained a single concussion, exhibited lower
cerebral blood flow in the left anterior cingulum and right
cerebellum andmiddle occipital gyrus. The role of vasospasmwas
not addressed, but the authors speculate the alterationsmay relate
to long-term central metabolic activity changes or perhaps a loss
of cerebral volume from injuries.

Alterations in vascular reactivity have been reported in
preclinical studies, but studies are skewed to males. As noted by
Mollayeva et al. (176), there appears to be a discrepancy in the
preclinical literature, where more frequently female laboratory
animals exhibited better cerebral hemodynamics after TBI. A
study by Armstead et al. (177), e.g., studied pial microvascular
responses after fluid percussion injury in piglets. Following
injury, male piglets were observed to exhibit greater reductions
in pial artery diameter, cortical cerebral blood flow, and cerebral
perfusion pressure, as well as greater elevation of ICP after
injury (177).

Inflammatory Factors
In addition to signs of vasculature damage, inflammation is
often observed acutely with proximate tissue damage, as well
as over the long term as a secondary consequence (27). Cernak
et al. (178) pioneered in describing acute systemic inflammation
after blast exposure. “Local” effects of blast exposure were
observed, including the activation of eicosanoids—bioactive,
locally released immune system signals (179). This group
sampled plasma from 65 blast-injured male personnel, using
an inclusion criteria of signs of lung injury, and found higher
blood levels of thromboxane A2, prostacyclin (PGI2), and
sulfidopeptide leukotrienes, in comparison with 62 patients
who sustained similar levels of injury severity, but had not
sustained blast exposure. Subsequent studies using whole-body
imaging in mice found elevated myeloperoxidase activity, a
measure of activated phagocytes, throughout the gastrointestinal
tract, lungs, and brain that persisted for at least 1 month,
with central nervous system response suggesting a higher
expression at 1 month, the last time point assessed (180).
Similar observations have been reported from blast trauma in
the lungs and brains of male rats (181). Gorbunov et al. (153)
described pulmonary contusions from shock wave exposure
(alveolar rupture and blood extravasation) and the release of
proinflammatory signals, including macrophage inflammatory
protein-2, interleukin 6 (IL-6), monocyte chemoattractant
protein-1, and cytokine-induced neutrophil chemoattractant-2
[summarized in Gorbunov et al. (153)].

Central nervous system inflammation is a key variable
after TBI. Investigators hypothesize brain injury leads to
chronic, lower-level neuroinflammation that results in insidious
neurodegeneration. Johnson et al. (182), e.g., observed evidence
of neuroinflammation in 28% of their TBI patients at more than 1
year after injury and up to 18 years after insult. In preclinical blast

injury studies, microgliosis, usually assessed by alterations in Iba-
1 staining, is regularly observed (168, 181, 183–188). Likewise,
reactive astrocytes, which may mediate proinflammatory and
anti-inflammatory effects, are a common benchmark (181, 189–
191). In all of these reports, male laboratory animals were used
exclusively. Other evidence of inflammatory signals following
TBI is commonly reported. For example, Späni et al. (27) recently
summarized their findings from a number of their studies that
levels of several cytokines and chemokines were elevated in the
brain after closed head injuries, including IL-1β, IL-6, tumor
necrosis factor α (TNF-α), IL-10, CXCL1, and CCL2, and sex
differences were noted where the concentrations IL-6, TNF-
α, and CCL2 levels were higher in female mice after injury,
compared with males. Blast exposure likewise results in cytokine
responses, which includes IL-1β, IL-6, IL-12, IL-18, IFN-γ, and
TNF-α, and chemokines, monocyte chemoattractant protein-1,
GRO, and RANTES [e.g., (185, 189, 192–195)]. However, no
studies to date that evaluated protein or mRNA changes have
examined sex differences in expression in animal models.

PRECLINICAL MODELING OF BLAST FOR
THE STUDY OF SEX DIFFERENCES

The Challenge of Modeling Blast Events
As just reviewed, interpretation of the patient literature on
blast effects is a challenge and can at best be viewed as
“unsettled” regarding bioeffects and potential differences based
on sex. Likewise, there is a dearth of preclinical reports that
have investigated SABV. However, for preclinical research of
sex differences, this can be viewed as a unique opportunity
to get things right. Likewise, there are compelling reasons for
getting things right for investigators to recognize the relevance
of matching, as best as possible, in-laboratory blast experiments
to real-world scenarios. Experimental approaches to preclinical
modeling of blast effects then relate not only to present efforts
and mandates to evaluate sex differences (26), but also for
recognition of potentially important bioeffects from blast. A
clear understanding of blast exposure effects has extraordinary
relevance to how to direct efforts to treatment, requiring
rigorously established models. This section reviews important
parameters that have been recognized for their role in reaching
valid conclusions for preclinical research studies. Previous
approaches, which have not to date so much addressed blast
research, have shown how complex sex difference studies can
be, and—consequently—strong experimental design is critical
to what may be small but significant experimental effects. The
majority of publications related to neurobiological effects have
employed laboratory shock tubes using compressed gases (40,
196). This will be the emphasis in the discussion below.

Modeling blast effects is a task. Over five decades ago, White
(197) summarized the state of the science for understanding
“shock and blast biology.” He recognized the vast challenges
of outlining the relevant physical and biological parameters
for delineating the hazards to man. White emphasized the
need for closer collaboration especially between physicists
and biologists—although he makes note of critical additional
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collaboration with engineers, architects, and physicians—for
each expert to bring their discipline to bear on this problem.
The need for integration continues to be echoed by experts,
where only through collaborative efforts between blast physicists
and biologists (198), military-relevant and academic researchers
(199), and “surgical engineers” (200) and that there can be
progress by learning from clinical cases that elucidate what
symptoms require mimicking in animal studies (199). The
blast neuroscience or neuroendocrinology investigator, then,
should seek collaboration and ongoing consultation with the
appropriate experts who can immensely improve the quality of
the research effort.

Blast Events
In an explosion, the rapid expansion of detonation products
drives a supersonic shock wave into the surrounding air. The
ambient air is compressed in microseconds as the shock front
passes a location, after which the pressure falls rapidly to
pressures below ambient levels over the timescale of milliseconds.
The shock front is also associated with an immediate jump in
air-flow velocity, or “blast wind,” which can be of hurricane
strength, although this also decays rapidly along with the
overpressure. The majority of TBIs sustained by blast are
classified as mTBI, defined by the Department of Defense as a
loss of consciousness <30min, posttraumatic amnesia for 24 h
or less, and alteration of consciousness for a duration <24 h
(201). Brain injury resulting from explosive blast occurs as a
result of several mechanisms: (1) primary—direct impact on
bodily tissues caused by the abrupt variation in air pressure
resulting from the blast overpressure wave, (2) secondary—
penetrating or blunt injuries as a result of debris set in
motion from the blast, (3) tertiary—coup/countercoup injuries
resulting from acceleration and deceleration of the body and
head or the head/body striking the ground or other object
(202–204). Although most blast-induced brain injuries result
from primary through tertiary mechanisms, also spoken of
are quaternary injuries that result from intense heat (burns)
and quinary injuries such as infections, radiation illness,
tetanus, and poisoning that are varied and are the result of
other injurious factors that are released at the time of the
explosion (199).

In a free-field setting, the Friedlander curve (Figure 1A) is
used as themodel for an ideal blast wave, and with specific design,
this waveform can be replicated by especially designed laboratory
shock tubes (206, 207). The key feature of the blast wave is the
shock front, causing a nearly instantaneous change in the gas-
dynamic properties of the air such as the static pressure, flow
velocity, density, and temperature. The shock front thickness is
less than a micron translating to a rise time of the order of a
nanosecond; this shock front itself is capable of tissue disruption
due to the extreme rate of loading. While the human body can
endure extremes of pressure (300 psi in the case of “free-divers”),
tissue is highly sensitive to rate of change of pressure, in this case
in the form of a supersonic wavefront. Following the shock front,
the gas-dynamic conditions decay uniformly to below ambient
levels (the negative phase) before gradually returning to ambient.
The duration of the positive phase is dependent on the scale

of the blast being several milliseconds in the case of a typical
roadside IED. Simplistically, the static overpressure of the wave
causes crushing action, whereas the combination of high-flow
velocity and high air density represents the “blast wind” effect
causing displacement action and the tertiary blast injury effects
described earlier.

Blast physics experts have emphasized the extreme complexity
of real-scenario explosions and that while it is one means
for setting experimental conditions, including well-designed
shock tube studies, the Friedlander wave has been adapted
as a model for free-field explosions, but the waveform in no
way mimics the high variation and complexity of conditions
(208). In real-world scenarios, the target and surrounding
objects have a great influence on the blast waveform, and
shock wave interactions with surroundings lead to complex
reflected waves that can amplify intensity and be followed
by secondary shocks and variable negative shock wave phases
(208). An explosion above ground, e.g., will cause a complex
shock wave due to the effect of the ground reflection. A
compound wave structure develops involving a Mach stem with
shock wave properties of much greater severity than the incident
blast (209). Likewise, when a shock wave encounters a wall
or traverses an enclosed space, the reflected wave can be 2–14
times the magnitude of the incident wave (209, 210). For an
IED, the shock wave characteristics are altered by a number
of interacting factors such as charge shape (e.g., IEDs designed
for penetration of vehicles), the encasement of the charge, and
the subsurface location that adds tertiary effects from the high-
velocity ejecta (dirt, casement, additional components of the IED
such as metal shard, toxic and exothermic chemicals). All of
these components add immeasurably to the complexity of the
injuries; laboratory conditions are simplifications. Nevertheless,
the idealized Friedlander-type waveform remains an important
reference standard for “free-field” blast exposures for the
purposes of laboratory research studies. Although a conventional
shock tube was never intended to generate the specially tailored
waveform distinctive of explosive blast, within certain important
constraints a good approximation can be achieved.

Factors associated with biomechanical differences related to
scaling, sex, and age are also of relevance. For example, blast
effect sex differences for human males and females have received
little attention, but—while there is significant overlap—there
are reported average differences in size and skull thickness that
can have different consequences on skull flexure during shock
wave loading (211–213). Likewise, the skull shape differences are
significantly dissimilar for different species used in preclinical
study (214), for the determination of sex differences in primates,
but mouse differences appear to be trivial (215). Lastly, the focus
in blast research has been on younger women and men. The
impact of hormone status in older adults and laboratory animals,
chronic disease conditions, and aging, as predominant and
overriding contributors to morbidity, has not been investigated
in blast studies.

Modeling Preclinical Blast for SABV
For several years now outstanding—and edifying—publications
outline details for proper design of shock wave studies (198,
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FIGURE 1 | Illustrations for implementation of shock tubes. (A) An example of a Friedlander-type shock wave initiated in an ABS. The tube has been previously

described (205), and in this setting, a Valmex (7270, Low & Bonar, Martinsville, VA) membrane was employed to generate a shock wave of ∼22 psi “peak pressure”

(green arrow). The time-pressure trace shows the almost instantaneous change (yellow arrow) in ambient pressure from the shock wavefront, as well as the positive

phase (red horizontal bar) and negative phase (blue horizontal bar) that follows as “blast wind.” (B) An example of the complex end-jet waveform. The shock wave

[A in upper left of photo in (B)] emerges from the end of the shock tube and quickly diffracts into a curved front. Following [B in (B)] is a “ring vortex” and [C in (B)] a

venting jet which has a different waveform than the static pressure phase of a Friedlander waveform [from (198)]. (C) Illustration of the flow field of a shock wave as it

diffracts around a test object. Larger test objects in a confined shock tube can alter the flow of the shock wave, distorting free-field conditions [From (198). (D)

Photograph of the ABS at the Uniformed Services University of the Health Sciences [cf., (205)]. The illustration depicts several aspects of optimal design of a shock

tube. The driver section (I) is distal to the position of the test section (II), where, e.g., an animal would be secured for study. Likewise, the position of the animal is distal

to the end of the tube, obviating end-jet effects (including reflected waves) resulting from the emergence of the shock wave from the tube.

206–208, 216–219). Several of the noted publications, e.g.,
emphasize the important issue of specimen placement. Most
experts indicated that placement of specimens just outside a
shock tube is problematic, because either the nature of the shock
wave in this position is extremely difficult to characterize, or
the shock wave has components that diverge significantly from
the conventional Friedlander profile. Specimen position near the
exterior of a shock tube results in exposures that are significantly
different from a free-field waveform, where the “exit jet” exhibits
anomalies (Figure 1B), including multiple peaks, rarefaction
waves, and unclear combinations of sonic blast and subsonic
effects, including large gradients in flow (198, 220). A second
important consideration is the size of the specimen relative to
the dimensions of the tube. Referred to as the “presented area,”
the specimen should not occupy more than 5–10% of the cross-
sectional area of the tube to not impede the steady flow of the
shock wave (Figure 1C), where blockage alters the free-field flow
of the shock wave and can cause ancillary tertiary effects from
specimen acceleration (198, 219). Optimal design of the shock
tube can provide a location inside the apparatus (Figure 1D) that
minimizes end-tube perturbations, including a strong reflection
wave generated when the tube has an open end, and can further
control the waveform by “tailoring” to reduce transverse and
longitudinal waves inherent in tubes (208). Likewise, when
attempting to mimic primary shock wave conditions, securing
the specimen is an important additional factor. The restraint

system may contribute to test injuries resulting from blast wind
effects that result in impacts with the holder (198). Sawyer et al.
(221), e.g., emphasize how dynamic pressure can cause head
movements, leading to increased staining for glial fibrillary acidic
protein, which is a common “confirmatory” injury observation
in shock tube publications. In their model, elevations in staining
were observed when the head was not restrained, while head
fixation, limiting effects to primary shock wave effects, showed no
change (222). In addition to the constraints described previously,
efforts should be directed to not solely apply a strong air blast as a
model for research without ensuring it meets characteristics that
are relevant to actual conditions.

Research Guidelines and Standards for
Results Reporting
Related to the need for proper design of shock studies, there
has been a recent convergence of views regarding a critical
aspect of blast research progress with the paramount need for
standardization of results reporting for blast studies (23, 206,
208, 210, 216, 223–227). Clear description of static, dynamic,
stagnation, and reflected pressure and how these properties
are measured and interpreted are critical. The necessity of
standardization of reporting was especially emphasized by
experts with concerns regarding the proliferation of blast
devices with questionable relevancy to real-life scenarios and the
potential for misleading interpretations of biological effects that
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TABLE 2 | Common data elements for preclinical blast research*.

Title Description

Blast-induced delivery device Device used to induce blast injury

Pressure wave type Friedlander wave is an instantaneous rise in pressure immediately followed by a decay curve; idealized blast

in open space; can be reproduced in tube

Detonation type Material for open field explosions, blast tube explosions

Detonation material quantity Quantity of material used for open field explosions, blast tube explosions

Driver gas Gas used to generate overpressure in shock tube

Pressure wave medium Medium through which blast wave travels to reach target

Distance from detonation For open-field exposures

Blast tube or column area Area of the distal end of the blast tube/column or shock tube/column

Blast tube length Length of the blast tube; use when no membrane is used

Shock tube driven section length Length of the shock tube driven section; use when membrane present

Membrane/diaphragm thickness Thickness of membrane between driver and driven sections of shock tube

Membrane/diaphragm burst method Indicate whether membrane is punctured or allowed to rupture by gas pressure buildup in driver section of

shock tube

Membrane/diaphragm burst pressure (shock tube) Pressure at which the membrane/diaphragm within the shock tube bursts

Tube end configuration Is the tube end “open” or “closed”

Placement of animal relative to shock tube Inside or outside the shock tube

Distance between the animal and the tube end Indicate how far animal is from the end of the shock or blast tube

Animal orientation to the blast wave Describe positioning of the animal relative to the blast wavefront

Overpressure peak (blast or shock) Incident pressure

Overpressure rise time A measure of how rapidly pressure changes from the ambient level to the maximum positive value, defined as

the time required for pressure to increase from 10% to 90% of the maximum positive value

Overpressure wave duration (pulse width) Full width at half maximum amplitude

Impulse Integration of overpressure with respect to time

Reflective wave overpressure Pressure measured following reflection or dampening; overpressure following interference

Blast wind pressure The post-shock or blast wind is important in describing the complete blast wave

Pressure sensor orientation Location of pressure gauge needed to assess temporal, spatial characteristics of measured pressure

Pressure sensor type Indicate type of pressure sensor used to characterize, calibrate, and/or record pressure

Pressure sensor sampling frequency Pressure sensor sampling frequency

Incident pressure time history (image) Incident pressure time history (image)

Body exposure Designates whether whole body is exposed to pressure or is partially shielded

Protective shielding Location

Protective shielding type Nature of material used for shielding

Reflective surfaces (where and type) Indicates the presence and nature of reflective or dampening surfaces integrated into blast wave path

Primary blast effects Methodology employed to isolate primary blast effects from secondary, tertiary, or quaternary effects

Secondary blast effects type Secondary blast effects include the effects of any projectile, including fragments of debris, propelled by the

blast that penetrates the skin. This may be modeled with a blast (primary blast effect) or in isolation to mimic

the secondary blast effects associated with a blast. Cross reference with penetrating models of brain injury as

appropriate

Secondary blast effects specifications Entered to further explain “secondary blast effect type.”

Tertiary blast effects type Tertiary blast effects describe when explosion propels body and brain is injured due to acceleration and/or

impacts the ground or a surrounding object. For animal models, could be used to describe the head hitting

the ground or object, or ground or object hitting head. For small objects, use secondary blast effects

Tertiary blast effects specifications Provide further explanation of methods used to induce tertiary injury and/or methodology to measure

resultant forces or accelerations. Cross reference with blunt force and/or acceleration model CDEs as

necessary. For head impact only (i.e., no blast), use appropriate CDE (e.g., weight drop model)

Quaternary blast effects Quaternary blast effects include toxic gas inhalation, thermal exposure, flash burns, microwave heating,

electromagnetic fields

Systemic injury Measures of systemic inflammation/stress as a result of the blast (including primary, secondary, tertiary,

quaternary effects)

Extracranial injuries Injuries other than brain injury that occurs as a result of the blast (including primary, secondary, tertiary,

quaternary effects)

Blast-induced specific preinjury surgical procedures Description of any presurgical procedures specific to the blast-induced neurotrauma model

Blast-induced specific postinjury surgical procedures Description of any postsurgical procedures specific to the blast-induced neurotrauma model

*From https://fitbir.nih.gov/content/preclinical-common-data-elements.
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do not reflect the actualities of blast biology and the difficulties for
synthesis and summarizing findings from such laboratories with
uncommon shock devices (23, 198, 199, 216, 217, 225).

Indubitably, this challenge of comparability fromTBI research
endeavors is not restricted to preclinical models of blast.
Clinical TBI investigators have been formalizing data reporting
since 2008 (228–230), with the formation of the Interagency
CommonData Elements Project for TBI, with an updated version
described in Hicks et al. (231). A website for clinical study
registration and data storage, as a repository permitting eventual
secondary meta-analyses by the TBI community, was established
by the Federal Interagency Traumatic Brain Injury Research
Informatics System for TBI Research (FITBIR; https://fitbir.nih.
gov/). The initiative got underway from a Workshop for the
Classification of TBI for Targeted Therapies held inOctober 2007,
by the National Institute of Neurological Disorders and Stroke,
with the participation of representatives from other groups,
including the Defense and Veterans Brain Injury Center and the
National Institute on Disability and Rehabilitation Research. The
working group initially focused on the limitations of diagnostic
criteria and that a pathoanatomical classification system could
be the springboard for addressing the heterogeneity of TBIs
and for improved systemization for clinical studies and trials
(232). A commentary by Dr. John Povlishock, editor of the
Journal of Neurotrauma, emphasized the importance of this
enterprise to basic scientists for their assessment of pathobiology
in preclinical research (233). In 2012, FITBIR initiated the
effort for a data recording system that employs common data
element terminologies.

A subsequent meeting, the Traumatic Brain Injury Preclinical
Working Group, was convened to develop a dictionary of
common data elements for preclinical studies (234). This
group emphasized the importance of the initiative for further
“enhancing rigor, reproducibility, and transparency in study
performance” in preclinical studies. The CDEs are available as
a Preclinical TBI CDE Zip File in Excel format at https://fitbir.
nih.gov/content/preclinical-common-data-elements. The Excel
files list 61 “Core, Module 1” descriptors (species, animal age,
vendor, treatment conditions and outcome measures, etc.) and
41 elements in “Module 6,” specific to blast/shock studies
(Table 2). The recent publication of Rodriguez et al. (235) is
an excellent example following this scheme. Finally, there are
a number of efforts to encourage open data sharing (236),
including unpublished data, dubbed “dark data” (237), and efforts
to promote preregistration of studies for peer-centered review
of studies (238). For good progress in determination of sex
differences and blast effects, these initiatives may move the
field forward.

Of added high relevance for preclinical blast research is the
framework of the NATO Task Group, HFM-234 (220). This
document resulted in the dissemination of useful guidelines,
including rules for more detailed description of the blast
(or shock) exposure device (219) and the specifics of animal
modeling (239). In addition to allowing comparisons across
laboratories, improved standardization and description of
conditions can lead to improvement of data quality where
the guidelines permit funding bodies to better evaluate the

TABLE 3 | Checklist for experimental planning of preclinical blast studies*.

1) Start with a clearly stated question you wanted to answer

2) What was the rationale for selecting the model you did?

3) The model must be a valid model for the question

4) What parameters will be measured (both biomechanical and biological)

and how are they related to real-life conditions or other published work?

5) Can you vary the parameters accurately within field-relevant range, so you

can examine the range of observed injuries?

6) Have recognition that there are limits to your model so that results are not

overinterpreted

7) Need to ask if these changes you see in the animal model are changes

we would see in humans

8) Rationale for using the animal model, the species, weight, gender, age,

etc., a description of all the things that matter, i.e., 20- vs. 60-kg pig is

important as well as how firmly they are fixed

9) Expected kinetic therefore the rationale for choosing specific time points.

Justification of your end points. This may be species specific?

10) Where are the animals placed in a test field? Show clearly in a diagram

with respect to loading source. Rationale for this. In the guide will

describe drawbacks or issues with placing an animal in certain areas

of the tube

11) Have to give the relevant exposure for the question they are answering,

not overexposing or underexposing the animals for the problem they are

trying to answer

12) Can you relate observed pathophysiological changes as a function of

external loading and different time points?

13) Justification for the use of a certain technique, e.g., use of explosives

instead of compressed gas for primary blast experiments

14) Justify the specific placement and binding of the animal in the

experimental model through direct pressure, acceleration, and strain

measurements on the animal or animal surrogates

15) A plan for the statistics, and where possible a power calculation, and

estimation of n numbers

16) Can rodents be used or would gyrencephalic species, such as ferrets or

pigs, be needed?

17) Will the skull thickness, head shape, and orientation of the animals

affect the result when translated to an erect human with face forward to

blast?

*Table 1 in Appendix J1 from NATO Health Factors and Medicine (HFM) Research Task

Group (RTG) HFM-234 (220).

experimental plan and design of proposals, and journal reviewers
and editors to have a better sense of the quality of reported
findings (239).

The original publications should be consulted for full
discussion, but some of the most salient challenges are
outlined here. Table 3 is a summary checklist for experimental
planning; many of the queries in the checklist overlap with
the Common Data Elements in Table 2, but it is included here
because there is additional emphasis on investigator review of
study rationale and description of the shock/blast-generating
apparatus. Investigators of blast effects on preclinical models of
sex differences should first consider the details for inducing blast
overpressure [cf., (219)].

The application of blast, whether using free-field exposure
or a laboratory-based apparatus that employs blast (explosion)
or compressed gas as the driver, must be recognized for its
complexity of model application, the inherent pitfalls in each
model, and the onus for understanding and communicating
exposure metrics. A detailed description of the design of
the experimental setting should be documented, including
the dimensions of the free-field conditions or the shock/blast

Frontiers in Neurology | www.frontiersin.org 13 September 2020 | Volume 11 | Article 541050

https://fitbir.nih.gov/
https://fitbir.nih.gov/
https://fitbir.nih.gov/content/preclinical-common-data-elements
https://fitbir.nih.gov/content/preclinical-common-data-elements
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


McCabe and Tucker Sex Differences From Blast

tube, for investigators to have a clear sense of the exposure
conditions. A published description of the environment becomes
a permanent record of intervening effects permitting meta-
analyses through standard reporting. Full reportage also allows
documentation of existing or potential experimental artifacts,
such as reflective and blockage effects from the surroundings
(including gauge or animal holder interference) and potential
constraining factors such as shock tube dimensions, the size,
location, orientation, fixation/restraint conditions of the study
specimen(s), and exposure conditions of the test specimen(s)
in relation to the overpressure source (209, 217, 219). The
guidelines address additional considerations. Is the stimulus
reproducible and controllable, and how have the conditions been
quantified? What were the conditions pertaining to reflection?
What is the intended nature of the injury? If the focus is
primary blast, what conditions are in place to mitigate secondary
and tertiary effects (207, 239)? Finally, other considerations
must be heeded, including choice of recording devices that
accurately allow spatial assessments of static pressure for above-
ambient pressure (207) and total pressure from the motion
of gas (dynamic pressure) with the static pressure, assessed
by Pitot tube (219). Do measurement devices have adequate
sensor bandwidth to accurately record changes (219, 240)?
The aforementioned publications offer excellent overviews for
experimental design and emphasize the point of the studies—
translation of results—which demands validation of findings
and their relevance to real-event scenarios and accurate and
correct identification of underlying pathology as an entrée to
therapeutic translation.

For the role of sex in underlying biological responses, the
field of laboratory blast studies is ripe to get things right. As
noted by the Traumatic Brain Injury Preclinical Working Group,
preclinical blast research studies are presently an “immature
research area” where the lack of more substantial clinical
information as a guide to basic hypothesis-driven research is
a challenge; the causal effects following blast are emerging

but still uncertain, and there are no commonly accepted
injury devices (234), as is seen in other models employed
in SABV with hundreds of publications. Challenges in the
future related to blast and SABV will demand clarification
of potential “differences in metabolism, pharmacokinetics,
receptor distribution and activity, enzyme activity, and [how]
ongoing hormonal interactions may affect whether a particular
intervention exhibits important neurological properties” (241).
Rigor and standardization are critical for furthering our
understanding of sex differences, which are complex and
potentially of smaller effect sizes, but critical for translating
findings for clinical relevance.
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