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The notion of entropy is used to compare the complexity associated with 12 common cancers based on
metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and
Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types
aggregated. We then correlate entropy values with other measures of complexity associated with Markov
chain dynamical systems models of progression. The Markov transition matrix associated with each cancer
is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor
could develop, and edge weightings are transition probabilities of progression from site to site. The
steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the
overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic
interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers
according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high
entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal,
cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful
framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

M
etastatic cancer is a dynamic disease of relentlessly increasing entropy. From an initial primary tumor
located at a single anatomical site (a zero-entropy state), the metastatic cascade leads to a proliferation of
tumors at other sites on a timescale of months, or years in most cases, if left untreated1–4. Entropy is a

quantity deeply connected with notions of complexity and predictability5,6 used primarily in the fields of informa-
tion theory7–9 and statistical thermodynamics10. It is used to quantify the level of disorder associated with a
stochastic dynamical process that has a number of sites that it can occupy11,12. Systems that can visit these sites
with relatively equal probability have higher entropy (they are considered more disordered and less predictable)
than systems that can only occupy a few sites with very different probabilities (considered less disordered and
more predictable). In this paper we demonstrate how entropy, relative entropy6,13, and graph conductance30 can
be used in the context of metastatic spread to quantify, compare, and co-group the 12 most prevalent cancer types
worldwide. The view of cancer that we describe is based on its dynamical characteristics, which offers a more
nuanced view than the static view of classifying only according to site of origin. To put it differently, we
characterize cancers based not just on their initial conditions, but on a collection of features that are associated
with their dynamical predictability throughout the course of disease progression.

To fix ideas further, suppose each anatomical site where a primary or metastatic tumor could appear is indexed
by ‘i’, (i51,…N). Let si represent the probability that site ‘i’ is occupied (i.e. has a metastatic tumor), and let
s
I
~ s1,s2, . . . ,sNð Þ[RN represent a probability mass distribution over a collection of potentially occupied sites,

so that
XN

i~1
si~1, with 0 # sj # 1. The level of disorder associated with the distribution s

I
is captured by a

scalar quantity HN9called the entropy of the state, a quantity that is a function both of N, and the way the
probabilities are distributed among the N sites. The lowest entropy state, corresponding to the one of least
disorder, would be represented by a distribution such as s

I
~ 0,0,1,0,0, . . . ,0ð Þ, in which case HN 5 0. In this
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distribution, state i53 is occupied with probability 1, making it pre-
dictively certain. Typically, this site would be the anatomical location
of the primary tumor in a Stage I patient whose disease has not yet
progressed. The highest entropy state, corresponding to the one of
most disorder, would be represented by the uniform distribution
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. For this uniform distribution, each

site is occupied with equal probability. This distribution, which con-
stitutes a mathematical upper bound on the entropy, represents a
state of maximal disorder. It corresponds to the least predictable
state. In the case where only two states are possible (N52), a familiar
example of a maximum entropy state would be the probability of
heads (H) and tails (T) when flipping a fair coin, P(H) 5 K, P(T) 5

K, s
I
~

1
2

,
1
2

� �
. The point we want to emphasize is that associated

with any specific probabilistic distribution of occupied sites (typically
falling between the above two extremes, as shown, for example in
Figure 1 for all cancers grouped together), is a quantitative notion of
disorder, which in turn is related to the system’s predictability and
complexity5,6,11,12. Since each cancer type has a different empirical
metastatic tumor distribution, each will have a different entropy
value and these entropy values can be thought of as convenient
and simple surrogates that represent metastatic tumor complexity
and disorder associated with ensemble populations of patients with a
given primary cancer type.

We show in this paper how entropy is a useful metric of metastatic
complexity that correlates well with features associated with the ana-
tomical pathways of disease progression, as well as the graph con-
ductance measuring the density of the network diagram, which in
turn is associated with rates of convergence to the steady-state tumor
distribution of the disease in a population of patients. We note that

notions of entropy have been used fruitfully to characterize other
aspects of metastatic cancer both at the genotypic and phenotypic
levels24–27,29,33–36 but none have related it to large scale progression
patterns with the goal of quantifying complexity and predictability.

Results
Distribution of metastatic tumors from autopsy data. Figure 1
shows the tumor distribution for all cancers collected from 3827
untreated patients, with a total of 9484 metastatic tumors
distributed over 30 distinct anatomical sites14. On the left we show
the histograms, normalized so that the total area under the bars is
one, hence the distribution represents the probability mass function
associated with ‘all’ cancers. On the right we show the same data
plotted on a log-log plot to more clearly bring out the fact that there is
a power-law scaling range, where the distribution follows the form
p(x),x2a, with a 5 1.46, obtained using maximum likelihood
estimators, and a goodness-of-fit criterion for the optimal range
over which the power-law holds15. We note that power-law
distributions arise in many other contexts, most relevant might be
the distribution of edges from nodes on the World-Wide-Web16. The
analogy of web-surfing from site-to-site and modeling cancer
progression as a random walk process from site-to-site has been
used fruitfully in17,18 and is the basis for the Markov diagrams
described later.

The panels shown in Figure 2a-l break the data of Figure 1 into 12
groupings associated with 12 major primary cancer types (a. Skin; b.
Breast; c. Kidney; d. Lung; e. Stomach; f. Uterine; g. Pancreatic; h.
Ovarian; i. Colorectal; j. Cervical; k. Bladder; l. Prostate) and the
ensemble metastatic distributions associated with each. Each of the
empirical distributions shows a clear power-law range (details are
described in Figure caption), each with a distinct power-law expo-
nent and approximate range of validity.

Figure 1 | Histogram (left) of distribution of metastatic tumors over all cancer types from 3827 patients, 9484 metastatic tumors distributed over 30
anatomical sites. Data is plotted on log-log plot (right) showing power law form p(x) , x21.46 (RMSE50.0028947) obtained using a maximum likelihood

estimator and goodness-of-fit criteria to obtain the best range of the power law distribution14.
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Figure 2 | Histograms of distribution of metastatic tumors for primary cancers. Data is plotted on a log-log plot for each, showing power law form.

(a) Skin cancer: 163 patients, 619 metastases, 27 anatomical sites, p(x) , x21.25 (RMSE50.0036587); (b) Breast cancer: 432 patients, 2235 metastases, 28

anatomical sites, p(x) , x21.51 (RMSE50.0055149); (c) Kidney cancer: 193 patients, 462 metastases, 21 anatomical sites, p(x) , x22.31

(RMSE50.0048092); (d) Lung cancer: 560 patients, 859 metastases, 28 anatomical sites, p(x) , x21.46 (RMSE50.0020592); (e) Stomach cancer: 109

patients, 323 metastases, 26 anatomical sites, p(x) , x21.35 (RMSE50.0028828); and (f) Uterine cancer: 86 patients, 302 metastases, 26 anatomical sites,

p(x) , x21.05 (RMSE50.0057798). (g) Pancreatic cancer: 183 patients, 256 metastases, 22 anatomical sites, p(x) , x21.73 (RMSE50.0060915); (h) Ovarian

cancer: 418 patients, 806 metastases, 26 anatomical sites, p(x) , x21.39 (RMSE50.0073743); (i) Colorectal cancer: 161 patients, 420 metastases, 30

anatomical sites, p(x) , x21.00 (RMSE50.0032292); (j) Cervical cancer: 348 patients, 928 metastases, 28 anatomical sites, p(x) , x21.35

(RMSE50.0022886); (k) Bladder cancer: 120 patients, 289 metastases, 24 anatomical sites, p(x) , x21.32 (RMSE50.010254); and (l) Prostate cancer: 62

patients, 212 metastases, 26 anatomical sites, p(x) , x21.76 (RMSE50.0097822).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 7558 | DOI: 10.1038/srep07558 3



As detailed in17,18 for our lung cancer model, these metastatic
tumor distributions are used to construct Markov chain dynamical
system models of cancer progression. Markov transition matrices28

are constructed conditioned on (i) these distributions being steady-
states, and (ii) an initial ‘trial’ matrix which is used to produce con-
verged Markov matrices for each cancer type using a stochastic itera-
tion scheme, where the entries of the trial matrix are obtained from
the data. Details are described in the Materials and Methods section
and specifically for the lung cancer model in17,18.

Metastatic entropy for 12 major cancer types. Because of well
known difficulties inherent with pinning down precise values for
power-law exponents15, we do not use their value for comparative
purposes. For the purposes of quantifying the complexity associated
with each primary cancer type, we calculate the entropy associated

with each, given by the formula HN~{
XN

i~1
si ln si, where si

represents the proportion of metastatic tumors found at anatomical
site ‘i’, for a given primary cancer type. The constraints are given by 0

# sj # 1, (i51, …, N),
XN

i~1
si~1. Entropy has been used in

various contexts related to cancer in the literature, see for
example33–36. It should be intuitively clear that an increase in
complexity is associated with two distinct features associated with
each of the distributions: (i) the total number of sites, N, at which
metastatic tumors are found, and (ii) relatively flat distributions,
meaning that the probabilities of spreading to each site are more
equally probable than what a steep distribution would show. Both
of these factors play an important role in the entropy values. Table 1
shows the value of the metastatic entropy for each of the 12 cancer
types, as well as the ‘All Cancer’ aggregated data. The first column
lists the primary cancer type, the second column lists the number of
sites, N, over which the metastatic tumors are distributed, while the
third column lists the metastatic entropy associated with the
empirical distributions shown in Figures 1 and 2. We list the sites
according to the descending values of the entropy shown in Table 1,
column 3, thus skin (2.9945), breast (2.7798), kidney (2.7554), and
lung (2.7454) all have entropy values higher than the value for all
cancers combined (2.7136), which we use as a benchmark for
comparisons. The cancer type with the lowest entropy value is
prostate (2.0960), consistent with the relatively small number of
sites to which it distributes (N 5 21), and the relatively sharp drop
in the empirical distribution shown in Figure 2l. It is useful to
compare this distribution with skin, shown in Figure 2a, which has
more sites to which it distributes itself (N 5 30), and has a distinctly

flatter distribution to those sites. For ovarian cancer, whose entropy
is relatively low (2.5193), we have grouped large intestine, small
intestine, diaphragm, ovary, omentum, and peritoneum all as one
site which we call ‘peritoneal cavity’, due to the fact that metastases in
each of these regions likely represent random spread of disease
within an anatomically connected region, as opposed to
hematogenously seeded metastases. To get an idea of the
robustness of these ‘Autopsy Entropy’ values, we show in column 4
‘Sample Entropy’ values, with 1/2 standard deviations. These are
computed using the Markov transition matrices for each cancer type
to produce artificial sample populations (100 sample populations for
each cancer type, each with the same number of patients as in the
autopsy data) with the same statistical characteristics as the autopsy
populations (i.e. same total number of patients, same number of
metastatic tumors and tumor distributions). We use these sample
populations to obtain standard deviation values.

Relative-entropy between each primary cancer type and the
aggregate entropy associated with all cancers. Columns 5 and 6
in Table 1 show the Kullback-Liebler divergence8 between each
cancer type and the all cancer category. We use Q as the all cancer
distribution, while P is the distribution associated with each specific
cancer type. While the value of entropy shown in column 3 is
independent of the ordering in which the sites are listed, the K-L
divergence is not. In column 6 we calculate this quantity using the P
distribution and the Q distribution arranged in decreasing order in
each case. As Table 1 column 5 indicates, the K-L divergence between
prostate and ‘All’ is the highest (0.1620), indicating that its shape is
most different from the all cancer category. By contrast, stomach
cancer has the smallest K-L divergence from the all cancer group
(0.0213), making it in this sense, the most similar to the aggregate.

Column 6 in Table 1 shows the K-L computations between each of
the cancer types and ‘All’ on a site specific basis, as shown in Figure 3.
Here, we list the sites in decreasing order according to the all cancer
category, meaning that the comparative histogram heights for each
of the specific primary cancers generally are not arranged in strictly
decreasing order. Thus, on this site-specific way of computing the K-
L divergence, ovarian cancer (0.7995) and prostate cancer (0.2750)
have the largest values, making them the most distinct from the ‘all’
cancer aggregate on a site-by-site comparison. By contrast, breast
cancer (0.0759) and cervical cancer (0.0979) have the smallest values
of site specific K-L divergence, meaning these are the most similar to
the all cancer aggregate. In Figure 4, we show the same histograms as
in Figure 3, but we arrange the sites in order of decreasing size. This

Table 1 | Entropy table for each cancer type and for all cancers grouped together as one. First column lists the number of metastatic sites for
that cancer type; second column lists the autopsy entropy value calculated from the original data; third column lists the sample entropy values
as calculated from numerically produced sample populations using the Markov models and statistics from full population in data set (see
text), fourth column lists the Kullback-Liebler divergence between that cancer type and the ‘all cancer’ group, as compared in descending
order for each; fifth column lists the K-L divergence between that cancer type and the all cancer group compared on a site specific basis. See
text for more details

Primary Cancer Type N Autopsy Entropy Sample Entropy K-L Divergence K-L Divergence (Site Specific)

Skin 30 2.9945 2.9598 6 0.0406 0.0758 0.1373
Breast 27 2.7798 2.7737 6 0.0180 0.0329 0.0759
Kidney 27 2.7554 2.6902 6 0.0697 0.0549 0.1352
Lung 27 2.7454 2.7229 6 0.0363 0.0360 0.1097
All 30 2.7136 2.7122 6 0.0120 0.0000 0.0000
Stomach 28 2.6099 2.5996 6 0.0314 0.0213 0.1191
Uterine 25 2.5709 2.5327 6 0.0646 0.0339 0.1459
Pancreatic 27 2.5540 2.5177 6 0.0555 0.0375 0.1392
Ovarian 22 2.5193 2.4838 6 0.0588 0.9261 0.7995
Colorectal 29 2.4684 2.4532 6 0.0368 0.3114 0.1271
Cervical 27 2.3696 2.3551 6 0.0361 0.0546 0.0979
Bladder 23 2.2301 2.1910 6 0.0806 0.0957 0.1477
Prostate 22 2.0960 2.0756 6 0.0465 0.1620 0.2750
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Figure 3 | Site specific histograms of distribution of metastatic tumors for primary cancers compared with distribution of all cancer. Data is plotted

according to sites in descending order corresponding to the all cancer distribution. (a) Skin cancer; (b) Breast cancer; (c) Kidney cancer; (d) Lung

cancer; (e) Stomach cancer; and (f) Uterine cancer. (g) Pancreatic cancer; (h) Ovarian cancer; (i) Colorectal cancer; (j) Cervical cancer; (k) Bladder cancer;

and (l) Prostate cancer.

www.nature.com/scientificreports
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Figure 4 | Histograms of distribution of metastatic tumors for primary cancers compared with distribution of all cancer. Data is plotted in descending

order for each distribution, hence is not site specific. (a) Skin cancer; (b) Breast cancer; (c) Kidney cancer; (d) Lung cancer; (e) Stomach cancer;

and (f) Uterine cancer. (g) Pancreatic cancer; (h) Ovarian cancer; (i) Colorectal cancer; (j) Cervical cancer; (k) Bladder cancer; and (l) Prostate cancer.

www.nature.com/scientificreports
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way of comparing the distributions focuses on the shape of the dis-
tribution, i.e. the rate at which it drops to zero, rather than the actual
sites to which the disease spreads.

Markov diagrams, spreaders and sponges, and graph con-
ductance. The notion of entropy of metastatic tumor distributions
is closely tied to systemic complexity of the disease, which in turn is
tied to the fact that the metastatic process, both on the molecular
level24–27,29 and across anatomical scales, is on average, an entropy
increasing (or at least non-decreasing) dynamical process. The
dynamics of progression from one anatomical site to the next can
be captured reasonably well by modeling it as a Markovian
process28,30 as it spreads from site to site. The state-vector, ~vk[RN

at discrete time-step k has entries that represent the distributed
probabilities of a tumor developing at anatomical site ‘i’, 1 # i #

N. The transition matrix A[RN|N which is made up of probabilities
of tumor spread from site ‘i’ to site ‘j’, propagates the state-vector

forward in time via the Markov equations ~vkz1~A~vk. By using
patient population data (this could be longitudinal or autopsy
data), we obtain estimates of the model parameters, which are the
transition probabilities that fill out the transition matrix A. See
Materials and Methods section for details. Figure 5 shows the
entropy for each cancer type, as the discrete model time-step, k,
advances forward. For each of the cancers, the entropy values start
at zero (at step k50, only the primary site has a tumor), then increase
to their maximum value (corresponding to the steady-state) as the
disease progresses, confirming that metastatic cancer is an entropy
increasing process.

The conductance is a measure of how fast a random walk con-
verges to its steady-state distribution, which is tied to the Markov
mixing time and convergence rate30. From the conductance values
listed in Table 2, we can see a clear (although not perfectly one-to-
one) correlation of entropy value and graph conductance value. The
highest entropy and conductance cancers are skin, breast, kidney,

Figure 5 | Metastatic entropy as a function of the model-based timescale, ‘k’. Entropy associated with the initial state vector (k50) begins at 0 and

increases with each step over time.

Table 2 | Summary of network diagnostics

Primary Cancer Type # of Nodes # of Edges Avg Edge Weight Max Edge Weight Conductance

Skin 30 900 0.03333 0.13115 0.1910
Breast 27 729 0.03704 0.17232 0.1808
Kidney 27 729 0.03704 0.17087 0.1784
Lung 27 729 0.03704 0.18794 0.2001
Stomach 28 784 0.03571 0.25834 0.1206
Uterine 25 576 0.04167 0.22161 0.1432
Pancreatic 27 676 0.03846 0.21103 0.1208
Ovarian 22 441 0.04762 0.24961 0.1353
Colorectal 29 784 0.03571 0.24418 0.1282
Cervical 27 676 0.03846 0.29013 0.0921
Bladder 23 484 0.04545 0.31865 0.1049
Prostate 22 441 0.04762 0.22627 0.0713

www.nature.com/scientificreports
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and lung, the lowest in both are cervical, bladder, and prostate can-
cers. Table 2 summarizes the network based data for the 12 cancers.
Note the overall decrease in graph conductance values listed in the 6th

column of the table, correlating roughly with decreasing entropy
values for each. The correlation is more clearly shown in Figure 6
across all 12 cancer types.

The reduced Markov diagrams for each of the 12 cancers, listed in
the same order of decreasing entropy, are shown in Figure 7. These
diagrams are based on retaining only the top 30 two-step pathways
from primary site, to the first metastatic site, to the second metastatic
site17,18. The % listed under the main primary circle represents the %
that these 30 paths capture out of the total, hence is a separate
measure of complexity of the cancer type. The top 30 paths associated
with skin cancer (Figure 7a), for example, capture only 23.8% of the
total, indicating that it has a more diversified set of alternative path-
ways available to it than, say, prostate cancer (Figure 7l), in which the
top 30 pathways captures over 80% of the total. In order of decreasing
entropy of each of the cancers whose reduced Markov diagrams are
laid out from Figure 7a (highest entropy) down to Figure 7l (lowest
entropy), the % of total pathways captured by the top 30 paths clearly
increases (although, not exactly one-to-one), indicating that high
entropy cancers have many alternative pathways and high graph
conductance value (fast convergence rates to steady-state), whereas
low entropy cancers have few pathways available, and low graph
conductance (slower convergence rates to steady-state). Table 3 sum-
marizes these metrics for the 12 cancer types, listed in order of
decreasing entropy. Column 2 shows clearly how the percentages
covered by the top 30 pathways increase with entropy, column 3
shows how the number of paths associated with a fixed % (in the
case 35%) decreases with decreasing entropy.

Also summarized in this table are the main spreader and sponge
metastatic sites18 associated with each tumor type. This notion,
developed and used for lung cancer models in18 is based on a cal-
culation of the probability out (Pout) of each node in the directed
graph as compared with the probability in (Pin), obtained by adding
up the edge weights of all the outward directed edges from a site
compared with the inward directed edges. A node in which Pout . Pin

is called a spreader site, whereas a node in which Pout , Pin is called a
sponge site. From our lung cancer models and data, we know that the
combined characteristics of the primary tumor and the first meta-

static site to which it spreads is an important determining factor of
the future course of disease progression, particularly if the first meta-
static site is a spreader site associated with that cancer. At this point,
for cancers other than lung, this is a graph based metric only that
would need further clinical and biological correlates.

Discussion
Grouping cancers according to their dynamical and probabilistic
characteristics offers an alternative point of view from the classical
approach of classifying according to site of origin. In our models, site
of origin does play an important role in determining which transition
matrix governs disease progression, and therefore a crucial role in
determining which metastatic sites are spreaders and which are
sponges and pinpointing the entropy values of each cancer. But
grouping cancers according to metrics that are associated with key
dynamical features such as entropy and graph conductance is a
potentially enlightening way to think about similarities and differ-
ences between cancers based on their comparative metastatic poten-
tial. It provides a quantitative framework that could help guide
clinical strategies whose end goals could be re-stated in language
highlighting, for example, entropy reduction strategies and strategies
that decrease mixing times, with clear ways of measuring and optim-
izing these quantities. Similarly, identifying therapeutic strategies
that target metastatic spreaders, particularly in the oligometastatic
setting19,20,32, might prove to be an area where these mathematical
models could be of particular clinical value.

Methods
Summary of autopsy data set. We used the DiSibio and French14 data set of
metastatic tumor distributions based on autopsy studies collected for 3827 untreated
cadavers from 5 different cancer facilities in New England between 1914-1943. The
data reflect 9484 distinct metastatic tumors distributed over 30 anatomical sites for all
of the major tissue cancers. The data represent natural disease progression, which is
useful, but we caution that brain metastases are under-represented in the data since
examination of the intracranial contents at that time was not routinely performed. See
also studies such as21 which focus on anatomical progression patterns. The data has
been used in17,18,31 to develop a Markov chain model for lung cancer progression,
where the autopsy data is used as the Markov chain steady-state, from which
transition probabilities are calculated. In this paper, we directly characterize the data,
shown in Figure 1 (All cancers) and Figure 2 (12 different primary cancers) in terms of
their empirical distributions, which predominantly follow power-law form15. Other
related work focusing on the development of dynamical models based on metastatic
progression patterns includes references18,21–23. While notions of entropy have been

Figure 6 | Graph conductance vs. entropy showing strong correlation across 12 cancer types.
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Figure 7 | Top 30 two-step pathways emanating from primary tumors (total pathway probability listed in center node), obtained by multiplying
the edges of the one-step edges comprising each two-step path. Edges without numbers are one-step paths. All other numbered edges mark the second

edge in a two-step path, with numbers indicating the two-step probabilities. (a) Skin cancer; (b) Breast cancer; (c) Kidney cancer; (d) Lung cancer;

(e) Stomach cancer; and (f) Uterine cancer. (g) Pancreatic cancer; (h) Ovarian cancer; (i) Colorectal cancer; (j) Cervical cancer; (k) Bladder cancer;

and (l) Prostate cancer.
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used previously in the context of gene expression profiles and epidemiology24–27,29, we
know of no previous work that uses these notions to characterize the complexity of
large-scale progression patterns.

Definition of entropy. The notion of entropy we use is from the field of information
theory and statistical mechanics7–10. Given a probabilistic distribution of states
s
I
~ s1,s2, . . . ,sNð Þ spread over N sites, the entropy associated with the distribution is

given by the quantity HN~{
XN

i~1
si ln sið Þ where 0 # HN # ln N. [To be clear,

we are using the natural logarithm to define the entropy, hence the unit of
measurement is commonly denoted as ‘nat’8. If base 2 logarithms were used, the units
would be ‘bits’. One nat corresponds to 1.44 bits.] There are two factors that lead to
increased entropy: (i) the larger the number N of sites over which the disease is
distributed, the larger the entropy; (ii) the more even the probabilities are distributed
among those sites, the larger the entropy. Thus, the lowest entropy state, given by HN

5 0, corresponds to the distribution sk 5 1, si 5 0 (i ? k)Since the probability of site
‘k’ being occupied is 1 and the probability of sites i ? k being occupied is 0, this state is
associated with predictive certainty. In the language of statistical thermodynamics10,
this would be called a completely ordered state. By contrast, the highest entropy state
corresponds to the uniform distribution in which each site is equally probable, hence

si~
1
N

,i~1, . . . ,N: This uniform distribution gives rise to a maximal entropy value

of HN 5 ln(N) For this distribution, since each site is equally likely to occur with
probability 1/N, the predictive certainty associated with this distribution is minimal,
yielding the highest possible entropy value. We note that the entropy value is
independent of the ordering of the sites. Thus, higher values of entropy are intimately
tied to notions of disorder and complexity and have been used productively across a
wide range of disciplines6–13.

Definition of relative-entropy. The concept of relative entropy, or Kullback-
Liebler distance, is used to measure the distance between two distributions of
random variables8,13. One way to think of the relative entropy D(PjjQ) between
two random variables P and Q is to view D(PjjQ) as a measure of inefficiency
associated with assuming that the distribution is Q, when in fact the true
distribution is P8,24.

It is defined as D P Qkð Þ~
XN

i~1
pi ln

pi

qi

� �
. In our comparisons, we use the

symbol Q to represent the ‘All’ cancer empirical distribution, whereas P will represent
a specific primary cancer type. Thus, the notion of relative entropy quantifies the
relative inefficiency of using the generic ‘All’ cancer distribution instead of the more
targeted and informative primary cancer type.

Definition of graph conductance. Graph conductance is a measure of graph density,
or how ‘well-knit’ the full graph is. The conductance is a measure of how fast a
random walk converges to its steady-state distribution, which is tied to the Markov
mixing time and convergence rates30. It is calculated for a network, A, by first
partitioning A into two distinct sets S,�Sð Þ (where A~S|�S comprises all of the nodes
in the network). The conductance associated with that particular partition is
computed as the sum of the transition probabilities from all the sites in S to all those in
�S, normalized by dividing by the sum of transition probabilities from sites in S or sites
in �S to ALL sites in the network S|�Sð Þ, whichever of those two numbers is smaller.
Then, the graph conductance is the minimum conductance achieved by calculating
the conductance associated with all possible partitions of the network. More formally,
it is defined as:

w Að Þ~min S(V

P
i[S,j[�Saij

min a Sð Þ,a �Sð Þð Þ,

with

a Sð Þ~
X

i[S

X
j[V aij,

where aij are the transition probabilities. Note that it is a quantity which uses the edge
weightings of the directed graph, not just the adjacency matrix values.

Construction of Markov transition matrices. The Markov transition matrices used
in this paper are calculated using the same conditional random search algorithm used
to construct the lung transition matrices described in17,18. Briefly, they are calculated
using the following procedures:

1. The ‘target’ steady-state distribution for a given cancer type, denoted v
I tð Þ
? , is

defined as the right eigenvector A{Ið ÞvI tð Þ
? 5 0, of transition matrix A[RN|N ,

corresponding to unit eigenvalue. To construct the transition matrix for a

given cancer type, we take the target steady-state distribution to correspond

to the probability mass function associated with that cancer type from the data

shown in Figure 2.
2. To construct the ‘final’ transition matrix for a given cancer type, Af, we con-

struct a sequence of increasingly accurate approximations to Af, denoted

(A0,A1,…,Ai,…), with corresponding steady-state vectors v
I 0ð Þ
? ,v

I 1ð Þ
? , . . . ,

�
v
I ið Þ
? , . . .Þ so that Ai{Ið ÞvI tð Þ

?~0 and Ai{Ið ÞvI tð Þ
?~~ri , where ~ri[RN is

called a residual vector, where ~rik k=0, and I[RN|N is the identity matrix.

We condition our sequence based on an initial matrix A0, chosen so that

the row associated with the primary tumor corresponds to the empirical

distribution for that cancer type from the data, shown in Figure 2. All other

rows are scaled so that they correspond to the empirical distributions

associated with the appropriate cancer type, as shown in Figure 2. Note

that this initial assumption cannot be the final converged transition matrix

because it treats each metastatic tumor as a primary tumor. The iteration

scheme then corrects for this quite efficiently in all 12 cases we considered,

and finds the converged transition matrix which is nearest to this initial

matrix. More details of this scheme and issues associated with uniqueness,

robustness, and convergence are described for the case of lung cancer in

Ref. 17.
3. To construct Ai11 from Ai (the iteration procedure), starting with A0, we

randomly perturb the entries of Ai, in sequence from upper left to bottom
right (see17 for more details), each time computing the corresponding residual
~ri . For each perturbation, if ~riz1k kv ~rik k, we keep the perturbation, if not, we

discard it and perturb the next entry. The size of the perturbations are chosen

to scale with the size of the residual vector, i.e. ~rik k, so that as we get closer and

closer to converging to Af, the perturbations get smaller.
4. When ~rik kvE, for a given convergence threshold value of (typically taken as

O(1025))), we stop the iteration and take the corresponding matrix Ai as our

converged transition matrix for that cancer type. We document the robustness

and stability of the scheme by plotting the full set of singular values associated

with an ensemble of Markov matrices produced this way, as well the one

produced by averaging the ensemble – the method is robust, stable, and pro-

duces a unique Markov matrix with the correct steady-state for all 12 cancers

studied in this paper.
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