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Despite the successes of antibodies as therapeutic binding proteins, they still

face production and design challenges. Alternative binding scaffolds of smaller

size have been developed to overcome these issues. A subset of these

alternative scaffolds recognizes target molecules through mutations to a set

of surface resides, which does not alter their backbone structures. While the

computational design of antibodies for target epitopes has been explored in

depth, the same has not been done for alternative scaffolds. The commonly

used dock-and-mutate approach for binding proteins, including antibodies, is

limited because it uses a constant sequence and structure representation of the

scaffold. Docking fixed-backbone scaffolds with a varied group of surface

amino acids increases the chances of identifying superior starting poses that

can be improved with subsequent mutations. In this work, we have developed

MutDock, a novel computational approach that simultaneously docks and

mutates fixed backbone scaffolds for binding a target epitope by identifying

a minimum number of hydrogen bonds. The approach is broadly divided into

two steps. The first step uses pairwise distance alignment of hydrogen bond-

forming areas of scaffold residues and compatible epitope atoms. This step

considers both native and mutated rotamers of scaffold residues. The second

step mutates clashing variable interface residues and thermodynamically

unfavorable residues to create additional strong interactions. MutDock was

used to dock two scaffolds, namely, Affibodies and DARPins, with ten randomly

selected antigens. The energies of the docked poses were minimized and

binding energies were compared with docked poses from ZDOCK and

HADDOCK. The top MutDock poses consisted of higher and comparable

binding energies than the top ZDOCK and HADDOCK poses, respectively.

This work contributes to the discovery of novel binders based on smaller-

sized, fixed-backbone protein scaffolds.

KEYWORDS

protein docking, protein scaffold, force field, hydrogen bonds, binding energy

OPEN ACCESS

EDITED BY

Lujia Zhang,
East China Normal University, China

REVIEWED BY

Zhi Yang,
California Institute of Technology,
United States
Zhaoxi Sun,
Peking University, China

*CORRESPONDENCE

Robert J. Pantazes,
rjp0029@auburn.edu

SPECIALTY SECTION

This article was submitted to Molecular
Recognition,
a section of the journal
Frontiers in Molecular Biosciences

RECEIVED 20 May 2022
ACCEPTED 19 July 2022
PUBLISHED 29 August 2022

CITATION

Chauhan VM and Pantazes RJ (2022),
MutDock: A computational docking
approach for fixed-backbone protein
scaffold design.
Front. Mol. Biosci. 9:933400.
doi: 10.3389/fmolb.2022.933400

COPYRIGHT

© 2022 Chauhan and Pantazes. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 29 August 2022
DOI 10.3389/fmolb.2022.933400

https://www.frontiersin.org/articles/10.3389/fmolb.2022.933400/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.933400/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.933400/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.933400/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.933400&domain=pdf&date_stamp=2022-08-29
mailto:rjp0029@auburn.edu
https://doi.org/10.3389/fmolb.2022.933400
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.933400


Introduction

Binding proteins are an integral part of innumerable

biological processes. Their roles include performing

catalysis by binding to substrates as enzymes (Vaissier

Welborn and Head-Gordon, 2019), transporting ligands

across cell membranes as carrier and channel proteins

(Barabote et al., 2006), and antibodies binding to foreign

antigens to tag them for destruction by vertebrate immune

systems (Lu et al., 2020). Antibodies have become the most

important type of binding protein, with a global therapeutic

market value of over $100 billion (Lu et al., 2020), and their

structures have been extensively studied (Ducancel and

Muller, 2012). The binding domains of antibodies consist of

two regions: a scaffold-like, highly-conserved framework

region and hypervariable binding loops

(i.e., complementarity determining regions (CDRs)) that

interact with antigens (Pantazes and Maranas, 2010). The

design and engineering of antibodies are primarily carried

out via experimental methods such as hybridoma technology

or synthetic library surface display (Almagro et al., 2019).

While successful, there are several drawbacks to the

experimental design and generation of antibodies: the

presence of multiple chains, disulfide bonds, and glycans

complicates their lab-based generation, purification, and

formulation (Gebauer and Skerra, 2020), and experimental

approaches are not capable of generating binders that target a

specific epitope without extensive screening and a measure of

luck. Furthermore, these methods tend to be expensive and time-

consuming (Norman et al., 2020). To overcome these challenges,

a number of computational methods have been developed for the

epitope-specific design of antibodies, which can later be

improved through experimental means (Pantazes and

Maranas, 2010; Lapidoth et al., 2015; Liu et al., 2017; Adolf-

Bryfogle et al., 2018; Chowdhury et al., 2018; Nimrod et al., 2018).

A common feature of these computational approaches is that

they take advantage of the structural features of antibodies and

develop initial designs by swapping CDRs to find an antibody

with a shape that matches the target antigen.

Although antibodies have been very successful, they may not

be the best choice for all contexts where protein binding is

needed. An alternative to their use is smaller-sized protein

domains, including Knottins (Moore and Cochran, 2012),

Kunitz domains (Hosse et al., 2006), Fynomers (Bertschinger

et al., 2007), and Fibronectin domains (Koide et al., 1998), among

others. The benefits of using smaller-sized scaffolds over

antibodies include better thermostability, higher tumor

penetration, lower cost of production, and decreased chance

of denaturation (Gilbreth and Koide, 2012; Stern et al., 2013;

Richards, 2018). Although not as common as antibodies, these

smaller scaffolds have seen success as therapeutics: drugs

developed using Kunitz domains and Knottins have been

approved by the FDA, while other alternative scaffold-based

drugs are in different phases of clinical trials (Simeon and

Chen, 2018).

Some of these alternative scaffolds bind to target molecules

with modular loops comparable to the CDRs of antibodies, and

such proteins can be designed with computational protocols

similar to those developed for antibodies. However, binding

for a subclass of these alternative scaffolds is governed by

point mutations to surface residues in highly stable secondary

structures, and these mutations do not alter the proteins’

structures. Examples of such binding proteins include

affibodies and designed ankyrin repeats (DARPins) (Alsultan

et al., 2016). An affibody consists of 58 amino acids and is

arranged in a three alpha–helix bundle framework. The design

of antigen-specific affibodies has been primarily carried out

through combinatorial mutations of 13 surface residues on

two helices (Ståhl et al., 2017). Affibodies have been designed

to bind over 40 antigens and the HER-2 binding affibody ABY-

025 has reached phase 2/3 clinical trial (Altunay et al., 2021). A

DARPin molecule consists of 33 residue long motifs that are

typically repeated two to four times, along with N and C terminal

motifs. Similar to affibodies, binders are designed by mutating six

residues in each motif barring the terminal motifs (Shilova and

Deyev, 2019). Abicipar, a VEGF-A binding therapeutic DARPin

drug, has reached phase III clinical trial (Simeon and Chen,

2018). The structures and variable residues of affibodies and

DARPins are shown in Figure 1.

Computational methods to design affibodies and DARPins

require different approaches than those for antibodies due to

their lack of loops analogous to CDRs. One strategy is to use a

docking program (Chen et al., 2003; Dominguez et al., 2003;

Comeau et al., 2004; Lyskov and Gray, 2008; Torchala et al.,

2013) to create an initial complex followed by iterative cycles of

point mutations (Pantazes et al., 2015; Adolf-Bryfogle et al., 2018;

Nimrod et al., 2018). This approach is analogous to and inspired

by the affinity maturation process of antibodies by the immune

system (Teng and Papavasiliou, 2007) and the experimental

directed evolution protocol (Arslan et al., 2019). Various

docking approaches have been developed over the past

2 decades. ZDOCK uses stepwise movements and rotations of

rigid body representation of the ligand around the receptor and

uses fast Fourier transforms to quickly identify poses with good

shape complementarity features. Poses are then ranked based on

energy potentials (Chen et al., 2003). Other approaches like

ClusPro use ZDOCK for good quality pose identification

followed by further pose refinement and binding energy

evaluations (Comeau et al., 2004). RosettaDock uses a coarse-

grained rigid body Monte Carlo search for high-scoring poses,

which are later refined through local docking accompanied with

side chain and backbone packing and energy minimizations. The

Rosetta energy function is used in the Monte Carlo search and to

rank poses (Lyskov and Gray, 2008). Swarmdock, a population-

based metaheuristic approach, starts with a group of random

initial poses and uses a particle swarm optimization algorithm to
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minimize electrostatic and van der Waals (vdW) potentials

between two proteins (Torchala et al., 2013). HADDOCK uses

a combination of rigid body energy minimizations of randomly

generated starting poses and flexible energy minimizations of the

best 1,000 initial complexes (Dominguez et al., 2003).

Docking approaches use rigid-structure and/or fixed-

sequence representations of scaffolds since the original

purpose of such tools is to predict native binding orientations.

While appropriate for replicating native complexes, this feature

imposes limitations for designing binding proteins because it will

reject protein poses with clashes between native side chains that

could be rectified through mutations. A design approach that can

dock scaffolds while mutating residues would be likely to identify

higher quality complexes than methods that cannot.

One strategy to do this would be to dock proteins in a manner

where they form strong interactions which are known to be

abundant in protein–protein binding interfaces, such as

hydrogen bonds (H-bonds) and hydrophobic interactions. The

Baker lab has developed RIFdock, an approach that docks

proteins to a ligand or another protein while simultaneously

making mutations. RIFdock performs this by docking individual

amino acids to the epitope, generating a large library of reverse

rotamers for the well-docked amino acids and identifying scaffold

positions that can hold multiple reverse rotamers (Dou et al., 2018).

Cao et al. designed SARS-CoV-2 binding miniproteins by initially

scanning a library of 19,000 miniproteins through RIFdock against

the ACE-2 binding epitope of the receptor-binding domain (RBD).

High-quality poses were then experimentally affinity matured to

bind with picomolar affinity with the target ACE-2 binding epitope

(Longxing et al., 2020). Similar to other docking approaches like

ZDOCK and HADDOCK, RIFdock makes use of grid-based

movements of the scaffold around the target protein. As of the

submission of this work, a detailed description of the RIFdock

methodology is not available in a peer-reviewed article.

Furthermore, RIFdock is not available in the Rosetta Commons.

Here, the algorithm and initial evaluation of MutDock, a novel

mutation-based docking approach, are described. Instead of

translating and rotating a protein scaffold in 6D steps around

the target, MutDock uses pairwise distance matching of

H-bonding regions around the variable paratope and epitope to

identify mutated scaffold-target poses, making multiple H-bonds

in a single step. MutDock initially identifies H-bond-forming

regions around the paratope and epitope and subsequently

searches for different combinations of interactions with

compatible geometries that constitute non-clashing docked poses.

Materials and methods

MutDock has been developed around two major goals: 1)

introducing mutations simultaneously to docking using a single

geometry alignment step and 2) designing binding proteins based

on known beneficial structural elements. Instead of using force

field–guided energy minimizations and scoring functions to

assess randomly docked poses like conventional docking tools

such as RosettaDock and HADDOCK, MutDock uses the known

structural features of strong interactions such as H-bonds to

guide pose identification and rotamer selection during docking.

Similar to ZDOCK, where the generated poses are scored in the

final step, in this work, force fields are used to evaluate

MutDock’s predicted poses but not in their initial identification.

The MutDock approach can be divided into two primary

steps: 1) identifying docked poses with H-bonds formed by native

and/or mutated residues and 2) mutating clashing side chains

using a feature-based approach. This algorithm is depicted in

Figure 2, with panels A, B, and C corresponding to step 1 and

panel D corresponding to step 2.

Docking

Docking with MutDock can be further subdivided into two

steps: pose identification and pose validation. The pose

identification step generates antigen-scaffold poses with

FIGURE 1
Examples of alternative binding scaffolds. Depicted are (A) Affibody (PDB: 3MZW) and (B)DARPin (PDB: 6FPA) structures. Their variable residues
that mutate to bind target proteins are colored in pink.
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unique sets of H-bonds, while the pose validation step checks for

steric compatibility, bond formation, and solution uniqueness.

Necessary information for docking includes the structures of the

binding and target proteins, which residues in the binding

protein are intended to interact with the target protein

(i.e., the paratope), which paratope residues are mutable, and

which residues in the target protein are intended to interact with

the paratope (i.e., the epitope).

In the first step of pose identification, spatial coordinates that

can be occupied by compatible epitope atoms for the formation

of an H-bond are identified for each paratope residue. These

coordinates for binding interactions, referred to as Paratope

Binding Regions (PBRs), consist of one atom and three spatial

positions. The atom is either hydrogen, if the interaction is an

H-bond from the paratope to the epitope, or anH-bond acceptor,

if the H-bond forms from the epitope to the paratope. The

FIGURE 2
MutDock workflow. MutDock can be divided into two main steps: pose identification (panels A–C) and pose validation (panel D). Step (A) PBRs
are identified for all paratope residues and all other rotamers of variable residues (shown in pink). Similarly, EBAs are identified for all epitope residues.
Step (B) Pairwise distance calculations within the sets of PBRs and EBAs. Step (C) Pairwise distance matching between PBR pairs and EBA pairs to
identify groups of compatible low entropy interactions. Step (D) Each pose from Step C is passed through steric clash filters, and clashing
variable side chains are mutated.
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primary point of the PBR is the ideal position of an atom in the

epitope to form an H-bond with the PBR’s atom. The position of

the primary point lies 1.25 Å from the PBR’s atom on the vector

determined by the atom and an antecedent point. The possible

PBR atoms and corresponding antecedent points are listed in

Table 1. The third spatial position of a PBR is the secondary

point, 1 Å further along the vector from the primary point, which

is used for ensuring the designed H-bonds have appropriate

orientations (e.g., avoiding the formation of H-bonds with acute

angles).

The pose identification step of MutDock is focused on

finding complexes with many H-bonds because they are

prevalent in naturally occurring binding interfaces. PBRs are

also identified for rotamers of polar amino acids for each mutable

paratope residue. As listed in Table 2, the mutable paratope

residues are only allowed to change into polar residues to

facilitate this search for favorable H-bonds. The rotamers used

in MutDock were obtained from the Dunbrack rotamer library

(Dunbrack and Cohen, 1997), and a maximum of five

structurally diverse rotamers for each possible mutation were

used to limit the final solution set diversity.

Once the PBRs are identified, the epitope residues are

scanned for polar atoms capable of forming H-bonds with the

scaffold inMutDock’s second step of pose identification. Initially,

epitope residues that have non-zero solvent accessible surface

areas (SASA) are collected to avoid including buried atoms in

subsequent calculations. For each solvent accessible epitope

residue, epitope-binding atoms (EBAs) are identified. An EBA

consists of two points: a primary point that is a polar hydrogen

atom or an H-bond acceptor and a secondary point that is

analogous to the antecedent points of PBRs.

Figure 3 illustrates the values that are calculated in the

third step of pose identification. For each pair of PBRs, one

distance and four angles are calculated. The distance is the

distance between the primary points of the PBRs, while the

angles are those of the quadrilateral formed by the primary

and secondary points. Similar calculations are carried out for

each pair of EBAs. Pairs of PBRs or EBAs that belong to the

same residue are not considered in this step to encourage the

formation of larger binding interfaces by MutDock. A

maximum limit of one positively charged residue in the

paratope is enforced in the fourth step to reduce the

presence of highly flexible and unstable positively charged

side chains in the interface. Thus, only one ARG/LYS residue

per PBR couplet is allowed.

MutDock’s fourth step of pose identification searches for

PBR and EBA sets that can coexist simultaneously. This begins

by finding pairs of compatible PBR and EBA couplets. An initial

screen eliminates from consideration incompatible

interactions. A readily evident example would be H-bonds

between ARG and ARG side chains, but many other

potential interactions are also excluded from consideration.

It is known that antibody binding interfaces are abundant with

interactions made by pre-stabilized or low entropy side chains

(Fleishman et al., 2011b). To replicate such features, H-bond

type constraints are enforced to lower the chances of forming

H-bonds between long chain amino acids which are unlikely to

be stable. The atom and amino acid types allowed for a

compatible PBR–EPA pair are listed in Table 2.

Interactions that are potentially compatible are then checked

for geometric alignment using five constraints:

|D1 − D2|< dlimit (1)

where D1 and D2 are the PBR and EBA distances, respectively, as

calculated in the third step and dlimit is a user-defined threshold

TABLE 1 Polar atom and their antecedent atom names considered for
PBR and EBA identification. Atom names follow the CHARMMPDB
atom naming.

Amino acid PBR atom Antecedent point

Backbone O C

Backbone OT1 C

Backbone OT2 C

Backbone HN N

Backbone HN1 N

Backbone HN2 N

Backbone HN3 N

ARG HE NE

ARG HH11 NH1

ARG HH12 NH1

ARG HH21 NH2

ARG HH22 NH2

LYS HZ1 NZ

LYS HZ2 NZ

LYS HZ3 NZ

ASP OD1 CG

ASP OD2 CG

GLU OE1 CD

GLU OE2 CD

SER HG1 OG

SER OG Midpoint of HG1 and CB

THR HG1 OG1

THR OG1 Midpoint of HG1 and CB

TYR HH OH

TYR OH Midpoint of HH and CZ

ASN OD1 CG

ASN HD21 ND2

ASN HD22 ND2

GLN OE1 CD

GLN HE21 NE2

GLN HE22 NE2

HIS HD1 ND1

HIS NE2 Midpoint of CD2 and CE1

TRP HE1 NE1
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on the maximum permissible deviation in the primary point

distances.
∣
∣
∣
∣∠PBR1p − ∠EBA1p

∣
∣
∣
∣< alimit (2)

∣
∣
∣
∣∠PBR2p − ∠EBA2p

∣
∣
∣
∣< alimit (3)

|∠PBR1s − ∠EBA1a|< alimit (4)
|∠PBR2s − ∠EBA2a|< alimit (5)

Geometric constraints 2–5 ensure the deviations in the

interaction angles do not exceed a user-defined limit, alimit.

TABLE 2 Amino acid types allowed to form H-bonds in the MutDock approach.

Scaffold Antigen

Backbone Backbone

Backbone All

All except ARG, LYS, and GLN Backbone

ARG and LYS * ASP and GLU

ASP and GLU ARG and LYS

HIS, ASN, ASP, TYR, SER, THR, and TRP ** HIS, ASN, ASP, TYR, SER, THR, and TRP

* Only one per solution.

** No H-bonds allowed between ASN and ASP since they contain multiple polar groups.

FIGURE 3
PBR and EBA pairwise distance and angle calculations. PBRs generated for paratope ASP and ARG. EBA identified for epitope TRP and GLU. The
interactions being considered here are H-bonds between 1) ASP and TRP and 2) ARG and GLU. For the two interactions to be compatible, |D1–D2| <
1.8 Å, |∠PBR1p - ∠EBA1p| < 70°, |∠PBR2p - ∠EBA2p| < 70°, |∠PBR1s - ∠EBA1a| < 70°, and |∠PBR2s - ∠EBA2a| < 70°.
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For this study, dlimit was set at 1.8 Å, and alimit was set at 70°.

These values were selected as the cutoffs because they permit 85%

of H-bonds from an antibody-antigen database (Chauhan et al.,

2018). An illustration of these constraints is shown in Figure 3.

After compatible PBR–EBA couples are found, larger sets of

PBR–EBA matches are identified by searching for groups of

couples that are all mutually compatible (e.g., if AB, AC, and BC

are all compatible couples, then ABC must be a compatible

triple). Thus, each group corresponds to a unique solution

consisting of three or more predicted interface H-bonds.

In the fifth and final step of MutDock’s docking protocol,

each unique solution group from the fourth step is positioned

and analyzed for interface size, H-bond geometry and steric

compatibility with the scaffold and antigen. The antigen is

positioned so that the root-mean-square deviation (RMSD)

between the primary atoms of the EBA and their

corresponding PBR primary points is minimized. Next, the

rotamers of the binding protein are changed to match those

used in the PBRs, corresponding to the inclusion of any

mutations identified during pose identification. These

mutations are referred to as design mutations. If these newly

placed rotamers have steric clashes with other PBR rotamers or

native side chains, the pose is rejected.

Two residues are defined to have a steric clash if any of the

following conditions are met: 1) Two heavy (i.e., non-hydrogen)

atoms are closer than 1.3 Å, 2) More than one pair of heavy

atoms are closer than 1.8 Å, or 3) One pair of heavy atoms are

closer than 1.8 Å, with at least one of the two atoms being a

backbone atom. Instead of calculating vdW energy between

atoms as calculated using conventional approaches, MutDock

uses these relaxed clash constraints under the assumption that

the flexibility of the proteins would compensate for the minor

steric clashes introduced in this rigid-body docking strategy.

These clash definitions were selected because they consistently

allowed CHARMM36 energy minimization to rectify the

clashing structures, which is used as a proxy for the proteins’

flexibility.

A coarse-grained filter is used to facilitate the rejection of

low-quality poses (i.e., those with small buried surface areas or

major clashes between proteins). Each residue is divided into its

backbone and side chain units. Each such unit is approximated as

a sphere at the center of mass of the atoms with a radius equal to

the distance of the farthest atom from the center of mass.

Analysis of the antibody-antigen database (Chauhan et al.,

2018) revealed that the coarse-grained spheres should be a

minimum of 3.39 Å apart and that the complexes should have

a minimum of 12 spheres in contact with one another. Poses that

violate either of these requirements are rejected as having

irreconcilable steric clashes or having too small interface

surface areas.

After the coarse-grained filter removes obviously deficient

poses, an all-atom pose validation is conducted. Each designed

H-bond is accepted if the acceptor–hydrogen distance is less than

2.5 Å and the acceptor–hydrogen–donor angle is larger than

120°. Poses that fail to form even one of their predicted H-bonds

are rejected. Finally, the steric compatibility between the antigen

and scaffold is verified. Poses that consist of steric clashes

between the antigen and the binding protein’s backbone and/

or non-variable side chains are discarded, as are those that have

clashes involving the residues forming the designed H-bonds.

However, poses with clashes involving mutable paratope residues

that do not form designed H-bonds are retained, as those

residues can be changed in the second major step of

MutDock: mutation.

Mutation

Once a pose is identified, a novel feature-based approach is

used to mutate variable paratope residues for one of two

purposes: 1) resolving clashing variable side chains and 2)

improving binding features. The mutation decisions are based

on features obtained after analyzing the non-redundant database

of antibody-antigen complexes. Since the approach avoids energy

minimizations until the last step, the affinity maturation

mutations are conservative in nature. The mutations make

changes with high confidence in creating either nonpolar or

polar interactions and improving binding affinity. These

mutations are referred to as clash mutations.

The following steps are taken for the variable paratope

residues that have steric clashes with the antigen:

1) Identify an alternate rotamer of the native amino acid that

does not have steric clash with any surrounding antigen or

scaffold residue.

2) If step 1 fails, search for an ASP rotamer that forms a salt

bridge with an antigen residue. Salt bridges are prioritized

because they are the strongest polar interactions and are less

orientation dependent than H-bonds. Each antigen ARG/LYS

is allowed to form a salt bridge with only one mutated

paratope residue to avoid the formation of closely placed

negatively charged residues.

3) If step 2 fails, search for a GLU rotamer that forms a salt

bridge with an antigen residue. ASP is prioritized over GLU

for salt bridge formation since it is a smaller side chain and,

thus, its stabilization involves a lower entropic cost.

Moreover, ASP salt bridges are more frequent than GLU

salt bridges in known antibody-antigen complexes (Chauhan

et al., 2018). MutDock does not consider introducing ARG/

LYS mutations for salt bridge formation due to their high side

chain flexibilities.

4) If step 3 fails, rotamers that can introduce new H-bonds are

searched for. If a polar rotamer does not have steric clashes

and forms the required type and number of H-bonds with the

antigen, it is selected. Polar rotamers are searched in the

sequence: SER, THR, ASN, ASP, and HIS. The required
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minimum number of H-bonds is one for SER and THR and

two for ASP, ASN, and HIS. It was observed in the antibody-

antigen database that ASN rotamers frequently make

H-bonds with backbone atoms. Hence ASN rotamers

making single H-bonds with antigen backbone atoms were

also selected. GLN and GLU rotamers were not analyzed due

to their relatively high entropy side chains.

5) If step 4 fails, rotamers that introduce nonpolar contacts are

searched for. The nonpolar amino acids analyzed in this step

are ALA, VAL, LEU, ILE, and PHE. A side chain atom is

defined to be making a nonpolar contact if it is either a C or S

atom and is less than 4.5 Å away from an antigen C or S atom.

MET is not considered due to the relatively high entropy of its

side chain. TRP and TYR are also not considered because they

need to satisfy both polar and nonpolar requirements when

buried in an interface.

6) If step 5 fails, the pose is rejected because it has an

irreconcilable steric clash.

Following the mutations, the clash-free mutated poses are

output in PDB format. In the current version of MutDock, no

further pose refinement or ranking is performed, and rotamer

repacking/energy minimization and pose ranking strategy are left

to the user.

Complex evaluation

Although force fields are not used for energy calculations

during the MutDock algorithm, they were used to evaluate the

MutDock predictions and compare them to other docking

methods. All MutDock poses were relaxed through two

energy minimization runs: CHARMM36 force field energy

minimization (Vanommeslaeghe et al., 2010) with fixed

backbone atoms followed by 2) Rosetta force field energy

minimization (Alford et al., 2017). When docked poses are

identified, they include minor steric clashes.

CHARMM36 energy minimizations were able to consistently

correct the clashes caused by the steric constraints used in the

method, while Rosetta could only correct them sometimes. Thus,

CHARMM36 was used to prepare the complexes for

computational analysis while Rosetta, the most commonly

used protein engineering force field, was used for comparing

the quality of poses. Complexes from the previously mentioned

antibody-antigen database were run through the same energy

minimization routine as the MutDock poses. Since the primary

purpose of MutDock is to identify high affinity mutated poses,

the key metric analyzed in this work is binding energy, which is

the difference in the Gibbs free energy of the system before and

after complex formation. Along with computational binding

energy, other binding metrics analyzed in this work, such as

shape complementarity and buried interface area, were

calculated using the InterfaceAnalyzer application from

Rosetta (Stranges and Kuhlman, 2013).

MutDock is compared to ZDOCK 3.0.2 and HADDOCK 2.4.

To compare the epitope specific/local docking of MutDock to

that of ZDOCK, residues far from the epitope and paratope were

manually selected to be blocked from being part of ZDOCK pose

interfaces. The HADDOCK webserver was used for HADDOCK

docking simulations and epitopes and paratopes were defined as

the “active regions” on the webserver. For each run, each of the

2000 ZDOCK poses and 200 HADDOCK poses from the “it1”

directory were run through the energy minimization routine. All

protein visualization and image generation carried out done via

UCSF Chimera (Pettersen et al., 2004).

Results

MutDock’s performance was tested by docking 10 randomly

selected antigens from the antibody-antigen database with two

scaffolds: affibody and DARPin. The affibody and DARPin

structures were obtained from PDB files 3MZW and 6FPA,

respectively. The identities of the 13 and 18 variable residues

for affibodies and DARPins were obtained from the literature

(Plückthun, 2015; Ståhl et al., 2017). The paratope residues

included the variable residues, as well as several surrounding

residues. The epitopes from the native antibody-antigen

complexes were selected as the epitopes for the docking runs.

The source PDB IDs of the 10 antigen structures, residue

numbers of the paratope, epitope, and variable residues are

listed in Supplementary Table S1. The docking runtimes

ranged from 3 to 46 h depending on the number of

preliminary poses that needed to be filtered for various

metrics. These high runtimes were expected, as the current

implementation of MutDock is intended as a proof of

principle method and its code has not been optimized for

computational efficiency.

The predicted binding energies for the top poses of the

20 complexes are reported in Table 3, along with those of the

native antibody-antigen complexes. Greater than 1,000 poses

were identified for all antigens except PDB 3P30. That antigen

consists of a two-helix bundle and hence lacks solvent-exposed

backbone atoms for binding. Approximately 500 poses were

identified for this antigen with both the affibody and DARPin

scaffolds. The binding energies of top MutDock poses ranged

from 35 to 51 kcal/mol. For eight of the ten antigens, the DARPin

poses had stronger binding energies than the affibody poses. This

is consistent with the fact that DARPins have larger paratopes

than affibodies and our prior experience that computationally

calculated binding energies are strongly correlated with interface

size. The stronger calculated binding energies of the antibodies

versus theMutDock-designed proteins is also consistent with this

trend.
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Table 4 lists the percentage frequencies of poses with

different numbers of mutations. It is observed that the

docking approach relies heavily upon design mutations for

identifying poses, as more than 90% of all poses consist of

either two or three design mutations. In contrast, less than

50% of all poses had any clash mutations, with a majority of

them having only onemutation. Considering that all variable side

chains were allowed to clash before the mutation step, this result

signifies that the rotamer repacking step (i.e., step 1 of 6 of the

clash mutation calculations) was efficient at resolving side chain

clashes.

Figure 4 displays the percentage frequency of the amino acid

types in design and clash mutations. The figure demonstrates

expected trends, as MutDock favors the introduction of low

entropy side chains, such as SER and TYR, that can form

H-bonds with backbone atoms and other low entropy side

chains. The numerical values for Figure 4 are listed in

Supplementary Table S2. In contrast, the positively charged,

high entropy side chains of ARG and LYS are disfavored. The

most favored clash mutation was LEU. Examples of design and

clash mutations are illustrated in Figure 5.

The widely used docking programs ZDOCK and

HADDOCK were tested on the same affibody and DARPin

scaffolds against the same antigens. ZDOCK was selected for

comparison with MutDock since neither method uses local pose

refinement or rigid body energy minimizations (Pierce et al.,

2014).

The top binding energies for each complex, along with the

difference with the best MutDock pose energies, are displayed in

Figure 6. Supplementary Table S4 lists these top binding energy

values along with their differences. A more negative predicted

binding energy value corresponds to a higher likelihood of

binding, and it is typical for computational predictions to

have larger magnitudes than experimental values. MutDock

predicted poses with binding energies at least 3 kcal/mol

stronger than ZDOCK in 17 of 20 complexes and at least

10 kcal/mol stronger in 11 complexes. The only antigen

ZDOCK outperformed MutDock on was 3P30, whose helical

nature eliminates the possibility of the backbone H-bonds that

MutDock preferentially targets.

MutDock was also compared to HADDOCK (van Zundert

et al., 2016; Honorato et al., 2021), a docking approach that

performs local rigid body energy minimizations along with

further refinement using short MD simulations. The top

binding energies for each complex are displayed in Figure 6.

MutDock predicted better poses for nine complexes, similar

quality poses (i.e., ±3 kcal/mol) in five complexes, and worse

poses for six complexes. In the nine complexes where MutDock

outperformedHADDOCK, the improvement in binding energies

was lower than those obtained from the ZDOCK comparisons.

Thus, HADDOCK predicted complexes with stronger binding

energies than ZDOCK.

A likely cause of HADDOCK’s performance being evaluated

well by energy calculations is its use of such calculations to refine

TABLE 3 Top binding energies (BE) of MutDock poses and their native wild type (WT) structures for the 20 antigen-scaffold complexes. The shape
complementarity (Sc) values of these top MutDock poses and the native structures are also listed.

Antigen PDB Scaffold Top MutDock BE (kcal/mol) Sc of top MutDock pose WT BE (kcal/mol) WT Sc

1JRH Affibody -41.31 0.64 -71.58 0.81

1JRH DARPin -48.67 0.61 -71.58 0.81

1OB1 Affibody -34.95 0.53 -41.98 0.69

1OB1 DARPin -39.54 0.59 -41.98 0.69

2XT1 Affibody -46.83 0.74 -66.21 0.75

2XT1 DARPin -46.38 0.66 -66.21 0.75

3BDY Affibody -35.07 0.60 -45.67 0.68

3BDY DARPin -43.44 0.56 -45.67 0.68

3L5Y Affibody -35.06 0.62 -54.74 0.74

3L5Y DARPin -42.92 0.65 -54.74 0.74

3P30 Affibody -32.88 0.71 -32.73 0.65

3P30 DARPin -35.11 0.50 -32.73 0.65

3X3F Affibody -42.95 0.64 -56.51 0.76

3X3F DARPin -46.56 0.59 -56.51 0.76

4AL8 Affibody -49.89 0.61 -40.83 0.67

4AL8 DARPin -46.66 0.70 -40.83 0.67

5DFV Affibody -38.38 0.56 -55.47 0.63

5DFV DARPin -51.02 0.56 -55.47 0.63

5IKC Affibody -37.87 0.62 -50.06 0.67

5IKC DARPin -42.75 0.61 -50.06 0.67
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initial poses. To investigate whether the positional refinements

HADDOCK utilizes could further improve the MutDock poses,

the top MutDock designs were docked using HADDOCK. After

HADDOCK docking, poses were defined as near-native if they

had an interface CαRMSD less than 4 Åwhen compared with the

respective top MutDock pose.

TABLE 4 Total number of poses generated and percentage frequencies of different number of design and clashmutations for each of the 20MutDock
simulations.

Antigen
PDB

Scaffold Total
poses

Percentage
frequency of
3 design
mutations

Percentage
frequency of
2 design
mutations

Percentage
frequency of
1 design
mutation

Percentage
frequency of no
design mutations

Percentage
frequency of any
clash mutations

1JRH Affibody 2000 41.05 54.55 4.40 0.00 47.00

1JRH DARPin 2000 19.40 72.40 8.10 0.10 22.85

1OB1 Affibody 2000 52.85 42.90 4.25 0.00 35.10

1OB1 DARPin 2000 57.70 36.80 5.20 0.30 17.60

2XT1 Affibody 1937 71.55 25.97 2.48 0.00 39.29

2XT1 DARPin 1,654 71.28 26.36 2.36 0.00 18.38

3BDY Affibody 1,607 70.82 26.45 2.61 0.12 43.25

3BDY DARPin 1806 62.57 32.67 4.71 0.06 22.54

3L5Y Affibody 2000 73.75 25.00 1.25 0.00 39.05

3L5Y DARPin 2000 66.15 30.30 3.45 0.10 20.25

3P30 Affibody 503 70.38 26.44 2.98 0.20 34.19

3P30 DARPin 564 43.44 45.57 10.11 0.89 18.26

3X3F Affibody 1,575 69.52 28.38 2.10 0.00 38.67

3X3F DARPin 1,540 64.94 31.62 3.38 0.06 20.71

4AL8 Affibody 2000 64.45 31.90 3.55 0.10 39.35

4AL8 DARPin 1,120 61.61 33.04 5.27 0.09 17.95

5DFV Affibody 2000 66.65 30.25 2.95 0.15 39.85

5DFV DARPin 2000 67.85 29.70 2.35 0.10 16.80

5IKC Affibody 2000 63.90 34.00 2.05 0.05 40.25

5IKC DARPin 2000 62.55 33.80 3.50 0.15 21.65

FIGURE 4
Percentage frequencies of amino acids in design mutations before and after clash mutations. In the clash mutations, aromatic amino acids
which have larger side chains and lower flexibilities were mutated to smaller polar amino acids and LEU.

Frontiers in Molecular Biosciences frontiersin.org10

Chauhan and Pantazes 10.3389/fmolb.2022.933400

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.933400


FIGURE 5
Example design and clash mutations in three MutDock designs. Design mutations are shown in pink, clash mutations are shown in dark cyan,
and H-bonds are shown in broken green lines. (A) 1JRH-affibody. Native residue 10ARG and design mutations ARG28TRP andALA17ASP make
H-bonds with 91GLU, 43ASN, and 46TRP, respectively. Clash mutation TYR13ASP makes H-bond with 37LYS. Clash mutation TYR35LEU makes
hydrophobic interaction with 39TYR. (B) 4AL8-DARPin. Design mutations VAL102GLU, GLN80ASN, and MET101TYR make H-bonds with
69ASN, 20HIS, and 67PRO, respectively. Clashmutation TRP71LEUmakes hydrophobic interaction with 20HIS. (C) 3BDY-affibody. Designmutations
ARG28ASN, TYR13ASP, and LEU18ARGmake H-bonds with 76GLN, 80GLU, and 31GLU, respectively. Clashmutation TYR35LEUmakes hydrophobic
interaction with 78ILE.

FIGURE 6
Top Rosetta-predicted computational binding energies of poses from the 20 docking simulations performed using ZDOCK, MutDock,
HADDOCK, and a combination approach of HADDOCK with top MutDock scaffold.
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Figure 6 also displays the top binding energies from the

HADDOCK and MutDock combination approach.

Supplementary Table S4 lists these binding energies along

with the binding energies of near-native poses, their RMSDs

and the respective binding energy differences. For nine

complexes, HADDOCK identified novel poses with better

binding energies than the native MutDock poses. Of those

nine complexes, HADDOCK identified no near-native pose

for two complexes, better (i.e., by at least 3 kcal/mol) poses

for three complexes, comparable poses for two complexes, and

worse than native poses for two complexes. For the remaining

eleven complexes, HADDOCK identified better poses for two

complexes, comparable poses for six complexes, and worse poses

for three complexes. Finally, the top HADDOCK poses using the

MutDock designed binding proteins had stronger calculated

binding energies for 16/20 complexes than the top

HADDOCK poses with the original scaffolds.

Discussion

MutDock is a novel computational approach for the

generation of mutated, docked scaffolds designed to bind

target epitopes. The approach identifies regions around the

scaffold paratope which can host polar epitope atoms to form

H-bonds. Pairwise distance alignment between the epitope atoms

and H-bond regions is used to obtain groups of low entropy

H-bonds that can be formed simultaneously. Each group

constitutes a unique pose that is passed through several

compatibility filters. MutDock was benchmarked by docking

ten antigens with two scaffolds. The predicted binding

energies of the top MutDock poses were comparable to those

of known binding complexes when accounting for the influence

of interface size on calculated energies. The MutDock poses were

significantly better than ZDOCK’s results for 17 of the

20 predicted complexes. When compared to HADDOCK,

MutDock performed better in 9/20 complexes, comparably in

5/20, and worse in the remaining 6/20 complexes. However, the

HADDOCK scores improved for 16/20 complexes when

HADDOCK was used to dock the MutDock-designed scaffolds.

It is particularly notable that more than 90% of the poses

MutDock identified required at least two mutations. This shows

that MutDock has the ability to generate a large number of poses

with multiple beneficial mutations per pose. Conventional design

approaches search for beneficial mutations through iterative cycles

of random point mutations (Pantazes et al., 2015; Adolf-Bryfogle

et al., 2018). On the other hand,MutDock is able to simultaneously

identify multiple beneficial mutations per pose in a single search

step, with further beneficial mutations added in the clash-removal

step. Such an approach allows MutDock to search a larger solution

sequence space and hence identify poses that would not be

identified by fixed-sequence docking methods.

Using Rosetta-calculated binding energies as a benchmark,

MutDock performed significantly better than ZDOCK for most

of the complexes. Each of these methods relies on geometric

criteria for identifying binding poses: H-bond formation for

MutDock and shape complementarity along with molecular

mechanics for ZDOCK. This is in line with expectations, as

the mutations introduced byMutDock should result in improved

binding energies relative to those attainable by the original

scaffold. Nonetheless, this demonstrates that by strictly using

geometric criteria, MutDock is able to identify favorable and

promising binding conformations.

The comparison of the performances of MutDock and

HADDOCK is more nuanced. Each did best on approximately

half of the complexes in a head-to-head comparison. This is due

in part to the fact that each has an advantage over the other:

MutDock allows for mutation of the scaffold, while HADDOCK

uses energy minimizations and positional refinement to

maximize predicted binding energies. However, 16/

20 complexes were improved when HADDOCK used the top

MutDock-designed scaffolds compared to when it used the

original ones, albeit not always in conformations similar to

MutDock’s predicted poses. This indicates that MutDock’s

predicted mutations, which are unguided by energy

calculations, create the potential to improve binding energies.

It is notable that in a number of complexes, HADDOCK was

unable to identify poses with binding energies as strong as

MutDock’s predictions. Given that it is demonstrable that

those poses exist, this indicates that HADDOCK’s energy-

based pose identification algorithm still has potential room for

improvement.

One of the primary motivations of MutDock was to explore

the design of binding proteins without placing the ligand

protein around the receptor in a random or grid-based

position. Docking tools such as HADDOCK obtain initial

poses through random starting orientations and refine these

poses via forcefield-dependent energy minimizations, while

MutDock only generates poses that consist of the required

minimum number of H-bonds. We believe that replicating

known structural or conformational features via simple

geometric alignments has the potential to identify superior

poses compared to using random or grid-based initial poses.

Despite only targeting H-bonds in the binding interface,

MutDock was able to generate poses with computational

metrics comparable to known binding complexes and poses

made with other docking programs. Thus, MutDock serves as

an example of a viable docking-design approach that attempts

to replicate known beneficial features of binding interfaces,

such as hotspot interactions in hotspot-centric design

(Fleishman et al., 2011a). The development of such methods

has been made possible by the availability of large datasets of

known complex structures that can be analyzed for common

key structural features which can later be targeted.
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The only other interaction-based docking approach we

have seen in the literature is RIFdock (Dou et al., 2018;

Longxing et al., 2020). Compared to MutDock, RIFdock

uses a larger library of rotamer poses and includes

hydrophobic interactions as target interactions too. A

major difference between the two approaches is the search

strategy. RIFdock moves the receptor protein in 6D steps, with

increasing resolution, around the target protein to find

scaffold poses that host multiple rotamers, which make

strong interactions with the epitope. On the other hand,

MutDock uses pairwise distance alignment to identify

groups of compatible interactions in one step. However,

since a detailed description of the RIFdock methodology is

not available in a peer-reviewed article, a more thorough

comparison of the approaches was not possible.

We plan to make several improvements to the current

MutDock implementation. ZDOCK run times lasted for

4 min while HADDOCK webservers took a maximum of

approximately 6 h, which also includes the time when the

job was queued, for each docking run. On the other hand,

MutDock runtimes ranged from 3 to 46 h on a 3.00 GHz Intel

Xeon Gold 6248R processor. To reduce these run times, we

plan on optimizing and shifting the code from Cython to

C++. Hydrophobic interactions are as important as

electrostatic interactions in protein-protein binding (Wang

et al., 2018). However, targeting their formation is

challenging with the current MutDock thresholds since

hydrophobic interactions are not as geometrically

constrained as H-bonds. Similar to RIFdock, we plan to

modify the approach to target hydrophobic interactions

with a more robust rotamer library. We expect MutDock

to generate better quality poses in smaller run times after

these modifications are made.

The recent breakthroughs of AlphaFold and RosettaFold

at predicting protein structures without heavy reliance on

physics-based force fields herald a change in computational

protein engineering. We believe that one of the frontiers of

bioengineering will be the growth of computational protein

design methods that use machine learning and engineering

principles instead of force fields. MutDock demonstrates the

potential of such approaches. Through spatial positioning and

mutation steps, MutDock is able to identify poses that have

many low entropy and favorable interactions. The results,

especially those from re-docking the scaffolds with

HADDOCK, indicate that the binding energies can be

improved without relying on force field calculations. The

MutDock code and all data from this project have been

uploaded to the Dryad Data Repository and are available

for free public access at https://doi.org/10.5061/dryad.

0rxwdbs3q.
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