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Abstract: Hepatitis B virus (HBV) chronically infects over 250 million people worldwide and causes
nearly 1 million deaths per year due to cirrhosis and liver cancer. Approved treatments for chronic
infection include injectable type-I interferons and nucleos(t)ide reverse transcriptase inhibitors. A
small minority of patients achieve seroclearance after treatment with type-I interferons, defined as
sustained absence of detectable HBV DNA and surface antigen (HBsAg) antigenemia. However,
type-I interferons cause significant side effects, are costly, must be administered for months, and
most patients have viral rebound or non-response. Nucleos(t)ide reverse transcriptase inhibitors
reduce HBV viral load and improve liver-related outcomes, but do not lower HBsAg levels or impart
seroclearance. Thus, new therapeutics are urgently needed. Lambda interferons (IFNLs) have been
tested as an alternative strategy to stimulate host antiviral pathways to treat HBV infection. IFNLs
comprise an evolutionarily conserved innate immune pathway and have cell-type specific activity on
hepatocytes, other epithelial cells found at mucosal surfaces, and some immune cells due to restricted
cellular expression of the IFNL receptor. This article will review work that examined expression of
IFNLs during acute and chronic HBV infection, the impact of IFNLs on HBV replication in vitro and
in vivo, the association of polymorphisms in IFNL genes with clinical outcomes, and the therapeutic
evaluation of IFNLs for the treatment of chronic HBV infection.
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1. Hepatitis B Virus

Hepatitis B virus (HBV) belongs to the Hepadnaviridae family, a group of enveloped,
hepatotropic DNA viruses that infect mammals and birds with species-specific tropism [1].
After HBV establishes a chronic infection (as reviewed in [2]), the HBV covalently closed
circular DNA genome (cccDNA) resides indefinitely as a mini-chromosome within the
nuclei of infected hepatocytes and is a stable template for synthesis of HBV transcripts
and nascent virion production [2–5]. During chronic infection, HBV replication within
hepatocytes is largely unrestricted, in part as a consequence of the liver’s well-established
pre-disposition to antigenic tolerance [6–8].

Chronic HBV infection causes significant morbidity and mortality worldwide by
inducing cirrhosis and hepatocellular carcinoma that result in nearly 1 million deaths per
year [9–11]. Currently, there are no approved therapies that reliably eliminate or silence
cccDNA once chronic infection is established [12–14]. Although nucleos(t)ide reverse
transcriptase inhibitors (NRTIs) reduce HBV DNA by inhibiting the HBV polymerase,

Viruses 2021, 13, 1090. https://doi.org/10.3390/v13061090 https://www.mdpi.com/journal/viruses

https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0003-1717-8588
https://orcid.org/0000-0002-7146-916X
https://doi.org/10.3390/v13061090
https://doi.org/10.3390/v13061090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/v13061090
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v13061090?type=check_update&version=1


Viruses 2021, 13, 1090 2 of 15

thereby lowering hepatic inflammation and the risk of progressive liver disease, pre-made
cccDNA is largely unaffected by NRTI therapy [15]. As such, viral protein production
persists during therapy with NRTIs, including production of the HBV surface antigen
(HBsAg), a serologic marker of active HBV infection. In addition, long-term NRTI therapy
can potentially engender HBV resistance and cause bone and renal side effects which are
difficult to manage clinically, underscoring the need for new HBV therapies.

The fate of HBV after an initial infection is highly contingent upon the maturity of
the host immune system. Most adults can clear acute HBV infection by cytopathic and/or
non-cytopathic mechanisms. This leads to clearance of serum HBV DNA and HBsAg,
appearance of antibodies specific for HBsAg, and cessation of de novo viral production.
Patients with spontaneous HBV clearance do not have an increased longitudinal risk of the
hepatic sequelae associated with chronic infection [6,9,16]. Although there is little direct
evidence demonstrating hepatic cccDNA in patients who have spontaneously recovered,
HBV can reactivate when immunosuppressive medications are given, providing indirect
evidence that intrahepatic cccDNA can persist after spontaneous clearance [17–19]. In con-
trast, neonates or infants infected with HBV typically develop a chronic lifelong infection
and are unable to clear cccDNA or virions [6,9]. Understanding the mechanisms by which
host immunity influences variable HBV outcomes after infection will aid design of novel
therapeutic approaches.

As the source of continual HBV production during chronic infection, cccDNA is one
of the critical targets for therapeutic modulation [6,13,20]. The optimal treatment outcome
is inducing a functional cure, which attempts to recapitulate the fate of HBV in most
persons who are infected as adults but then resolve active infection; i.e., cccDNA may
still persist in the liver but is silenced and there is seroclearance of serum HBV DNA and
HBsAg [6,10,13,21]. As current therapies rarely impact cccDNA, achieving a functional
cure will likely require novel immunomodulating therapies given alone or in combination
with current antivirals.

2. Lambda Interferons

Interferons (IFNs) are a class of cytokines that play a key role in antiviral defense [22,23].
IFNs are amongst the first cytokines produced when host pattern recognition receptors
sense pathogen-associated molecular patterns, and IFNs signal in both an autocrine and
paracrine fashion [24]. Human IFNs are classified as type-I, type-II or type-III based on
varied receptor binding and host cell receptor expression, as reviewed elsewhere [25,26].
Type-III or lambda IFNs (IFNLs) were first discovered in 2003 as a novel family of cytokines
that induce a transcriptional program similar to type-I IFNs [23,27–29], but by signaling
through a distinct receptor complex.

Type-I IFNs signal through a heterodimeric receptor composed of interferon re-
ceptor alpha-1 (IFNAR1) and IFNAR2, which are expressed on the surface of nearly
all cells [23,30–32]. In contrast, IFNLs signal through a heterodimeric receptor com-
posed of interferon lambda receptor-1 (IFNLR1) and interleukin-10 receptor subunit beta
(IL10RB) [28,33–35]. IFNLR1 binds IFNLs with specificity and has restricted cellular ex-
pression, whereas IL10RB expression is more broadly distributed and also functions as part
of the receptor for IL-10, IL-22 and IL-26 [23,33,36,37]. IFNLR1 is expressed primarily on
epithelial cells, such as hepatocytes and those found at mucosal surfaces, and on select
immune cells, including plasmacytoid dendritic cells and some B-lymphocytes [38–41].
There are 4 IFNLs (IFNL1, IFNL2, IFNL3, IFNL4) which all signal by binding IFNLR1
resulting in IL10RB recruitment and initiation of a JAK-STAT signaling cascade [25,26].
Signaling results in expression of hundreds of interferon stimulated genes (ISGs), and
IFNL signaling has a slower onset and longer duration of action relative to type-I IFN
signaling [42,43], in part due to reduced susceptibility of the IFNL signaling complex to
negative regulation [43,44]. Notably, a dinucleotide polymorphism within an exon of
IFNL4 imparts differential capacity to make IFNL4 protein, such that some individuals are
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incapable of making functional IFNL4 [45], whereas all people can make IFNL1, IFNL2,
and IFNL3.

3. Role of IFNL Polymorphisms in Hepatitis C Virus Outcomes

The importance of alterations in IFNL signaling were highlighted by clinical studies
examining chronic hepatitis C virus (HCV) outcomes. These studies identified a strong
association of IFNL polymorphisms with HCV clearance during the acute stage of infection
and of achieving HCV cure with type-I IFN-based therapy of chronic infection [46–51].
Patients with the genetic capacity to make functional IFNL4 protein, imparted by variability
in the rs368234815 dinucleotide nucleotide polymorphism [45], were less likely to clear
acute infection and less likely to respond favorably to type-I IFN-based therapy, suggesting
ability to make IFNL4 negatively influences HCV outcomes. An alternative explanation
for the association of IFNL polymorphisms with HCV outcomes involves variable IFNL3
mRNA decay due to a functional single nucleotide polymorphism (SNP) (rs4803217) in the
3’ untranslated region of the IFNL3 transcript [52]. These data provide strong evidence that
alterations in IFNL signaling can have functional consequences on outcomes after infection
and that modulation of this innate immune pathway could have therapeutic potential for
infectious diseases.

4. IFNL Polymorphisms and HBV Clinical Outcomes

A minority of chronic HBV patients treated with type-I IFNs and/or NRTIs achieve
durable suppression of HBsAg production after treatment cessation, thereby achieving
seroclearance [14,53,54]. Unfortunately, this favorable clinical outcome occurs infrequently
and furthermore, IFN therapy is costly, can cause significant side effects, and must be given
for months [14,54]. Understanding the genetic and mechanistic underpinnings of how and
why some patients achieve seroclearance could facilitate differentially targeting or modu-
lating IFN therapy to improve outcomes in more people. The strong association of IFNL
polymorphisms with HCV outcomes prompted similar evaluations in HBV patient cohorts.

Several studies in diverse ethnic and geographic cohorts comprised of healthy vol-
unteers, patients who spontaneously cleared HBV infection, and patients who developed
chronic HBV infection identified an association of IFNL polymorphisms with HBV infec-
tion outcomes [55–57]. However, multiple additional studies [58–61] and meta-analyses
did not identify an association [62–66]. Most analyses examined SNPs within IFNL genes,
but a case-control study in a Han Chinese cohort composed of 3128 patients (healthy
controls, natural HBV clearance, or chronic HBV infection) found an association of IFNLR1
polymorphisms (rs7525481, rs4649203) with HBV susceptibility [60], which merits further
evaluation in independent cohorts. Taken together, there is not a clear and reproducible
association of IFNL polymorphisms with HBV infection outcomes, particularly relative to
the strong association that was observed with HCV.

The association of IFNL polymorphisms with differential outcome after IFN-based
therapy for chronic HBV infection has also been evaluated. Several studies identified a
significant association of IFNL polymorphisms with either HBe antigen (HBeAg) or HBsAg
clearance after receipt of IFN-based therapy [67–73], including several meta-analyses [74,75].
However, multiple additional studies did not identify a significant association [76–80],
including several independently conducted meta-analyses (reviewed in [46], [81,82]). Vary-
ing genetic and ethnic backgrounds of the study populations, differences in HBV genotype,
and sample size may have influenced these disparate results [70,82–84]. Taken together,
although IFNL polymorphisms correlated with HBV outcomes after IFN-based therapy in
some cohorts, this finding was not as robust or consistently observed across studies relative
to HCV [46,84]. To date, a definitive genetic or immune mechanism to explain the variable
response of HBV patients to type-I IFN treatment remains elusive [12,14], which hampers
efforts to rationally design novel therapeutic approaches that are immunomodulatory.
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5. IFNL Expression in Response to HBV Infection In Vitro and In Vivo

Hepatocytes express IFNLR1 and support IFNL signaling, prompting evaluation
of IFNL expression during acute and chronic HBV infection. If HBV infection induces,
inhibits, or is responsive to IFNLs, then modulation of IFNL expression endogenously or by
exogenous administration could have therapeutic benefit. HBV reactivation during HCV
treatment has been observed, likely due to a reduction in hepatic interferon signaling when
HCV viral load declines due to antiviral treatment, implying endogenous interferons can
suppress HBV infection [85]. The extent to which HBV is recognized within hepatocytes
and either stimulates, suppresses, or avoids an innate immune response has differed across
studies. These different findings may in part relate to differences in the systems used
for evaluation (i.e. in vitro, in vivo, natural infection, or over-expression of viral proteins
or virions) [6,86–88]. The following section and Figure 1 highlight key investigations
providing support for alternative interpretations of how HBV and hepatocytes interact and
the potential involvement of IFNLs.
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Figure 1. Proposed models and selected mechanisms for HBV suppression or evasion of the host innate immune response in
hepatocytes. (A) HBV is recognized by the host cell, an antiviral response is induced including expression of IFNLs, but this
response is subsequently suppressed by viral elements. (B) HBV is not sensed by the host cell and IFNLs are not produced
even though detection and signaling proteins are functional. Exposure of HBV-infected hepatocytes to endogenous IFNLs
can overcome immune inactivity. Figure created with BioRender.com.

There are two possibilities for how HBV persists within an infected hepatocyte: (1) an
antiviral response is induced, but subsequently suppressed, or (2) HBV is a stealth virus and
therefore does not induce an IFN response. Viral infection typically is sensed by pathogen-
recognition receptors (PRRs) that then induce immune activation. For example, the PRR
MDA5 (or IFIH1, interferon induced with helicase C domain 1) is shown to associate with
HBV double stranded RNA (dsRNA) [89] and RIG-I (or DDX58, DexD/H-box helicase 58)
is reported to recognize a specific region in HBV pre-genomic RNA [90,91]. Upon viral
sensing it has been postulated that the resultant innate immune response is subsequently
suppressed by HBV or viral components which leads to persistent infection. This result has
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been shown in vitro in hepatocyte-derived cells lines, primary human hepatocytes, and
in vivo in humanized models of HBV infection [90,92–95].

Studies with HepaRG cells and primary human hepatocytes also showed that HBV
can inhibit host cell recognition of viral dsRNA, thus impeding immune signaling [96,97].
Additionally, expression of viral proteins, including the HBV e-antigen (HBeAg) can
contribute to immune suppression. HBV infection of human hepatoma cells showed that
HBeAg induces a member of the suppressor of cytokine signaling family, SOCS2, which
impairs JAK-STAT signaling and leads to downregulation of type-I and IFNL receptors
and thus inhibits ISG expression [98]. Moreover, the intracellular form of HBeAg, p22,
interferes with IFN signaling in hepatoma cells by blocking nuclear translocation of STAT1
through interactions with the nuclear transport factor, karyopherin alpha1 [99]. These
data and others suggest a mechanism by which HBeAg facilitates HBV replication and
persistence [100].

The HBV protein x (HBx) has also been shown to interfere with multiple host cell
functions. Independent studies show that HBx interacts with beta interferon promoter stim-
ulator 1 (IPS-1) adaptor protein and thus interferes with the RIG-I pathway [101], as well
as disrupts the assembly and promotes degradation of mitochondrial anti-viral signaling
(MAVS) thereby inhibiting IRF3 (interferon regulatory factor 3) activation [102,103]. HBV
polymerase has been demonstrated to inhibit the RIG-I pathway by disruption of DDX3
DEAD box RNA helicase [104] or blockade of IRF3 activation [105]. Studies in cell lines
and mouse models suggest HBV represses expression and function of the cyclic guanosine
monophosphate-adenosine monophosphate synthase (cGAS) DNA sensing pathway [106].
Use of a 3D microfluidic culture model designed to mimic the hepatic sinusoid structure
and support long-term HBV infection in vitro showed that HBV suppresses type-I IFNs and
IFNL expression in primary human hepatocytes, although the cells remained responsive
to exogenous IFN treatment [86]. Collectively, these data imply that HBV is recognized
within hepatocytes, an innate immune response is induced and includes expression of
IFNLs, however there is subsequent suppression of IFN signaling by viral elements. These
data also indicate that modulation of IFNL signaling can impact host cell detection of HBV
and affect viral replication, and thus has therapeutic potential.

Conversely, other studies suggested HBV can act as a stealth virus which avoids IFNL
induction during acute infection. In an analysis of peripheral blood from 21 patients with
acute HBV infection, no soluble IFN-alpha or IFNL1 was detected during peak viremia,
while expression of immunosuppressive IL-10 increased in parallel with an attenuated
NK- and T-cell immune response [107]. This result was compatible with findings from a
chimpanzee model of HBV infection where no ISG expression was observed in the liver
during the early phases of infection, suggesting an IFN response was not triggered in
hepatocytes with actively replicating HBV [16,108,109]. HBV may evade DNA sensing
by the cGAS and STING (stimulator of interferon genes) pathway within hepatocytes
in vivo [106,110]. Other in vitro and in vivo studies also suggest that HBV may not interfere
with innate immunity in hepatocytes [85,111,112].

Co-infection studies with HCV or hepatitis D virus (HDV) provided added support
that HBV is a stealth virus. HBV-infection of NTCP-expressing human hepatoma cells
or primary human hepatocytes did not induce an inflammatory response; conversely
mono-infection with HCV or HDV or co-infection with either virus plus HBV resulted in
IFN-beta and IFNL expression and induction of ISGs [113,114]. Challenge of humanized
mice with HBV and HDV resulted in ISG production and significant IFN-beta and IFNL
expression, an outcome not detected in HBV-only infected animals [115]. These studies
collectively showed that the target cells and murine models had the capacity to respond
to viral challenge and that the lack of IFN induction by HBV was not due to blockade
of intracellular pattern recognition receptors (RIG-I, MDA5 or TLR3) or from inhibition
of JAK-STAT signaling, but rather was attributed to non-detection (i.e. stealth) based on
retained susceptibility to exogenous IFN stimulation [112,113].
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The immune response to HBV infection is not restricted solely to hepatocytes. As
such, a study examined whether macrophages derived from the THP-1 cell line or human
monocytes were as non-responsive as hepatocytes. HBV-exposed macrophages were found
to be activated and secreted inflammatory cytokines shortly after challenge, although a
high dose of virus (102 genomes/cell) was required to achieve a response [112]. Taken
together, the extent to which HBV induces IFNL expression or modulates IFNL signaling
may be highly contingent upon the cell type, assay system, and context in which the
virus-host interaction is evaluated.

6. IFNL Expression during Chronic HBV Infection

Viral-host interactions may differ during acute and chronic HBV infection. Baseline
differences in endogenous IFN expression associate with outcomes after type-I IFN treat-
ment of chronic HCV infection, as patients with higher baseline hepatic ISG expression are
less responsive to type-I IFN treatment [116]. As such, multiple studies evaluated whether
IFNL expression is altered during chronic HBV infection. In clinical cohorts, IFNL levels
were found to be elevated in serum or liver of chronic HBV patients in some [92,93,117],
but not all studies [118,119]. During chronic HBV infection, BDCA3+ dendritic cells are
enriched in the liver and produce high levels of IFNL upon exposure to synthetic RNA
polyI:C, whereas peripheral BDCA3+ dendritic cells and plasmacytoid dendritic cells are
impaired, potentially due to chronic exposure to HBsAg [120,121]. Examination of HBV-
infected hepatocytes from liver biopsies of patients with chronic HBV infection showed no
elevation of ISG or IFN expression as compared to neighboring non-infected hepatocytes
or to hepatocytes collected from patients without HBV infection (most had fatty liver
disease) [111]. However, IFN-treatment of HBV-infected cells showed retained capacity to
induce an IFN-response in HBV-harboring hepatocytes, including expression of IFNLs in
response to Sendai virus or poly I:C exposure [111]. Taken together, while modulation of
IFNL expression may occur during chronic HBV infection, altered IFNL signaling does not
appear to be a prominent feature within HBV-infected hepatocytes, but may occur in other
uninfected liver-resident cells, such as dendritic cells or macrophages.

Currently approved NRTIs suppress HBV replication and improve hepatic inflam-
mation, and several studies assessed whether they might also impact IFNL expression.
Interestingly, HBV patients treated with nucleotide analogues (adefovir, tenofovir) had
higher serum IFNL3 levels relative to patients treated with nucleoside analogues (entecavir
and lamivudine) [122]. In vitro assays additionally showed a dose-dependent induction of
IFNL3 by nucleotide-stimulated cells, induction of ISGs, and inhibition of HBsAg [122].
This suggests induction of IFNLs could contribute to the antiviral efficacy of HBV poly-
merase inhibition.

While HCV-infected hepatocytes exhibit a robust intracellular IFN response to infec-
tion, HBV-infected hepatocytes may not manifest a similar response in spite of high levels
of HBV replication, as discussed above. HCV is a flavivirus that is readily detected by
pattern recognition receptors and induces IFN production, but expresses viral proteins
that actively interfere with the IFN signaling cascade (reviewed in [123]). In contrast,
HBV is a hepadnavirus that appears to act more as a stealth virus that avoids detection
by pattern recognition receptors and does not induce IFN production in infected hep-
atocytes, as discussed above. One theory for this lack of response is that hepatocytes
intrinsically lack dsDNA sensing mechanisms, and thus HBV can replicate unchecked
until surrounding immune cells, such as macrophages, detect high levels of circulating
virions and stimulate an innate immune response [112,124]. Alternatively, because viral
replication occurs intracellularly within nucleocapsid particles, HBV DNA may be hidden
from pattern recognition receptors [3,16]. Differences in how the host detects and interacts
with these distinct hepatotropic viruses likely helps explain the strong association of IFNL
SNPs with HCV clearance during acute infection but the lack of strong association with
HBV outcomes. Furthermore, it is likely that while IFNLs may not be actively or solely
produced by hepatocytes during acute and chronic HBV infection, they may be produced
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by immune or non-parenchymal liver-resident cells resident that influence host immune
function and hepatic inflammation.

7. IFNL Impact on HBV Replication and cccDNA

Although IFNL polymorphisms do not strongly associate with HBV outcomes and
although HBV does not clearly prompt IFNL production in hepatocytes, the ability to
achieve seroclearance with type-I IFNs prompted interest in exploring the therapeutic
potential of IFNLs for HBV. The receptivity of HBV-infected hepatocytes to IFN treatment,
as outlined above, suggested IFNLs have the potential to impart a clinically significant
antiviral effect. The restricted expression of IFNLR1 raised the specter that IFNL therapy
could impact cccDNA while causing less systemic side effects than exogenous type-I IFN
therapy. This hypothesis was tested in in vitro and in vivo hepatocyte and HBV infection
models in advance of clinical trial testing.

Type-I IFNs have been shown to lower HBV replication in vitro in cell lines and
primary human hepatocytes and in vivo in humanized mouse models of infection. The
mechanisms by which type-I IFNs impact cccDNA have been reviewed in detail elsewhere
and include transcriptional repression of pregenomic and subgenomic RNA from cccDNA,
cccDNA degradation (via APOBEC3A), RNA degradation, histone deacetylation, recruiting
transcriptional repressors, lowering the binding of STAT1/2 to cccDNA, and inhibition of
pregenomic RNA encapsidation [2,13,125–128].

Although the effect of IFNLs on cccDNA have been less well-characterized, overex-
pressing or inducing expression of IFNLs in hepatocyte cell lines and murine infection
models results in ISG induction and inhibition of HBV replication [38,117,129–133]. IFNL3
treatment reduced HBV transcripts and intracellular DNA in HepG2 2.2.15 cells that have
clonally integrated HBV, a phenotype linked to changes in the host transcriptome and
proteome [132,134,135]. Exposure of primary human hepatocytes or HepaRG cells to type-I
IFNs or IFNLs reduced open-circle and cccDNA by causing cccDNA deamination and
degradation, a phenotype attributed to induction of APOBEC deaminases [136]. Activation
of stellate cell lines through toll-like receptor 3 resulted in induction of type-I IFNs and
IFNLs, which inhibited HBV replication in HepG2 cells transfected with an HBV plas-
mid [137]. Finally, administration of pegylated IFNL1 in a xenograft model mouse model
of human hepatocellular carcinoma led to reduced HBsAg expression in vivo [130].

Taken together, the prevailing evidence indicates that IFNLs are capable of inducing
an IFN-response in HBV-infected cells and can lower HBV viral load by reducing HBV
transcripts and modulating cccDNA, thus inducing similar intracellular events to type-I
IFNs. This suggests targeting cccDNA through modulation of IFNL signaling has the
potential to contribute to achieving seroclearance.

8. IFNLs as HBV Therapeutics

Although type-I IFNs have the capacity to impact HBV replication in vitro by mod-
ulating cccDNA, as discussed above and as previously reviewed in detail [2,138], the
majority of patients treated with type-I IFNs do not have durable HBV DNA and HBsAg
seroclearance after treatment [13]. This prompted interest in using IFNLs to treat HBV
infection. When pegylated IFNL1 was tested in clinical trials for chronic HCV infection,
antiviral activity was demonstrated and treatment was generally well tolerated, although a
minority of healthy volunteers and HCV subjects experienced hepatotoxicity, primarily
at the greatest tested dose (7.5 µg/kg) [139,140]. Based on these results and the ability of
IFNLs to suppress HBV replication in vitro and in animal models, IFNLs were tested in
clinical trials of patients with chronic HBV infection.

In a phase 2 trial, pegylated IFNL1 treatment in HBeAg+ chronic HBV subjects led
to greater on-treatment decline in HBsAg and HBV DNA relative to patients who re-
ceived pegylated IFNα2 treatment and similar serologic/virologic responses at the end of
treatment [141]. Pegylated IFNL1 treatment was generally well-tolerated, with the excep-
tion of a subset of patients who experienced alanine aminotransferase (ALT) flares either
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during treatment or post-treatment in association with viral rebound [141]. Intriguingly,
on-treatment HBV decline was observed in 12 of 13 patients who experienced early ALT
flares, implying a mechanistic link between pegylated IFNL1-induced inflammation and
antiviral efficacy [141]. Despite these on-treatment results, pegylated IFNL1 did not meet
non-inferiority criteria as fewer subjects achieved HBeAg seroconversion relative to the
pegylated IFNα2 group 24 weeks post-treatment [141]. In a separate arm of this trial,
13 subjects received twelve weeks of the NRTI entecavir prior to pegylated IFNL1 treat-
ment. Interestingly, in a distinct subset of responders who exhibited HBV DNA and HBsAg
decline, treatment with pegylated IFNL1 was found to increase NK-cell polyfunctionality
and anti-HBV CD4+ and CD8+ T-cell function [142]. These data suggest differential host
response to therapy could have a genetic or biologic basis [142], and that some patients
may respond more favorably to IFNL therapy than others, much as has been observed for
type-I IFN-based therapy for chronic HCV and HBV infection.

Although there are no current clinical trials evaluating IFNL therapy for HBV mono-
infection, pegylated IFNL1 has been investigated for treatment of HDV in patients with
HDV/HBV co-infection. Unlike HBV, HDV RNA is recognized by MDA5 in hepatocytes,
and induces an innate immune response in cellular systems, which includes induction
of type-I IFNs and IFNLs [114,143]. Pegylated IFNL1 was recently tested in combination
with ritonavir and lonafarnib (which prevents prenylation of L-HDAg) (Clinical Trials.gov
Identifier: NCT03600714) [143] based on studies demonstrating antiviral potential for HDV
in murine models [144,145].

9. Conclusions and Future Directions

In conclusion, the association of IFNL polymorphisms with HBV infection outcomes
and response to IFN-based treatment is either absent or weaker than the association
observed with HCV. This difference may relate to the distinct ways each virus interfaces
with host immunity. The predominance of evidence indicates that HCV stimulates and
then interferes with antiviral mechanisms induced by IFNs, while HBV largely avoids
stimulation of IFNs within hepatocytes in the first place. Despite reported antagonisms
of IFN signaling by HBV, hepatocytes infected with HBV can induce a robust interferon
response upon exposure to type-I IFNs and IFNLs, resulting in reduced HBV replication
and suppression of cccDNA activity. Therapeutic use of IFNLs alone or in combination with
entecavir led to on-treatment viral suppression in HBeAg+ HBV patients and augmented
innate and adaptive immune function in a subset of participants, but clinical end points of
seroclearance were not achieved, indicating IFNL therapy alone or in combination with
entecavir was as-yet inadequate.

A number of observations suggest there is continued value in understanding the
mechanisms and outcomes of IFNL signaling, particularly when considering their potential
future use as combination therapy to achieve seroclearance for chronic HBV infection. The
four IFNLs do not bind IFNLR1 with equivalent affinity [46,146,147], and some studies
suggest IFNL3 induces a more potent ISG transcriptional response relative to IFNL1 [42],
the specific IFNL tested in clinical trials [141]. Whether use of a more potent IFNL ligand
could result in improved outcomes merits further study, as has been suggested for type-I
ligands [148,149]. Differential outcomes after HBV treatment using novel therapies should
be evaluated for association with IFNL polymorphisms, given that some are immunostimu-
latory [20]. Of note, some immune cells express functional IFNLR1, whereas others express
a soluble, truncated form of the receptor that does not support canonical signaling and
may respond differently to stimulation [150–153]. Future studies should assess whether
focused targeting of IFNL signaling by modulating IFNLs or IFNLR1 on innate and adap-
tive immune cells could promote antiviral activity against HBV, outside of their impact
on hepatocytes harboring HBV. Finally, the use of IFNL mimetics, targeting IFNL activity
specifically to the liver, and differential timing of NRTI combined with IFNL therapy merit
further evaluation as potential therapeutic strategies.
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In summary, IFNLs are a complex and highly regulated host innate immune defense
system that can impact HBV replication and cccDNA. Additional studies are warranted to
better understand how to harness the antiviral potential of IFNL signaling for therapeutic
benefit in chronic HBV patients.
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