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In the present work, new host-guest binding motifs based on a water-soluble

pillar[6]arene dodecyl-ammonium chloride (CP6) with two aromatic sulfonic acids in

aqueous media were fabricated. In accordance with the integrated results of 1HNMR, 2D

NOESY, and florescence titration experiments, it was demonstrated that the host-guest

binding of CP6 with the two aromatic sulfonic acids in aqueous solution not only has high

binding constants but also has pH-responsiveness.
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INTRODUCTION

In the supramolecular chemistry field, stimuli-responsive molecular host-guest recognition motifs
are attracting much attention because of their wide range of applications in the fabrication of
various fascinating and important supramolecular systems, such asmolecular devices andmachines
(Palmer and Rebek, 2004; Han and Chen, 2007; Zhang et al., 2014), responsive supramolecular
polymers (Xu et al., 2013; Cantekin et al., 2015), and other smart supramolecular materials
(Avestro et al., 2012; Guo and Liu, 2012; Li et al., 2012; Vukotic and Loeb, 2012). Up to now, pH,
temperature, light, redox reagents, enzymes, and other external stimuli have been widely utilized
for the fabrication of various responsive host-guest complexation systems (Guo and Liu, 2014; Han
et al., 2014; Ma and Tian, 2014). Among these stimuli, pH response is very interesting for special
applications in electronic devices, gene delivery, and drug delivery (Credit et al., 1997; Badjic et al.,
2004; Yu et al., 2012; Duan et al., 2013; Zhang et al., 2013). Therefore, it is of particular importance
to construct pH-responsive molecular host-guest complexation systems.

Pillararenes (Ogoshi et al., 2008, 2016; Cao et al., 2009, 2014; Xue et al., 2012; Yao et al., 2012;
Si et al., 2014; Wang et al., 2019), as a new kind of supramolecular macrocyclic hosts, have gained
growing attention due to their intrinsic unique rigid and symmetrical pillar-shaped architecture,
tunable cavity size, easy modification, and superior host-guest properties. Pillararenes endowed
with these outstanding features have been used to construct numerous supramolecular systems,
such as supramolecular polymers (Zhang et al., 2011; Guan et al., 2012; Li, 2014), daisy chains
(Zhang et al., 2012), transmembrane channels (Si et al., 2014), drug-release systems (Cao et al., 2014;
Chang et al., 2014; Hu et al., 2016), and other advanced functional materials (Ni et al., 2016; Wang
et al., 2018; Xiao et al., 2018; Zhou et al., 2020). Practically, a series of water-soluble pillararenes
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SCHEME 1 | Chemical structures and cartoon representation of pillararene

CP6 and guests (p-TSA and 2-NA); illustration of the acid/base controlled

dethreading/rethreading process.

have been synthesized and demonstrated to act as scaffolding
hosts to various guests (Ogoshi et al., 2012; Hu et al., 2016;
Yakimova et al., 2016). Among these water-soluble pillararenes,
pH-responsive ones have been reported in the construction
of plenty of supramolecular systems (Yu et al., 2012; Cao
et al., 2014; Hu et al., 2016; Xiao et al., 2019). Recently, a
pillar[6]arene dodecyl-ammonium chloride (CP6) with good
water solubility was prepared by our group (Duan et al., 2019).
The CP6 with 12 –NH+

3 groups on both rims has response to
acid/base reagent pairs (such as HCl and NaOH). Searching new
guests for this positively charged pillar[6]arene to fabricate pH-
responsive host-guest binding motifs is thus of great interest.
In the present manuscript, two aromatic sulfonic acids, i.e., p-
toluenesulfonic acid (p-TSA) and 2-naphthalenesulfonic acid
(2-NA) were selected as guests, owing to their wide uses in
rubbers, dyestuffs, insecticides, varnishes, and pharmaceuticals
(Wu et al., 2011). The design and fabrication of pH-responsive
host-guest recognition motifs are elaborated in Scheme 1. We
show that CP6 can form highly stable host-guest complexes (p-
TSA⊂CP6 and 2-NA⊂CP6) with p-TSA and 2-NA, respectively.
Based on these two molecular recognition motifs, pH-responsive
host-guest complexes were demonstrated.

MATERIALS AND METHODS

All reagents were commercially available and used as supplied
without further purification. CP6 (Duan et al., 2019) was
prepared according to the published procedures. NMR spectra
were conducted on Bruker Avance III HD 400 spectrometer
with the use of the deuterated solvent as the lock and the
residual solvent as the internal reference. Fluorescence spectra
were performed on an Agilent Cary Eclipse fluorescence
spectrophotometer. 0.1M phosphate buffer solution (PBS, pH =

6.0) was prepared by mixing 12mL 1M Na2HPO4 and 88mL
1M NaH2PO4 solution. The D2O solutions were adjusted to pD
6.0 by DCl or NaOD. The pH and pD values were verified on
a Mettler Toledo pH meter calibrated with two standard buffer
solutions. pH readings were converted to pD by adding 0.4 units
(Glasoe and Long, 1960).

RESULTS AND DISCUSSION

The host-guest complexation ofCP6with p-TSA in D2Owas first
investigated by 1H NMR spectroscopy. As shown in Figure 1B,
when adding about 0.1 equiv. of the host CP6, the signals of
protons (a-c) on the guest p-TSA demonstrate significant upfield
shifts against free guest p-TSA proton signals (1δ = −0.15,
−0.39, and−0.37 ppm for proton a, b and c, respectively). Strong
upfield chemical shifts (1δ) of the aromatic and methyl protons
indicate that the p-TSA guest was fully threaded into the host
cavity, forming a stable threaded host-guest complex. And the
presence of only one set of peaks for the solution of CP6 and p-

TSA (Figure 1B) suggests that the host-guest complex formation
is a fast exchange process on the NMR time scale. The host-
guest binding of CP6 and p-TSA in water was then examined by
2D NOESY analysis. From the 2D NOESY spectrum (Figure 2),
NOE correlation signals were observed between Ha, Hb, and Hc

on p-TSA and protons H1−4 onCP6, respectively, supporting the
assignment of a threaded structure p-TSA⊂CP6.

Subsequently, the complexation of CP6 by the larger 2-NA
guest was also investigated. Similarly, 1H NMR experiments
were also performed to investigate the host-guest complexation
of CP6 with 2-NA in D2O and MeOD. Figures 3A,B show
the 1H NMR spectra of 2-NA in D2O recorded in the
absence and the presence of about 0.1 equiv. of the host CP6,
respectively. In the presence of CP6 (Figure 3B), the signals
of protons (a-g) on the guest 2-NA exhibit substantial upfield
shifts compared to those of the free 2-NA (1δ = −0.24
to −0.16 ppm) (Figure 3A), suggesting the inclusion of the
naphthalene moiety of 2-NA into the hydrophobic CP6 cavity.
The assignment of these naphthyl proton signals of the inclusion
complex can be verified by the analysis of the 1H-1H COZY
data (correlation spectroscopy; see Supplementary Figure 1).
Furthermore, these shifts appeared due to fast proton exchange
observed for complexation in the 1H NMR timescale. The 2D
NOESY data (Figure 4) show the NOE correlations between
the aromatic protons (Ha−g) of the entrapped 2-NA and
the aromatic proton H1 of CP6, which also revealed the
interpenetrated geometry.

To quantitatively estimate the binding behaviors of p-TSA and
2-NA with host CP6, fluorescence titrations were conducted at
298K in a PBS of pH 6.0. Job plots (Supplementary Figures 2,3)
based on the fluorescence titrations data indicated that CP6

and the two guests form a 1:1 host-guest complex in aqueous
solution, respectively. By using a non-linear curve-fitting method
(Supplementary Figures 4,5), the association constants (Ka)
were calculated to be (2.23 ± 0.15) × 104 M−1 and (1.97
± 0.28) × 104 M−1 for p-TSA and 2-NA, respectively.
According to the pKa values of the two aromatic sulfonic
acids (p-TSA: −2.1; 2-NA: −1.8), it can be concluded that
the sulfonic groups of the two aromatic sulfonic acids should
be in the deprotonated form at pH 6.0. Thus, we conclude
that the interaction mechanism of CP6 with the two aromatic
sulfonic acids is that the acidic aromatic sulfonic acids with
one sulfonate anion could bind positively charged CP6 bearing
12 –NH+

3 groups in aqueous solutions at pH 6.0, where the
electrostatic interactions between sulfonate anion of the two
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FIGURE 1 | Partial 1H NMR spectra (400 MHz, D2O, 298K) of (A) 20.00mM p-TSA, (B) 2.00mM CP6 and 20.00mM p-TSA, (C) after addition of 1.0 µL of aqueous

NaOD solution (30%) to b, (D) after addition of 2.0 µL of aqueous DCl solution (20%) to c, and (E) 2.00mM CP6 at pD 6.0.

FIGURE 2 | 2D NOESY NMR (400 MHz, D2O, 298K, mixing time = 300ms) spectrum of a solution of CP6 (2.00mM) and p-TSA (20.00mM).

acidic aromatic sulfonic acids and the cationic portals of the
host CP6 play a dominant role in formation of the present
host-guest complexation. By comparing p-TSA and 2-NA, we
can investigate the capability of these guests to form host-guest

complexes because of the changed size of the hydrophobic part.
The Ka value for p-TSA is almost same as that for 2-NA.
Although 2-NA has one more benzene ring than p-TSA and
thus the larger π-conjugated system could afford a stronger

Frontiers in Chemistry | www.frontiersin.org 3 September 2020 | Volume 8 | Article 588201

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Duan et al. pH-Responsive Pillararenes Complexes

FIGURE 3 | Partial 1H NMR spectra (400 MHz, D2O/CD3OD = 1/1, v/v, 298K) of (A) 20.00mM 2-NA, (B) 2.00mM CP6 and 20.00mM 2-NA, (C) after addition of

1.0 µL of aqueous NaOD solution (30%) to b, (D) after addition of 2.0 µL of aqueous DCl solution (20%) to c, and (E) 2.00mM CP6 at pD 6.0.

FIGURE 4 | 2D NOESY NMR (400 MHz, D2O, 298K, mixing time = 300ms) spectrum of a solution of CP6 (2.00mM) and 2-NA (20.00mM).

π-π stacking interaction with the host cavity (Gómez et al.,
2014), the electrostatic attractive forces are dominant in these two
host-guest complexes.

Additionally, both the obtained p-TSA⊂CP6 and 2-NA⊂CP6
have pH-responsiveness, i.e., the dynamic behavior for the
inclusion process of the two aromatic sulfonic acids and
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CP6 can be reversed upon the addition of HCl and NaOH
aqueous solutions. Proton NMR studies were conducted to
affirm these two reverse processes (Figures 1, 3). As shown
in Figures 1C, 3C, when adding NaOD to the mixed solution
of p-TSA⊂CP6 and 2-NA⊂CP6, respectively, both signals
of p-TSA and 2-NA returned to almost their uncomplexed
positions, suggesting that both p-TSA and 2-NA dethreaded
from the cavity of CP6. The reason is apparent: the addition
of an aqueous NaOD solution yielded a basic solution and
the NH+

3 groups on CP6 were deprotonated to produce the
neutral amino groups, resulting in the disappearance of the
electrostatic attractive forces between p-TSA or 2-NA and CP6.
However, after adding DCl to these solutions, 1H NMR spectra
similar to those of the original solutions of p-TSA⊂CP6 and
2-NA⊂CP6 were obtained (Figures 1D, 3D), resulting from
the protonation of the amino groups and the regeneration
of the complexes between p-TSA or 2-NA and CP6 in this
solution. Thus, the host-guest complexes p-TSA⊂CP6 and 2-
NA⊂CP6 can be reversed by the sequential addition of a
base and an acid (NaOH and HCl, respectively) between
its complexed and decomplexed states. In a word, the host-
guest complexation between p-TSA or 2-NA and CP6 is
pH-responsive and its reversible property can be used to
serve as excellent motifs for a variety of controlled molecular
release applications.

CONCLUSIONS

In summary, novel pH-responsive host-guest recognition motifs
based on a water-soluble pillar[6]arene dodecyl-ammonium
chlorideCP6with p-TSA or 2-NAwere successfully constructed.
It was established that CP6 could form a stable 1:1 inclusion
complex with the two aromatic sulfonic acids, p-TSA and 2-NA,
respectively. Furthermore, both these host-guest complexes can
be controlled reversibly through the sequential addition of a base
and an acid (NaOH andHCl, respectively) between its complexed
and decomplexed states. Consequently, the findings of this

work enrich the fields of controlled pillararene chemistry. Our
further work will focus on expanding these new pH-responsive
host-guest binding motifs to construct smart supramolecular
materials in the treatment of sulfonated aromatic pollutants in
aqueous media.
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