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Abstract
Multiple factors of the natural environment have been found to impact and mold the phonetic patterns of human speech, among which 
the potential correlation between sonority and temperature has garnered significant attention. We leverage a large database containing 
basic vocabularies of 5,293 languages and calculate the average sonority for each language by adopting a universal sonority scale. Our 
findings confirm a positive correlation between sonority and temperature across macroareas and language families, whereas this 
relationship cannot be discerned within language families. We suggest that the adaptation of the distribution of speech sounds within 
languages is a slow process which is moreover insensitive to minor differences in temperature experienced by speakers as they carry 
their languages to new regions. Nevertheless, at the global level a solid relationship emerges. Furthermore, we delve deeper into the 
nature of the relationship and contend that it is mainly due to cold temperatures having a weakening effect on sonority. This 
research provides compelling additional evidence that climatic factors contribute to shaping language and its evolution.

Keywords: language, environment, climate, sonority, evolution

Significance Statement

Sounds of human languages can be affected by various factors of the natural environment. One such factor is the mean annual tem-
perature. We analyze the average sonority of basic words of nearly three-quarters of the world’s languages, and confirm a positive 
correlation between sonority and local temperature. Our findings suggest that lower temperatures, over the course of many centuries, 
lead to decreased sonority. Our research provides further evidence that climate plays a role in shaping the evolution of human 
languages.
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Introduction
Language evolution is a complex and never-ending process that 
can be affected by a multitude of internal and external factors. 
One such external factor is the natural environment. A century 
ago, Edward Sapir investigated the correlation between language 
and environment, and emphasized the reflection of the environ-
ment in the vocabulary of a language. He noted that the phonetic 
systems, however, are almost immune to environmental condi-
tions, and characterized the development of the speech system 
as a “quasimechanical” process (1). Regardless of the validity of 
Sapir’s point, the relationship between the phonetic system and 
the natural environment was generally ignored or even rejected 
in most subsequent linguistic studies, partially due to the 
Chomskyan view of language as innate and autonomous (2). In re-
cent years, the presupposition that the phonetic system is 
insulated from the environment has encountered numerous 

challenges. Interdisciplinary studies have proposed correlations 

between the phonetic system and various natural environmental 

factors, including temperature, humidity, vegetation, altitude, 
precipitation, terrain, etc. (3–12). How the phonetic system can 
be affected by the natural environment has become a widely de-
bated topic in linguistics and anthropology.

Contrary to Sapir’s assertion, it is almost self-evident that the 
phonetic system must be affected by the environment, since lan-

guage communication predominantly relies on sound as the me-

dium, and both the production and transmission of speech sounds 

are susceptible to external factors. For instance, the physical state 

of a speaker’s vocal organs, which play the central role in speech 

production, can be impacted by climate conditions (5). Sound trans-

mission is subject to filtering and masking effects brought about by 

the air, while the strength of these effects depends on the physical 

properties of the air (13, 14). In other words, it depends on the 
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climate. Moreover, the natural environment can also influence lan-
guage indirectly by affecting population size and community activ-
ities (9–11, 15, 16). Given the complex interplay between direct and 
indirect environmental factors, the study of the relationship be-
tween language and environment is inherently multifaceted and 
challenging, but also exciting and intriguing for researchers.

A relationship between sonority and temperature is intuitively 
to be expected, but fascinating nonetheless. Sonority can be de-
fined in terms of speech production as the loudness of speech 
sounds or the openness of the vocal tract during sound produc-
tion, or it may be defined perceptually as the prominence of 
speech sounds (17, 18). As a linguist, one gets the impression 
that languages spoken in cold regions possess a higher proportion 
of consonants and more complex consonant clusters, e.g. Russian 
vdrug “suddenly”, sometimes reaching extremes, like Georgian 
prckvnis “to peel”. Famously, Salishan languages of the Pacific 
Northwest are characterized by words sometimes lacking vowels, 
e.g. Nuxalk płt “thick” and pkʼm “mosquito” (19). In contrast, lan-
guages spoken in the tropics tend to preserve a more balanced 
vowel-to-consonant ratio, often displaying strings where single 
consonants and vowels alternate, e.g. Hawaiian wehewehe “to ex-
plain”, and Edo okuta “stone” (20). Systematic studies have con-
firmed that vowel ratio and the degree of sonority are positively 
correlated with temperature (8, 21–27).

In order to explain this positive correlation, pioneering studies 
have proposed a number of possible causal mechanisms from 
multiple perspectives. Among these, two direct physical effects 
relating to sound propagation are particularly noteworthy. The 
first one concerns the air absorption effect. High temperatures 
boost the air’s ability to absorb high-frequency components of 
sounds (13, 14), which results in more damage to consonants 
with higher frequency noise. The second one relates to the lapse 
rate, the rate at which temperature decreases as altitude in-
creases. In the tropics, the lapse rate is generally greater (28), 
meaning that sound travels much faster in warmer air at lower al-
titudes, causing sound waves to bend upwards during transmis-
sion, and reducing the energy transmitted horizontally (29). 
Such an environment leads to a preference for louder sounds, 
which are more resilient to the upward bending effect.

Different speech sounds exhibit different degrees of sensitivity 
to these disturbances due to their distinct acoustic characteris-
tics. Speech sounds are categorized by phonologists into two 
main groups based on their sonority: obstruents and sonorants. 
Obstruents (plosives, fricatives, and affricates) are pronounced 
by obstructing the airflow, while sonorants (vowels, nasals, 
liquids, etc.) are pronounced with a relatively free airflow (30). 
The two categories of sounds are notably different in their timbre: 
most sonorants are voiced, louder, and without friction, while ob-
struents are usually noisier and shorter, with their distinctiveness 
relying heavily on their high-frequency components. As a result, 
obstruents are less resistant to attenuation effects and high- 
frequency interference, and more likely to merge with each other 
or disappear under certain circumstances. Conversely, sonorants 
are more robust and less prone to distortions.

Besides temperature, other ecological and socioecological in-
fluences on sonority have been noted as well. Precipitation and 
humidity are positively correlated with vowel ratio, and it has 
been claimed that the effect of humidity on vowel ratio is stronger 
than that of temperature, with the latter considered epiphenom-
enal (6). Vegetation may affect as well: the presence of tall and 
dense plants can dampen high-frequency sound and increase 
sonority (7), and also reduce the impact of coldness on sonority 
(10). Literacy levels and baby holding practices have also been 

suggested as relevant variables (21, 24). What the dominating fac-
tors are might vary across regions or languages. Given the inher-
ent complexity of the issue, it is unlikely that a single factor can 
be considered the ultimate, overarching determinant of sonority. 
Despite the multifaceted nature of environmental influences on 
sonority, temperature, as one of the most salient and variable cli-
mate parameters, remains a prominent factor that warrants in- 
depth exploration. This study specifically focuses on temperature 
to investigate its impact on sonority.

Many earlier studies in this area used small language samples 
(≤ 100), which limited the generalizability and robustness of their 
conclusions. In recent decades, linguistics research has witnessed 
a shift towards the use of large-scale datasets. Studies have emerged 
that explore methods to investigate language adaptation employing 
big data and computer simulations (31, 32). In this study, we utilized 
vocabulary lists of basic words of 9,179 language varieties from the 
Automated Similarity Judgment Program (ASJP) database (33) as our 
source for exploring the effect of temperature on sonority.

An essential question regarding sonority is how to quantify it. 
Since the first attempt to measure sonority in 1871, various meth-
ods of measurement have been proposed (34), but no consensus 
has been reached yet. In this study, we adapted Parker’s “final 
hierarchy of relative sonority” (34, 35), a sonority scale we consider 
the most effective and up-to-date, to fit the ASJP transcription sys-
tem (see the Sonority scale subsection for a discussion on difficul-
ties and methods of quantifying and calculating the sonority).

Results
Global distribution of sonority
We utilized a dataset of 9,179 doculects (i.e. language varieties as de-
fined by specific sources of documentation) extracted from the ASJP 
database. We computed the mean sonority index (MSI) of each doc-
ulect using our revised sonority algorithm, and examined the geo-
graphical distribution of MSI values (Fig. 1).  As expected, the 
results showed that languages with higher MSIs are concentrated 
around the Equator and in the Southern Hemisphere, whereas the 
Northern Hemisphere is moderately associated with lower MSIs. 
Specifically, the Austronesian languages in Oceania, known to lin-
guists for their often extremely simple phoneme inventories and a 
preponderance of CV (consonant–vowel) structures (36), are clearly 
reflected in the figure with notably higher MSIs.

However, some deviations from the overall trend can be ob-
served in the results. For example, Mesoamerica and Mainland 
Southeast Asia, despite being tropical regions, exhibit lower 
MSIs. These deviations can possibly be attributed to linguistic ge-
nealogical relationships and language contacts in the regions. In 
Mesoamerica, Mayan and Totozoquean languages commonly per-
mit consonant clusters (37), which would contribute to lower 
MSIs. Similarly, many Mainland Southeast Asian languages not 
only allow syllables ending in obstruents but also have “sesquisyl-
lables” (one-and-a-half syllables) formed by loose consonant clus-
ters at syllable-initial positions (38), both of which lead to lower 
MSIs. In light of these findings, further research is needed to 
understand the reasons for the development of certain low-MSI 
languages in the tropics. Nevertheless, it is clear that genealogical 
relationships must be taken into account when exploring the cor-
relation between sonority and temperature.

Correlation between sonority and temperature
We collected monthly mean temperature over the period of 1982 
to 2022 for every doculect. The range and variation of monthly 

2 | PNAS Nexus, 2023, Vol. 2, No. 12



mean temperature are immense. For example, Yakutsk, Russia, 
the location of the Sakha language, experiences a monthly 
mean temperature range from −37◦C in January to 19◦C in July, 
while in the lowlands of Papua New Guinea, where a great quan-
tity of languages are located, the monthly temperature remains 
relatively constant around 27◦C with little seasonal variation, 
and the daily range even approximates the annual range (39). 
Due to the dispersion of monthly mean temperature, mean an-
nual temperature (MAT) was adopted for further analysis of the 
correlation between sonority and temperature.

Temperature and sonority data were divided geographically 
into six largely independent linguistic macroareas: North 
America, South America, Eurasia, Africa, Greater New Guinea, 
and Australia (26, 40, 41). A preliminary positive correlation can 
be discerned across macroareas (Fig. 2). It should be noted that 
the internal dispersion of monthly temperature is great for the 
Eurasian macroarea, apparently because it straddles diverse cli-
mate zones from Siberia to the Indian Peninsula.

We investigated the existence and the universality of the posi-
tive correlation between MSI and MAT in R (42) using linear mod-
eling and linear mixed effects modeling (43). To account for the 
effect of genealogical relationship properly, we included language 
family, as defined in the World Atlas of Language Structures 
(WALS) classification (26), as random intercept and random slope 
in our mixed effects model. We also performed Box–Cox trans-
formation (44) on MSI and MAT data to ensure the normality of 
distribution before fitting the model, as raw MAT data deviate 
from normal distributions.

The results of the linear regression analysis (Fig. 3) demon-
strate a positive correlation between mean MSI and mean MAT 
averaged by language family (R2 = 0.239). The significance of the 
relationship, which would be P < 0.001, is compromised by the 
fact that families are far from independent units. The linear 
mixed model fitting with family as the random effect also shows 
a significant correlation (P < 0.001). However, its slope is relatively 
small (the brown line in Fig. 3) for the transformed data, raising 
doubts about the existence of a general positive correlation within 
families. Upon examining the coefficients of 16 individual families 

with more than 100 doculects, it is observed that 9 families exhibit 
positive correlations between MSI and MAT, while 7 families ex-
hibit negative correlations (Supplementary Table S4 and Fig. S2). 
The correlations fluctuating around zero indicate that the correl-
ation between sonority and temperature is largely absent within 
language families. There is no need to investigate families with 
fewer than 100 doculects, as their speakers do not experience suf-
ficient temperature variation to reflect any potential influence of 
temperature on sonority.

The statistical findings obtained, indicating that temperature 
primarily exerts its influence on sonority at an inter-family level 
rather than within language families, suggest that the process 
whereby sound structures of languages relating to sonority adapt 
to the environment is a slow process. Its effect is evident only 
through centuries or even millennia of evolution temporally span-
ning both languages ancestral to the world’s current language 
families and languages having diversified in historical times. 
The time represented by currently identifiable language families, 
which only represents the tip of the iceberg of evolution, has not 
produced sufficient variance in the temperature or sonority pa-
rameters and sufficient accommodation between the two to allow 
for the effect to become apparent.

In addition, we explored the possible impact of annual tem-
perature variation on sonority. To investigate this, we added 
the mean annual range of temperature (from 1982 to 2022) as an-
other fixed effect into the model by language family. We found 
a significant negative correlation between MSI and mean annual 
range (P = 0.006; besides, P < 0.001 for MAT in this model). 
Alternatively, similar results can be obtained by using the stand-
ard deviation of monthly temperature, as the standard deviation 
and mean annual range are highly correlated (Supplementary 
Fig. S4). The findings indicate that sonority is also influenced by 
temperature fluctuations. Nonetheless, there is a moderate nega-
tive correlation between mean annual range and MAT (R2 = 0.503 
by family or R2 = 0.483 for all locales; both P < 0.001). The correl-
ation arises from the trend that, for areas with human habitation 
and language use, warmer regions generally tend to have more 
stable temperatures throughout the year, whereas colder regions 

Fig. 1. Global distribution of MSIs across 9,179 language varieties from the ASJP database. Color of dots represents the MSI of the language, with redder 
dots indicating higher and bluer dots indicating lower indices. The fill color of land areas represents the mean annual temperature.
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can experience large temperature fluctuations between the sum-
mer and winter seasons. Therefore, by summarizing the two inter-
connected factors, we can conclude that lower sonority is 
associated with colder temperatures.

Correlation with word length
As a further factor possibly related to sonority, we also consid-
ered word length, as defined by the mean length of words found 
in the ASJP database for a given language. Differences in word 
length are expected to contribute to differences in MSI through 
word structure. For example, when looking at general phonotac-
tic patterns (patterns of distributions of speech sounds over 
syllables and words), we see that the prevailing structure of 
a 3-segment word is CVC (consonant–vowel–consonant), where-
as a 4-segment word commonly follows a CVCV structure. 
Consequently, we anticipate that a 3-segment word, with fewer 
opportunities for vowels, will tend to have a lower sonority index 
compared to a 4-segment word. Additionally, examining word 
length provides insight into the inherent characteristics of lan-
guage families, as different families exhibit preferences for dif-
ferent word structures and word lengths.

After extracting the mean word length of each doculect, a mo-
dest positive correlation (R2 = 0.045) was observed between MSI 
and mean word length of language families, and the correlation 
between mean word length and MAT is weaker (R2 = 0.020) 
(Supplementary Fig. S1). This suggests that word length is an in-
trinsic factor that impacts sonority besides temperature. The 
positive correlation can be elucidated by considering phoneme 
inventory size and word structure. Languages with smaller 
phoneme inventories tend to have longer words (45–47), because 
they require more segments to convey the same information and 
to maintain word distinctiveness. At the same time, languages 
with smaller inventories often possess lower syllable complex-
ity, i.e. fewer consonants in a syllable (48, 49). This association 
between sonority and word length gives rise to the observed 

positive correlation. Additionally, the two most frequently oc-
curring word structures in all doculects are CVCV (69,943 words) 
and CVC (43,807 words), which further biases the data to show 
correlations in favor of longer words with more vowels (i.e. high-
er sonority).

A linear model fitting with MAT and mean word length as in-
dependent variables, across families, revealed that both 
factors are significantly correlated with MSI (P < 0.001 for MAT 
and P = 0.0046 for word length). Given the strong association of 
word length with phoneme inventory and syllable structure 
(46, 49), the findings of the linear model suggest that, in addition 
to temperature (and other environmental factors), sonority is 
also governed by the intrinsic characteristics of the language 
family, such as phoneme inventory and syllable structure. 
Consequently, it is plausible to propose that the potential influ-
ence of temperature within a language family is attenuated by 
intrinsic characteristics.

Discussion
In this study, the engagement of big data provided detailed obser-
vations on the previously established notion of a positive correl-
ation between sonority and temperature. The positive trend is 
confirmed across macroareas and across language families, im-
plying that temperature shapes sonority on a macroscopic scale. 
However, the trend is not apparent within individual language 
families, suggesting that the time scale at which the effect of 
adaptation of language structures to temperature builds up is 
usually greater than the few thousand years that language fam-
ilies typically span (50, 51). Nonetheless, the absence of a signal 
within families does not undermine the overall trend; on the con-
trary, the influence of temperature on prehistoric languages is 
strong enough that the positive correlation between sonority 
and temperature across language families is not obliterated or 
overridden by subsequent language development.
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The reason why the time scale of a language family does not 
suffice to yield a signature of adaptation to temperature must be 
sought in the sources of variance of the variables involved, namely 
the sound patterns by which sonority is measured and tempera-
ture. As far as the sound patterns are concerned, it is not unex-
pected that they should be slow in changing. While language 
change is ubiquitous, aspects of language structure, both lexical 
(52) and structural (53), can be highly conservative. Sound pat-
terns mainly develop through linguistically motivated mecha-
nisms that linguists have been studying for two centuries, ever 
since the discovery of the regularity of sound changes. Since pho-
nemes typically do not change in isolation from the systems that 
they are part of, there is an inherent inertia to sound change. On 
the ecological side of the adaptation process, changes are slowed 
down because the annual temperature variation experienced by 
speakers belonging to one and the same language family is lim-
ited. For those families that have a small geographical range, 
which is the typical pattern, the majority of their members pertain 
to places with similar temperatures, so there will be no impetus 
for adaptive change. Even large families that extend across eco-
logically diverse regions exhibit limitations with regard to tem-
perature variation. For instance, many Indo-European languages 

are concentrated in relatively cold places, whereas many 
Austronesian languages are concentrated in relatively warm re-
gions. In general, there seems to be a tendency for populations 
to spread within similar climatic zones rather than across zones 
(54). Thus, it is not a surprise that intrafamily correlations be-
tween sonority and temperature are obscured, if they ever existed.

The introduction of large databases like ASJP has proven to be 
an invaluable asset for research, enabling deeper analyses that 
were previously unfeasible or unreliable. More data, however, 
comes with more room for flaws and inconsistencies. As an ex-
ample, vowel length is ignored in the ASJP database, which could 
potentially impact the accuracy of MSI calculations, since both 
short and long vowels are transcribed with the same number of to-
kens. Nonetheless, our experimental investigations verified that 
an inclusion of vowel length would not appreciably alter the cor-
relations with MSIs (Supplementary Fig. S5). Another example 
pertains to the treatment of semivowels. In Sinitic languages, glid-
ing semivowels are often regarded as vowels (e.g. Lichuan Gan 
[nje] “fish” transcribed as nie), resulting in a higher calculated 
MSI. In contrast, in Slavic languages, such gliding components 
are often integrated into consonants (e.g. Russian [nje] “not” tran-
scribed as nʲe), leading to a lower calculated MSI. Such flaws are 
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usually rooted in complex phonetic and phonological considera-
tions and are thus hard to resolve. Despite the difficulties, we 
are confident that they do not undermine the final conclusions 
since the dataset is large and robust enough to withstand occa-
sional inaccuracies. Undeniably, using large databases offers sig-
nificant benefits.

In our study, we focused on the average sonority index of the 
entire vocabulary for each language. It is an intriguing question 
whether temperature or other factors of the environment might 
influence sonority to varying degrees depending on the meaning 
or grammatical category of the word. Exploring this aspect would 
require further investigation, but it is beyond the scope of this 
study.

Back to the question of how temperature affects sonority, in 
addition to the aforementioned effects of temperature on sound 
propagation, some other conjectures about the temperature’s ef-
fects on sonority can be proposed. Cold air is always dry because 
of its low water vapor capacity (55), causing water evaporation 
from the vocal cords’ surface, which makes phonation control 
difficult (5, 56) and frustrates the production of sonorants, be-
cause sonorants are commonly voiced, requiring the vibration 
of vocal cords. Besides, in colder climates, especially at higher al-
titudes, wind chill is severe and might necessitate people keeping 
their mouths more closed, leading to a reduction of sonorant 
usage (3). It has also been also suggested that colder climates 
discourage outdoor activities and that indoor communication 
at close distances would lead to better preservation of obstruent 
sounds (23).

Do cold climates affect sonority more than warm climates do? 
Contradictory answers have been given in the literature (3, 21–23). 
Here, based on the global temperature distribution, we suggest 
that colder climates have a greater effect on sonority than warmer 
climates. We have observed that among geographic locations 
of ASJP doculects, the global variation of minimum monthly 
temperature is plainly greater than that of maximum monthly 
temperature. During winter months, the equator-to-pole tem-
perature gradient of the corresponding hemisphere reaches its 
maximum due to the lower sun angle and fewer daylight hours 
in regions farther from the Equator (57). During summer months, 
however, these regions can experience the same high tempera-
tures as tropical areas. Therefore, it is hard to conceive that the al-
most ubiquitous warmer climates should be the main driver of the 
regression. Conversely, cooler climates, whose characteristics are 
limited to certain regions, are more likely to be responsible for the 
sonority variation.

Several studies have affirmed the idea that language adapts 
to or is shaped by the environment (10, 11, 16, 27). This idea 
is in line with the predictions of the Acoustic Adaptation 
Hypothesis, which posits that animal acoustic signals for com-
munication should be adapted to transmit effectively within 
the surrounding environment where they evolved (8, 58). The 
present study adds further support to previous studies on the 
influence of multiple environmental factors on language, 
enhancing the credibility of the idea of language adaptation. 
However, we contend that “language shaped by the environment” 
(11, 16) is a more accurate expression than “language adapting to 
the environment” (10, 27). Regarding temperature and sonority, 
it has been observed that warm climates limit the appearance 
of obstruents (21, 23), while cold climates limit the appearance 
of sonorants (3, 22). Such observations suggest that language 
evolution is more likely shaped and driven by environmental 
factors, rather than language actively changing itself to adapt 
to the environment.

Materials and methods
Word list
We utilized word lists extracted from the ASJP database version 
20 (33), a collection of basic vocabulary lists of 10,168 doculects. 
In ASJP, all words are given in a special but unified transcription 
system known as the ASJPcode, which omits some phonetic de-
tails but is informative enough for characterizing phonetic fea-
tures and for cross-linguistic comparison (59, 60). Typically, 
each doculect is represented by a vocabulary of 40 basic mean-
ings, which is a subset of the 100-item Swadesh list (61), including 
“I”, “person”, “tree”, “eye”, “hear”, “new”, etc. The lists vary in the 
degree to which these 40-item lists are complete. For 2,469 docu-
lects (approximately one-quarter of the database), whose word 
lists are based on the complete 100-item Swadesh list, only a 
40-item subset was taken to ensure consistency across all docu-
lects. One meaning may be represented by multiple synonyms.

For each doculect, we calculated the average sonority index of 
all meanings it contains as its MSI. If a meaning was represented 
by multiple words (synonyms and phonological variants), we used 
the average sonority index of these words as the sonority index of 
the meaning.

To ensure the reliability of our data, we excluded creoles, pidg-
ins, reconstructed languages, and artificial languages. We also 
eliminated doculects with less than 20 words or recording no vow-
els. As a result, we obtained 9,179 doculects, corresponding to 
5,293 distinct ISO 639-3 languages and 296 families in WALS (26) 
or 389 families in Glottolog (62). The filtered doculects include 
345,681 words representing 315,145 sets of synonyms in total, 
with an average of 34.3 meanings attested per doculect. For all 
doculects, latitudes and longitudes representing their approxi-
mate centroid locations are supplied in the database. We used 
these coordinates as a basis for collecting climate data for this 
study.

Temperature data
Monthly mean temperatures from 1982 to 2022 were retrieved 
from the Famine Early Warning Systems Network (FEWS NET) 
Land Data Assimilation System (FLDAS) (63). The FLDAS data en-
compasses the global landmass with a spatial resolution of 
0.1◦ latitude × 0.1◦longitude. Few doculects with locations on sea 
islands lack corresponding temperature data and were also ex-
cluded during doculect filtering.

Sonority scale
As mentioned previously, no consensus has been reached in son-
ority measurement. The lack of consensus mainly arises from two 
challenges: the difficulty in quantifying the sonority of phonetic 
segments, and the uncertainty of how to average the sonority of 
a word.

Earlier studies exploring the impact of climate on language 
have relied on the CV structure index (21, 24) or the vowel index 
(6). However, these indices have been argued to be inappropriate, 
as sonorant consonants are affected by temperature in ways simi-
lar to vowels, rather than obstruent consonants (25). Therefore, 
a detailed quantification of the sonority of speech sounds is 
required to overcome the limitations of the consonant–vowel 
dichotomy. By investigating constraints on the arrangement of 
segments in a syllable, phonologists have proposed the Sonority 
Sequencing Principle, a near-universal sonority hierarchy shared 
by most languages (64). However, this hierarchy is a categorical 
arrangement, not a numerical scale, thus not directly quantifiable. 
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To address this issue, Fought et al. (23) have adapted an early meas-
urement of the energy of American English phonemes into a nu-
merical sonority scale to study the relationship between sonority 
and climate, but the universality of the measurement is question-
able. Instead, List (65) introduced a more universal sonority scale 
for sequence modeling and cognate detection, and integrated the 
sonority algorithm in the LingPy tool (66). In this study, we take a 
further step by employing Parker’s “final hierarchy of relative son-
ority” (34, 35) as our scale (Table 1), which is more detailed than 
List’s scale. In addition to sonority scales, other methods also 
have been proposed to avoid the difficulties of quantification, e.g. 
calculating a sonorant index—the proportion of sonorants in a 
word (27).

Ways of quantifying sonority depend not only on theoretical 
choices, but are also restricted by empirical materials at disposal. 
For example, when extracting a measure of sonority from a 
speech recording, we are prone to take an average of intensity 
over the entire recording or to extract the peak intensity of each 
segment (67), whereas when working with a phonetic transcrip-
tion, we might average over the number of segments. In this 
study, as we employed vocabulary lists from ASJP as material, 
we calculated the mean sonority in Parker’s scale of all 
ASJPcode-transcribed segments in a word.

An ASJPcode usually corresponds to multiple International 
Phonetic Alphabet (IPA) symbols, but most symbols in ASJPcode 
do not span different sonority values. For instance, L represents 
[ʟ, ɭ, ʎ] in IPA, but they are all lateral approximants and have the 
sonority index of 8 in Parker’s scale. For few ASJPcode symbols 
that span sonority values, we have made reasonable adjustments 
based on the frequency of the sounds they may represent 
(Supplementary Table S1). For instance, p represents both the 
voiceless bilabial plosive [p] and the voiceless bilabial fricative 
[ɸ], but the latter rarely appears in the world’s languages (60), so 
we properly regarded p as a voiceless plosive, whose sonority 
index is 1 in Parker’s scale. Another example is the ASJPcode sym-
bol r, which represents all varieties of rhotic sounds, involving 
trills (index = 8), flaps (index = 10), and rhotic approximants 
(index = 11) in Parker’s original scale. We defined the sonority 
index of r to be 10.

There are also ASJPcode clusters of “digraphs” and “trigraphs” 
in the database, indicating affricates and various phonetic fea-
tures. Secondary articulations of labialization, palatalization, 
velarization, pharyngealization, and glottalization were directly 
ignored during calculation, and only the sonority index of the pri-
mary articulation part was counted. Nasalization of vowels was 

also ignored. For prenasalized consonants, the average sonority 
index of the nasal segment and the following segment(s) was 
taken into account. In other cases (e.g. devoiced consonants, 
aspirated consonants, and maybe some miscoded complex conso-
nants), the smallest sonority index in the cluster was taken as the 
index of the cluster.

Here, we illustrate the procedure of calculating the sonority 
index from ASJPcode using the French word pw~aso* “fish” as an 
example, where the symbol ~ denotes a digraph and the symbol 
* indicates nasalization of the preceding vowel (59). First, the 
string is divided into four segments employing LingPy (66): 
pw, a, s, and o*; alternatively, one can start from the preseg-
mented forms available in the Cross-Linguistic Data Formats 
(68) version of the ASJP database (33). Following segmentation, 
these four segments are categorized into phonetic classes: 
labialized voiceless plosive, low vowel, voiceless fricative, and 
nasalized mid vowel. Subsequently, they are assigned corre-
sponding sonorant indices: 1, 17, 3, and 16 (with labialization 
and nasalization ignored). Finally, the sonority index for the 
entire word is computed by averaging these indices, yielding a 
value of 9.25.

It is worth noting that Parker’s final hierarchy does not involve 
click consonants. Although clicks can be acoustically loud, almost 
louder than vowels (69), no compelling evidence exists to help 
quantify their sonority. Consequently, we were constrained to 
treat clicks as equivalent to normal voiceless plosives since they 
both involve complete closure of the vocal tract. Nevertheless, 
clicks exclusively occur in the Khoisan languages of Southern 
Africa and a few languages in Tanzania, so they are unlikely to 
have a significant impact on the outcome.

We verified the near-equivalence between the various sonority 
scales. According to the results calculated from our materials, 
MSIs in Parker’s scale have a relatively strong linear correlation 
with indices in Fought’s scale (R2 = 0.753, P < 0.001), List’s scale 
(R2 = 0.876, P < 0.001), sonorant indices (R2 = 0.637, P < 0.001), 
and vowel indices (R2 = 0.768, P < 0.001) (Supplementary Tables 
S2 and S3).
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Table 1. Sonority scale adapted and supplemented from Parker 
(34, 35).

Natural class Index

Voiceless plosives and clicks 1
Voiceless affricates 2
Voiceless fricatives 3
Voiced plosives 4
Voiced affricates 5
Voiced fricatives 6
Nasals 7
Laterals 9
Rhotics 10
Semivowels 12
Interior vowels 13
High peripheral vowels 15
Mid peripheral vowels 16
Low vowels 17
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Sciences Data and Information Services Center (https://disc.gsfc. 
nasa.gov/datasets/FLDAS_NOAH01_C_GL_M_001/summary). The 
ASJP database (33) is available in Zenodo (https://zenodo.org/ 
record/7079637).
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