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Abstract

The complexities of viral evolution can be difficult to elucidate. Software simulating viral evolution provides powerful tools
for exploring hypotheses of viral systems, especially in situations where thorough empirical data are difficult to obtain or
parameters of interest are difficult to measure. Human immunodeficiency virus 1 (HIV-1) infection has no durable cure; this
is primarily due to the virus’ ability to integrate into the genome of host cells, where it can remain in a transcriptionally la-
tent state. An effective cure strategy must eliminate every copy of HIV-1 in this ‘persistent reservoir’ because proviruses can
reactivate, even decades later, to resume an active infection. However, many features of the persistent reservoir remain
unclear, including the temporal dynamics of HIV-1 integration frequency and the longevity of the resulting reservoir. Thus,
sophisticated analyses are required to measure these features and determine their temporal dynamics. Here, we present
software that is an extension of SANTA-SIM to include multiple compartments of viral populations. We used the resulting
software to create a model of HIV-1 within host evolution that incorporates the persistent HIV-1 reservoir. This model is
composed of two compartments, an active compartment and a latent compartment. With this model, we compared five dif-
ferent date estimation methods (Closest Sequence, Clade, Linear Regression, Least Squares, and Maximum Likelihood) to re-
cover the integration dates of genomes in our model’s HIV-1 reservoir. We found that the Least Squares method performed
the best with the highest concordance (0.80) between real and estimated dates and the lowest absolute error (all pairwise t
tests: P<0.01). Our software is a useful tool for validating bioinformatics software and understanding the dynamics of the
persistent HIV-1 reservoir.
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1. Introduction

Virus evolution is complex, from the population dynamics of
epidemic spread to the complexities of the spread of a virus
throughout the body of an individual host. Phylodynamic meth-
ods are essential for understanding these viral systems at all
levels of epidemic hierarchies (from population to individual in-
fection). However, such tools must be robustly tested before we

have confidence in their efficacy to reconstruct viral evolution.
A reliable way to test phylodynamic methods is to apply the
tools to data sets where the results are confidently known.
Since it is typically difficult to be certain of results derived from
empirical data, it is imperative to validate phylodynamic meth-
ods on simulated data where inferences of parameter estimates
can be compared with the truth.
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Human immunodeficiency virus 1 (HIV-1) infection can cur-
rently be managed via combination antiretroviral therapy
(cART) by halting viral replication thereby lowering plasma viral
load, prolonging progression to acquired immune deficiency
syndrome (AIDS) and minimizing transmission risk (Hogg 1998;
Pallela et al. 1998). However, a durable HIV-1 cure cannot be
achieved through cART alone since cART cannot (currently) tar-
get proviruses integrated into the host’s genome in a transcrip-
tionally latent state (Chun et al. 1997; Finzi 1997; Finzi et al.
1999). HIV-1 proviruses from this HIV-1 persistent reservoir can
reactivate years or decades after integration to produce
replication-competent virions, meaning that cessation from
cART can result in viral rebound and continuation of active in-
fection after a few weeks (Davey et al. 1999). For this reason, a
durable HIV-1 cure must eliminate or permanently suppress ev-
ery copy of HIV-1 integrated in the host’s cells.

Crucial gaps in our knowledge of the HIV-1 reservoir persist,
including the rate of introduction, genetic persistence and the
specific timing of integration of the HIV-1 reservoir. For exam-
ple, it is currently debated whether the reservoir is contributed
to and maintained throughout the course of infection (Jones
et al. 2018, 2020; Brooks et al. 2020) or if a high turnover during
active infection results in a reservoir containing younger viruses
(Brodin et al. 2016; Abrahams et al. 2019). In order to address
these knowledge gaps, we must develop and employ sophisti-
cated phylodynamic tools, and these tools need to be assessed
and validated to ensure their accuracy and efficacy. One means
of validation is in silico simulation, but there are, to our knowl-
edge, no tools currently available that are specifically designed
to simulate HIV-1 genomes within host accommodating the
HIV-1 reservoir. Current genome simulation software (Laval and
Excoffier 2004; Mailund et al. 2005; Rodriguez-Carvajal 2008;
Fletcher and Yang 2009; Petitjean and Vanet 2014; Haller and
Messer 2017; Jariani et al. 2019) do not incorporate fitness, can
only simulate one compartment/deme, or do not simulate viral
replication, but instead assume bisexual reproduction with dip-
loid genomes. The ability to simulate multiple compartments is
necessary for HIV-1 within host simulation because of the pres-
ence the HIV-1 reservoir which acts as a separate compartment
with different evolutionary characteristics than virus undergo-
ing active replication.

We present software able to simulate genome evolution
with multiple compartments. Within this software, we created
a simulation model specifically designed to simulate HIV-1 ge-
nome evolution within host that incorporates the dynamics of
the HIV-1 reservoir. As a case study, we applied five different
date estimation methods to data derived from our model to
compare and evaluate the accuracy of these methods in recov-
ering integration dates of proviral genomes.

2. Extending SANTA-SIM

The Java software, SANTA-SIM (Jariani et al. 2019), is a forward-
time evolution simulator, which simulates viral genomes in a
population. Generations occur in a stepwise fashion where the
genomes mutate based on a substitution matrix and replicate
based on population growth models (such as fixed-size popula-
tion, exponential/logistic growth, and dynamic population
growth) and selection (such as purifying selection, population
size-dependent fitness, and other allele-based selection).
Sampling of the population can be done periodically or at speci-
fied generations to retrieve genomes or phylogenies. SANTA-
SIM also includes genome insertions, deletions, and recombina-
tion, in addition to gene mapping. The simulation runs over one

or more epochs where the model parameters: mutation, popula-
tion growth, fitness, sampling, etc., can change. Model parame-
ters are specified in an XML file, which allows the modification
of any of the parameters mentioned above in addition to a start-
ing genome. This is akin to other bioinformatic software such
as BEAST (Suchard et al. 2018; Bouckaert et al. 2019).

However, SANTA-SIM is restricted to working within a single
population/compartment with a singular mutation rate, popula-
tion dynamics, and fitness landscape per epoch. This is not ade-
quate for modelling within host HIV-1 evolution where there is
one population of viruses, which is constantly replicating, mu-
tating, and evolving and another population, the HIV-1 persis-
tent reservoir, which is in a latent state. To overcome this
limitation, we modified SANTA-SIM to facilitate multiple com-
partments of viruses and genome transfer between compart-
ments. We chose to modify SANTA-SIM over other software or
creating new software due to its ease of extensibility, breadth of
currently available model features, and mutability via the XML
specification file. We added Java classes to represent compart-
ments of viruses and epochs for compartments, and we added a
Java interface for genome transfer with inheriting classes to
model gene flow between compartments by a rate probability
matrix, fitness or a timed event. Reduced class diagrams of
SANTA-SIM and our modified SANTA-SIM are shown in
Supplementary Figure S1 highlighting our changes. Users can
specify compartments for their simulation model by adding a
Compartment element to their XML file for each compartment
they wish to include. Our modifications also maintain back-
wards compatibility with the original SANTA-SIM in that XML
files without a Compartment element can be read and behave
as if they had one compartment.

3. Simulation of the HIV-1 persistent reservoir

With our modified SANTA-SIM, we created a simulation model
of HIV-1 evolution within host including the HIV-1 persistent
reservoir. Each step of the model corresponds to 2.6 days, which
is the approximate duration of the HIV-1 life cycle (Perelson
et al. 1996). This model has two compartments: 1, an active
compartment representing HIV-1 viruses in blood and plasma
that replicate and evolve according to a mutation rate of
9.3� 10�5 mutations per nucleotide site per generation (Cuevas
et al. 2015; Perelson et al. 1996) and rate bias matrix:
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from Jariani et al. (2019) and 2, a latent compartment represent-
ing HIV-1 proviruses in the HIV-1 reservoir that cannot evolve
but are able to clonally reproduce without mutation at a slow
rate simulating homeostatic proliferation (Fig. 1).

The active compartment begins the simulation with 10
genomes that are copies of full-length (9,719 bases) ancestral
HIV-1 type B strain HX-B2 (GenBank accession: K03455) except
1, that nucleotide position 9,167 is a guanine (G) instead of an
adenine (A) to change the premature stop codon in HX-B2’s nef
into tryptophan (W) and 2, the nucleotide at position 6,063 is a
thymine (T) instead of a cytosine (C) to change the threonine (T)
into a start codon. Genomes in the active compartment are sub-
ject to selection due to CD4 and HLA-I down-modulation in nef
based on (Barton et al. 2019). Specifically, for each codon
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polymorphism investigated we set the fitness value at that site
to the observed replication capacity, amino acids seen in NLK-
43 and HX-B2 at those sites were given a fitness value of 1 (un-
less it was the same as the amino acid investigated) and all
other amino acids at those sites were given an arbitrary fitness
value of 0.001. We also enforced open reading frames in the ge-
nome by assigning zero fitness to stop codons in the gag, pol, vif,
vpu, env, and nef and a relative fitness of 0.001 to non-start
codons at the first positions of gag, vif, vpu, env, and nef. tat, rev,
and vpr were not included for simplicity as tat and rev are split
over multiple reading frame and position in the HIV-1 genome
and vpr has an insertion in HX-B2. The active compartment fol-
lows a logistic population growth model with a growth rate of
50 replicates per generation (derived from Bui, Mellors, and Cillo
2016) and a carrying capacity of 105 viruses (a typical viral load
in 1 mL of plasma).

The latent compartment has neither mutation nor a fitness
landscape driving its evolution; however, the latent compart-
ment undergoes clonal replication via a birth death population
growth model with a birth rate of 0.003 splits per generation (de-
rived from Macallan et al. (2003) and a death rate of 0.0056
deaths per generation (Rong and Perelson 2009), simulating ho-
meostatic proliferation and clonal expansion of infected cells.

The genomes are able to freely migrate between compart-
ments based on a transfer rate matrix where the rate to move
from the active compartment to the latent compartment is
2.6� 10�3 genomes per generation (Rong and Perelson 2009) and
the rate to move from the latent compartment to the active
compartment is 1.08� 10�3 genomes per generation. The rate
that genomes in the latent compartment reactivate and enter
the active compartment was chosen to make the half-life of the
HIV-1 reservoir 70 weeks, based on the 3-month half-life in
(Strain et al. 2005).

The simulation contains two epochs. In the first epoch, the
simulation proceeds as described above with the active com-
partment replicating and mutating representing an active HIV-1
infection. In the second epoch, the fitness of the active compart-
ment is always set to zero, resulting in the depletion of viruses

in the active compartment; this represents the patient on cART.
Full genome alignments of ten genomes are sampled from the
active compartment longitudinally every year during the first
epoch. Full genomes alignments of ten genomes are sampled
longitudinally from the latent compartment longitudinally ev-
ery two years during the second epoch. The specification XML
file for our simulation is included in the Supplementary
Materials as an example.

4. Simulation results

We created 100 simulated data sets using our model in our
modified SANTA-SIM. Each data set comprised 100 full-length
genomes sampled from the active compartment prior to ther-
apy and 50 full-length genomes sampled from the latent com-
partment after therapy. Figure 2 shows the number of genomes
and the genetic divergence over time in the two compartments.
The latent compartment achieved its maximum size (median
70,254 [interquartile range (IQR) 70,036–70,550] genomes) at the
start of therapy and then decayed. The overall genetic distance
of the genomes in the active compartment increased over time
and the latent reservoir was mostly comprised genetically dis-
tant genomes, but with genetic distances observed throughout
the span of active genome distances.

To investigate how our choice of parameters affected the
results of the simulation, we varied the parameters of our
model and ran simulations with these varied parameters
(Supplementary Table S1). In addition to adjusting sampling fre-
quency, sampling depth, reactivation rate, latency rate, latent
growth rate, latent death rate, active growth rate, and mutation
rate, we also removed and added fitness factors and incorpo-
rated recombination and indels. Furthermore, we created a sim-
ulation in which we sampled from the latent compartment
during active infection. Finally, though we chose to begin our
simulations with the ancestral HIV-1 genome HXB2, it is not re-
quired to start with that genome. We chose HXB2 because of its
historical importance and its use as a standard for HIV-1 ge-
nome positioning. Thus, we also created a model starting with a
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and mutation Cellular 

proliferation

Latency

Reactivation

Latent CompartmentActive Compartment

Sampling Sampling

Figure 1. Diagram of simulation model. The black outlined circle represents the active compartments and the red outlined circle represents the latent reservoir. Thick

black arrows between compartments represent gene flow, curved black arrows denote replication and mutation, while thin black arrows depict sampling. Genomes

replicate and mutate in the active compartment and genomes proliferate, but do not mutate, in the latent compartment. Genomes move from the active compartment

to the latent compartment via latency and genomes move from the latent compartment to the active compartment via reactivation. Alignments are sampled from

each compartment at specified time points.
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full-length HIV-1 subtype C genome from Malawi (GenBank
Accession KC156214) (Parrish et al., 2013). This model did not
have selection due to CD4 and HLA-I down-modulation in nef
because the parameters for the fitness function are specific to
subtype B, but the subtype C model contains coding regions ad-
justed for its genome. Parameters that we chose not to vary in-
clude the active population carrying capacity, the substitution
rate biases, infection and simulation duration, and specific val-
ues for the fitness functions. However, all these parameters can
be readily adjusted in the model specification XML file.

Overall, the population size and genetic distance distribu-
tions were similar to the main 100 simulated data sets. Plots
akin to the figures of the main article are shown in
Supplementary Figures S3–S24 together with plots for a repre-
sentative simulated data set (Supplementary Figure S2) from
the main 100 simulated data sets; this representative data set
had the smallest difference of mean and SD of sampled integra-
tion dates of genomes from the latent compartment from the
median of the mean and median of the SD, respectively, of inte-
gration dates of genomes from the latent compartment among
all 100 simulated data sets. In the simulation where the active
growth rate was decreased, the active population did not imme-
diately reach its carrying capacity as it did in all of the other
simulations. The population size of the latent compartment
exceeded the size of the active compartment in simulations
where latency rate was increased, latent growth rate was in-
creased or latent death rate was decreased. We recorded the

number of lineages in each compartment over time where a lin-
eage corresponds to a group of genomes who share a common
ancestor and have no mutation between them or their ancestor.
Overall, the proportion of lineages to the number of genomes
was consistent across the simulated data sets. However, the
simulation with a higher mutation rate had nearly the same
number of lineages as genomes in the active compartment and
the simulation with a lower mutation rate had few lineages in
the active compartment.

5. Comparison to empirical data

Next, we compared our simulated data with data derived from
an actual HIV-1 infected individual. We curated HIV-1 nef
sequences sampled from an HIV-1-infected individual (first pre-
sented by Jones et al. 2018). HIV-1 nef RNA sequences were col-
lected longitudinally over 14 time points from plasma in the
absence of therapy and HIV-1 nef DNA sequences were collected
from peripheral blood mononuclear cells (PBMCs) from two
time points while the individual was on suppressive cART.
These sequences are available on GenBank with the following
accession numbers: MG822918, MG822919, MG822923-
MG822933, MG822935-MG822997, MG822999-MG823015, and
MG823144-MG823170. More details on sample collection and se-
quencing can be found in Jones et al. (2018).

To compare the simulated and empirical data, we con-
structed rooted maximum likelihood (ML) phylogenies. First, we
clipped the simulated full-length genomes to the nef region and
then we removed duplicated nef sequences keeping the earliest
sampled sequence. We inferred ML phylogenies from the simu-
lated nef sequences and the empirical nef sequences using
RAxML (Stamatakis 2014), creating one within host phylogeny
per data set. Finally, we rooted each phylogeny using the rtt
function in the R package ape (Paradis and Schliep 2019), to
maximize the correlation between the root to tip distances and
collection dates of the sequences from the active compartment.

Phylogenies inferred from the simulated data displayed sub-
stantial variation in topology (Fig. 4A and Supplementary Figure
S25). In Fig. 3, we compare a representative simulated data set
with the empirical data described above. The latent sequences
sampled from the representative simulated data set displayed
higher relative divergence than the empirical data set sugges-
tive of later seeding of the sampled sequences. This is consis-
tent with other empirical HIV reservoir data sets (Brodin et al.
2016; Abrahams et al. 2019). The diversity of the sequences was
also higher in the simulated data set. However, the diversity
within and between compartments was similar in both types of
data set. The divergence over time of the active sequences of
the simulated and empirical data were similar. The empirical
data had an evolutionary rate of 8.08� 10�3 nucleotide substitu-
tions per site per year and the simulated data sets had a median
evolutionary rate of 9.80� 10�3 [IQR 8.02–10.9� 10�3] nucleotide
substitutions per site per year. Evolutionary rate was estimated
via linear regression between the root to tip distances and col-
lection dates of the active sequences.

The phylogenies of the simulated data sets with varied
parameters were within the scope of the phylogenies from the
main 100 simulated data sets (Supplementary Figures S3E–
S24E). Except for the data sets with different mutation rates, the
evolutionary rates of the variable data sets were similar to the
evolutionary rates observed in the main simulations
(Supplementary Table S1).
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Figure 2. Simulation results. (A) Solid lines represent the mean number of

genomes in each compartment over time among the 100 simulated data sets

(active ¼ black, latent ¼ red) with surrounding shading representing the range

of the number of genomes across all simulations. Dashed lines represent the

mean number of lineages in each compartment over time among the 100 simu-

lated data sets (active ¼ black, latent ¼ red) with surrounding shading repre-

senting the range of the number of lineages across all simulations. Arrows

represent alignment sampling events (active ¼ purple shades earlier and yellow

shades later, latent ¼ red). Light grey shading indicates therapy. (B) Box plots of

the genetic distances from HX-B2 (nucleotide substitutions) of the sampled full-

length (9,719 bases) genomes in each of the 100 simulated data sets (active ¼
purple shades earlier and yellow shades later, latent ¼ red). Light grey shading

indicates therapy (n¼1,000 per box plot). Grey shading indicates therapy.
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6. Comparing proviral integration date
estimation methods

In HIV-1 persistence research, the timing of integration and du-
ration of persistence of the HIV-1 reservoir is hotly contested.
Three studies have attempted to resolve this debate (Brodin
et al. 2016; Jones et al. 2018; Abrahams et al. 2019), each using a
different method to estimate dates of integration in the HIV-1
reservoir. As a demonstration of our simulation model’s

capabilities, we chose to apply a series of five date estimation
methods, all of which were phylogenetically based, to the simu-
lated data sets generated by our model using the phylogenies
inferred from unique nef sequences described in the previous
section. Next, we assessed the accuracy of each method to in-
vestigate, which method is most appropriate for estimating the
integration dates of latent HIV-1 proviruses.

The first method is Closest Sequence (CS), which entails
assigning the date of a reservoir sequence based on the date of
the phylogenetically closest active sequence. This method was
one of three methods used by Abrahams et al. (2019) to infer the
integration dates of reservoir sequences. Our second method is
Clade (CD), which assigns the date of the reservoir sequence
based on the dates of active sequences in the smallest subtree
containing the reservoir sequence. The third method is Linear
Regression (LR), which involves training a linear regression with
the active sequences and then estimating the integration dates
of the reservoir sequences using the regression. This method
was used by Jones et al. (2018) and Brooks et al. (2020) to infer
the timing of integration of proviral sequences. The penulti-
mate method is Least Squares (LS), which aims to mimimize the
variance between the dates and the branch lengths of the tree.
This method employs the software: LSD (To et al. 2016); origi-
nally designed for estimating divergence dates, the latest ver-
sion of LSD includes estimating sequence ages. The final
method is ML, which selects dates to maximize a likelihood
function. For this study we used a modified version of node.dat-
ing (Jones and Poon 2016), which like LSD can also estimate se-
quence ages in the latest version. More detailed methods can be
found in the last section of the text and diagrams illustrating
the methods can be found in Fig. 4.

7. Simulated data

We applied the five date estimation methods to estimate the in-
tegration dates of the unique reservoir genomes to each of our
100 simulated data sets. The distributions of real and estimated
integration dates are shown in Fig. 5A and error metrics are
shown in Fig. 5B and Table 1. On these data, the Least Squares
(LS) method was the most accurate with the lowest root mean
square error, highest concordance (Table 1) and lower absolute
errors (Friedman and all pairwise t tests: P< 0.01). The only
method whose error had significant skewness was the CS
method, which had a negative skewness (�1.31). Together with
this method’s highly negative median error of �0.596 years indi-
cates a tendency for this method to estimate older dates. The
methods overall had negative skewness but were all greater
than �1. The negative skewness of the methods may be a result
of the distribution of the actual integration dates being skewed
to younger dates and not an actual preference for estimating
older dates.

There are many reasons why the LS method may outper-
form the other methods. Since the LS method treats time as a
continuous variable, it is not restricted to the sampled time
points for the estimated dates like in the CS and CD methods.
The LR method assumes that the data follow a strict molecular
clock, which is not held over longer periods of time during
within-host HIV-1 infection (Shankarappa et al. 1999), and the
LR method is naive to the topology of the phylogeny. The LS and
ML methods instead allow variable evolutionary rates over the
edges of the phylogeny. Finally, the LS method estimates the
overall evolutionary rate while running whereas the ML method
uses a fixed overall evolutionary rate that is precomputed by
linear regression. The flexibility of the LS method coupled with
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Figure 3. Phylogenetic diversity and divergence of simulated and empirical data.

(A–C) A simulated data set chosen from the 100 simulated data sets such that

the mean and SD of the sampled reservoir sequence integration dates have min-

imal deviation from the medians of the mean and SD of the sampled reservoir

sequence integration dates among each of the 100 simulated data sets. (D–F)

Empirical data derived from an HIV-01-infected individual. (A) Rooted ML phy-

logeny inferred from nef sequences of simulated data. Reservoir sequences ap-

pear as red triangles and active sequences appear as circles coloured by

collection year (with purple shades earlier and yellow shades later). (B) Distance

from the root of the phylogeny to each sequence (in nucleotide substitutions per

site) versus collection time in simulated data. Reservoir sequences appear as red

triangles and active sequences appear as circles coloured by collection year

(with purple shades earlier and yellow shades later). Light grey shading indi-

cates a period of suppressive therapy. (C) Tip-to-tip distances (in nucleotide sub-

stitutions per site) between active sequences (WA), between latent sequences

(WL) and from active sequences to latent sequences (between) in simulated data

(n¼4,851; 1,176; 4,851, respectively). (D) Rooted ML phylogeny inferred from nef

sequences of empirical data. Reservoir sequences appear as red triangles and

active sequences appear as circles colored by collection year (with purple shades

earlier and yellow shades later). (E) Distance from the root of the phylogeny to

each sequence (in nucleotide substitutions per site) versus collection time in

empirical data. Reservoir sequences appear as red triangles and active sequen-

ces appear as circles colored by collection year (with purple shades earlier and

yellow shades later). Light grey shading indicates a period of suppressive ther-

apy. (F) Tip-to-tip distances (in nucleotide substitutions per site) between active

sequences (WA), between latent sequences (WL) and from active sequences to

latent sequences (between) in empirical data (n¼4,278; 406; 2,697, respectively).
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its statistical framework is probably why it achieves lower error
over the other methods.

Finally, we investigated how varying the model parameters
would affect the date estimation performance. The actual inte-
gration dates of the simulations all skew towards the start of
therapy (Fig. 5A and Supplementary Figures S3F–S24F), consis-
tent with previous studies (Brodin et al. 2016; Abrahams et al.
2019). In Supplementary Table S1, we recorded the method with
the highest concordance for each data set. Though every
method was represented, the LS method performed the best in
more data sets. Notably, changing the sampling frequency or
depth did not change the preferred method from LS. Also, the
CS and CD methods, which heavily rely on sampled time points,
perform poorly when the sample frequency and depth are de-
creased. Comparing the error distributions of the methods
across data sets (Supplementary Figures S3G–S24G) reveals that
the LS method in general has a tight symmetrical error

distribution. Notably, when we added indels (Supplementary
Figure S22) or even recombination (Supplementary Figure S23),
the LS method still performed well with concordances between
estimated and real dates of 0.794 and 0.983, respectively, though
the CS method performed best for the simulation with recombi-
nation with a concordance between estimated and real dates of
0.989. For the simulation with recombination, we retained all of
the sequences regardless of whether they were recombinants or
not. This is not advised in general, since recombination violates
the hypothesis of phylogenetics that each lineage has only one
parent.

To compare the effect of sequence length on the date esti-
mation methods, we considered alignments with different
numbers of bases. First, we clipped the simulated data shown in
Fig. 3 and Supplementary Figure S2 from nucleotide positions
9,163 to 9,225 (nef codons: 123–143) to generate an alignment 63
nucleotide bases long for one data set. For comparison, nef is
618 bases long. We chose this region because it contained the
most (four) amino positions under selection, according to our
fitness model, than any other 63 nucleotide base long align-
ment. We used the full genome of the same data for a second
data set. We removed duplicate sequences and inferred phylog-
enies from these alignments as previously described and per-
formed the five date estimation methods. The results are
shown in Supplementary Figures S26 and S27. The LR method
had the highest concordance between estimated and actual
dates (0.571) for the 63 base long alignment and the ML method
had the highest concordance between estimated and actual
dates (0.844) for the full genome alignment. The LS method did
not perform much worse than the ML method in the full ge-
nome alignment with a concordance between estimated and ac-
tual dates of 0.834; however, the LS method performed poorly
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Figure 5. Date estimation and error. (A) Density plot of the integration dates of
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dates of all 100 simulated data sets using each method (n¼4,196 per density

plot). (B) Density plots of the error of estimating the integration each reservoir
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Table 1. Date estimation method performance of all estimated dates
in all 100 simulated data sets (n¼ 4,196).

Method RMSE
(years)

Concordance Median Error
(years)

Skewness

CS 1.58 0.498 �0.596 �1.31
CD 1.32 0.556 0.114 �0.89
LR 1.31 0.645 0.067 �0.55
LS 0.85 0.797 0.014 �0.51
ML 0.92 0.768 �0.184 �0.49

3

2

2

1

?

A

3

2

1

2

2

D

1

3

2

2

B

0.0

0.5

1.0

1.5

2.0

0 11.472 3 4
Years since Infection

D
iv

er
ge

nc
e

E

3

2

2

1

1.47−0.55

0.13

1.02

1.19
C

3

2

2

1

1.49−0.61

0.10

1.02

1.14
D

2
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sequence (query sequence) for which we will estimate the integration date. (B)

CS: we find the closest sequence (light blue path) to our query sequence and as-

sign the date of the closest sequence (light blue number) to the query sequence

(red number). (C) CD: we find the smallest subtree containing the query se-

quence and at least one active sequence (light blue subtree). We then take the

mode of the dates of the active sequences in the subtree (light blue numbers)

and assign it as the query sequence date (red number). (D) LR: we find the linear

regression of the collection dates versus the divergence of the active sequences

(solid light blue line). Using the divergence of the query, we compute the date

(dotted red line) using the linear regression. (E) LS: we assign dates to the inter-
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minimize the divergence between the evolutionary rate of the branches and the

difference in the times at the start and end of the branches. (F) ML: we assign

dates to the internal nodes (light blue numbers) and the query sequences (red

number) to maximize the likelihood of the time scaled tree.
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on the 63 base long alignment with a concordance between esti-
mated and actual dates of 0.413. For context, the concordance
between estimated and actual dates of the LS method on the
original data set with a full nef alignment shown in
Supplementary Figure S2 was 0.783. Overall, the methods per-
form better on longer alignments. The error distributions of all
methods were worse for the 63 base long alignment (see
Supplementary Figure S26F) with lots of under and over estima-
tion. In the LS method, there was a sequence that dated to
6.47 years after therapy initiation (see the fifth distribution from
the top in Supplementary Figure S26E). Note, it is not possible
for genomes to enter the reservoir during therapy in our simula-
tions. Estimating dates later than sampling time is a possibility
for the LS method and also the LR and ML methods. This phe-
nomenon has been observed in empirical data using linear re-
gression (Jones et al. 2018); however, the 95% confidence
intervals of the estimates contained the sampling dates. The CS
and CD methods do not have this drawback because they can
only give estimated dates that are from sampled time points of
active sequences, which is itself a drawback.

8. Empirical data

Since simulations do not necessarily capture the entire com-
plexity of the real world, we sought to compare the date estima-
tion methods on our empirical data. We applied the five date
estimation methods on the phylogeny derived from the patient
data introduced in the “Comparison to empirical data” section
to infer the integration dates of the proviral sequences. The
date estimation methods for the empirical data were performed
in the same manner as for the simulated data with the plasma-
derived RNA sequences treated as coming from the active com-
partment and the PBMC-derived DNA sequences treated as
coming from the latent compartment. Although we cannot be
certain about the actual integration dates in the empirical data,
we can compare the estimates from each method
(Supplementary Table S2 and Supplementary Figure S28). In
terms of root mean squared deviation (RMSD) and concordance
between estimates, the LS and ML were most similar. This is
consistent with our findings in simulated data, where these
methods outperformed the other methods. The most extreme
difference between methods was between the CD and LS meth-
ods, which had an RMSD of 2.60 years and a concordance of
0.570. Overall, this is not a significant difference in the esti-
mates; the Pearson correlation coefficient between the esti-
mates for the CD and LS methods was 0.573 with a P-value
<0.01. These results agree with the results from our in silico
data, where the LS method performed the most accurately.

9. Conclusions

Here, we present an extension of SANTA-SIM that enables the
simulation of virus evolution in multiple compartments. Within
this software we created simulated data sets of within host
HIV-1 evolution including the HIV-1 reservoir. Our simulated
data sets moderately resembled empirical data. Next, we uti-
lized the simulated data sets to compare five date estimation
methods to recover the estimated integration dates of reservoir
genomes. Overall, we found that the LS method implementing
LSD (To et al., 2016) yielded the most accurate estimates of the
real integration dates.

Our model of HIV-1 evolution does not capture all of HIV-1’s
evolutionary characteristics. Most notably, it does not incorpo-
rate recombination nor insertions and deletions in the genome,

all of which are common in HIV-1 (Clavel et al. 1989; Vartanian
et al. 1991; Wood et al. 2009). The decay of the HIV-1 persistent
reservoir is not strictly exponential as our model assumes, but
instead its half-life lengthens over time (Strain et al. 2005). We
also recognize that CD4 and HLA-I down-modulation in nef are
far from the only evolutionary pressures faced by HIV-1. For ex-
ample: cytokine, chemokine, SERINC3 and SERINC5 regulation
(Grant and Larijani 2017; Usami, Wu, and Göttlinger 2015) and
co-receptor tropism (Berger, Murphy, and Farber 1999; Delobel
et al. 2005) all affect HIV-1 fitness within host. Our simulation
assumes that cART offers a completely inhospitable environ-
ment for active HIV-1 with a fitness function of zero; however,
HIV-1 drug resistance resulting from point mutations can and
does occur resulting in detectable viral loads and viral evolution
(Shafer 1998; Ledergerber et al. 1999; Wang et al. 2011). PBMCs in
the blood with transcriptionally latent HIV-1 provirus do not
constitute the entirety of HIV-1 in an individual on cART. HIV-1
can also persist in anatomical reservoirs including but not lim-
ited to: lymphoid tissue (Finzi et al. 1999), cerebrospinal fluid
(Rose et al. 2016; Oliveira et al. 2017) and male and female repro-
ductive organs (Bull et al. 2009; Miller et al. 2019); that may con-
tribute to viral rebound after cessation of cART (Rothenberger
et al. 2015; De Scheerder et al. 2019). These features are all
planned for later iterations of our model.

The date estimation methods that we tested are not meant
to be exhaustive. Brodin et al. (2016) used next-generation se-
quencing to create genetic signatures for each time point and
matched reservoir sequences based on how well they fit the sig-
nature. Abrahams et al. (2019), in addition to the CS tested in
this paper, used phylogenetic placement and a variation of the
CD method to estimate integration dates of reservoir sequences.
Additionally, Bayesian methods most notably with BEAST
(Shapiro et al. 2011; Suchard et al. 2018; Bouckaert et al. 2019; )
can be employed to estimate unknown sequence ages. In this
study, we restricted the scope of our methods to those that are
limited to a fixed tree topology.

In addition to HIV-1, our modified SANTA-SIM with multiple
compartment functionality could be applied to other viruses.
For example, multiple compartments could be specified for
cases of zoonosis in viral epidemics (Dudas et al. 2018; Glennon
et al. 2019). This would allow modelling separate selection and
population growth models for human and animal reservoir viral
populations.

Our software provides a useful tool for validating phylody-
namic methods developed for the HIV-1 reservoir, helping us
understand the dynamics of the HIV-1 reservoir, thus bringing
us closer to a durable HIV-1 cure.

10. Proviral integration date estimation
methodology

The first step in the pipeline of each method was to clip the
genomes to one gene (nef) using R v3.6.2 (R Core Team 2020)
with the R package seqinr (Charif and Lobry 2007). We removed
duplicate sequences retaining the oldest sequence of each set of
duplicate sequences using a custom R script. Next, we identified
the best fitting model using ModelTest-NG v0.1.6 (Darriba et al.
2020) and inferred a ML tree using RAxML v8.2.11 (Stamatakis
2014). Finally, we rooted the trees with root-to-tip regression
maximizing the correlation between the sampling dates of the
sequences from the active compartment and their divergence
from the root with the R package ape (Paradis and Schliep,
2019). Finally, we applied each of the methods detailed in the
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following sections to the tree. Subsequent statistical analyses
and visualization were performed using the R packages: tidy-
verse (Wickham et al. 2019), ggtree (Yu et al. 2016), and treeio
(Wang et al. 2020).

10.1 Closest sequence

In the first method, each sequence from the latent compart-
ment is assigned an integration date equal to the sampling date
of the closest sequence from the active compartment via patris-
tic distance. In the case of a tie for closest sequence, the mean
of the sampling dates is used instead. The CS method was
implemented in a custom R script.

10.2 Clade

In the second method, first the tree is midpoint rooted. For each
query sequence in the latent compartment, the smallest subtree
(or clade) that contains the query sequence and at least one se-
quence from the active compartment is selected. The query se-
quence is then assigned an integration date equal to the mode
of the sampling dates of the sequences from the active com-
partment that are contained in the selected subtree. The CD
method was implemented in a custom R script.

10.3 Linear regression

In the third method, a linear regression is inferred comparing
the sampling dates versus the patristic distance from the root of
the tree of the sequences from the active compartment. The in-
tegration dates of the sequences from the latent compartment
are inferred from LR using their patristic distance from the root
of the tree (Jones et al. 2018).

10.4 Least squares

In the penultimate method, the dates of the internal nodes and
sequences from the latent component of the tree are selected to
minimize the variance between the branch lengths and the dif-
ference in time. LSD v0.3.3 (To et al. 2016; To, 2018) was used for
the LS dating method.

10.5 Maximum likelihood

In the final method, the internal nodes and sequences from the
latent compartment are assigned dates to maximize their likeli-
hood. A modified version of node.dating available on GitHub
(Jones and Poon 2016; Jones, 2019) was used for the ML method
using the evolutionary rate estimated by linear regression as in
the LR method.
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