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Abstract

Genetics play a prominent role in the development and progression of malignant neo-

plasms. Identification of the relevant genes is a high-dimensional data processing problem.

Pyramid gravitational search algorithm (PGSA), a hybrid method in which the number of

genes is cyclically reduced is proposed to conquer the curse of dimensionality. PGSA con-

sists of two elements, a filter and a wrapper method (inspired by the gravitational search

algorithm) which iterates through cycles. The genes selected in each cycle are passed on to

the subsequent cycles to further reduce the dimension. PGSA tries to maximize the classifi-

cation accuracy using the most informative genes while reducing the number of genes.

Results are reported on a multi-class microarray gene expression dataset for breast cancer.

Several feature selection algorithms have been implemented to have a fair comparison. The

PGSA ranked first in terms of accuracy (84.5%) with 73 genes. To check if the selected

genes are meaningful in terms of patient’s survival and response to therapy, protein-protein

interaction network analysis has been applied on the genes. An interesting pattern was

emerged when examining the genetic network. HSP90AA1, PTK2 and SRC genes were

amongst the top-rated bottleneck genes, and DNA damage, cell adhesion and migration

pathways are highly enriched in the network.

1. Introduction

Classification of high-dimensional microarray gene expression data is a major problem in bio-

informatics. From biological perspectives, a large proportion of the genes are redundant for

classification. By gene selection (GS), the accuracy could be improved. Soft computing and

machine learning techniques could be promising for finding the most informative and predic-

tive genes.

Engineers and mathematicians widely investigate gene selection for disease classification

(primarily malignancies). Lung, breast, and prostate cancers are some of the extensively inves-

tigated malignancies. Cancer is an abnormal growth of cells caused by multiple genetic
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aberrations leading to a dysregulated cell proliferation. Tumors often have distinctive gene

expression profiles which could be useful for diagnosis and prediction of response to therapy.

Breast cancer is the most frequent cancer diagnosed in women and the second leading

cause of cancer mortality in developed countries [1]. The methods now commonly employed

to categorize patients are mainly based on immunohistochemistry (IHC) staining. However,

in certain situations, these methods are not adequately precise to estimate the prognosis of

patients or response to therapy [2]. Over the past decade, a considerable effort has been dedi-

cated to categorize patients with breast cancer into subtypes that might influence therapeutic

decisions [3]. PAM50 is a gene expression-based predictor panel that is developed to classify

patients into four subgroups by quantitative measurement of fifty genes robustly correlated

with IHC staining [4]. Nevertheless, the efficacy of PAM50 in predicting the prognosis of tri-

ple-negative breast cancer (TNBC) individuals still remains a matter of debate [5].

There has been a growing interest in employing machine learning methods for high-

dimensional feature selection (FS) problems. In a bird’s eye view, there are three principal

approaches for FS in classification tasks. Filter-based, wrapper, and hybrid methods. Fil-

ter-based also known as statistical methods, only consider one or a combination of statis-

tical aspects of data for feature selection. For instance, features with high entropy or low

redundancy values, and high discriminative power. Wrapper methods work jointly with a

classifier and try to find the features with maximum classification accuracy. Hybrid

approaches take the advantage of both filter and wrapper methods. Feature selection

problems are NP-hard; So, heuristic random search algorithms are a suitable proposition.

They could find the sub-optimal solutions in complicated and large problems, and in

some cases, they are more accurate and applicable than filter-based methods. Inspired by

a random search algorithm, these methods try to select the best subset of features. In fea-

ture selection using heuristic search algorithms, the goal is maximizing classification

accuracy [6].

Gravitational search algorithm (GSA) is a meta-heuristic optimization algorithm inspired

by law of gravity and mass interaction [7, 8]. GSA and its derivatives, were employed in solving

various engineering problems like function optimization [7–10], feature selection [11–15],

image processing [12, 14, 16], and circuit design [17, 18].

In this paper, a pyramid version of GSA is used for solving high-dimensional gene selection

problems. The proposed method is a hybrid approach that cyclically reduces the number of

genes and selects the least genes for achieving high classification accuracy. The term pyramid

as depicted in the graphical abstract, indicates the down-sloping process of feature selection

using PGSA in which the depth of the pyramid is determined by the nature of the problem and

number of features whom might needed.

This paper is organized as follows. Reviewing the related works is presented in Section 2.

The proposed method for gene selection is introduced in Section 3. The comparison results

are discussed in Section 4. Finally, the paper is concluded in Section 5.

2. Previous works

Filter-based methods rank the features based on the statistical properties and select high-rank

features. These properties are mutual information, entropy, information gain, F1-score, Chi-

square, and correlation. Filter methods do not use learning algorithms [19]. Filter and wrapper

methods for gene selection are reviewed in [20]. Some researchers used heuristic search algo-

rithms [6, 21]. A recently published systematic review [22] has performed a thorough study on

feature selection algorithms on gene expression microarray data and they found that hybrid FS

methods were the most captivating method in microarray FS problems. The majority of
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statistical methods are faster and simpler than machine learning-based methods. Nevertheless,

the major drawback of them is ignoring the interactions between features in classification.

In [21], a novel ant colony optimization algorithm, incorporated with a filter method was

produced for gene selection to minimize gene redundancies. The hybridization of the genetic

algorithm (GA) and artificial bee colony (ABC) was produced in [6] for gene selection; The

support vector machine (SVM) was employed for classification. A classifier by hybridization of

cuckoo optimization algorithm (COA) and genetic algorithm (GA) was introduced in [23],

which selected the meaningful genes in cancer classification using shuffling; SVM and multi-

layer perceptron (MLP) was used as the classifier.

A variant of moth-flame optimization (B-MFO) for binary classification problem is developed

by [24] using three different transfer functions (sigmoid, hyperbolic and U-shaped) to convert

the continuous MFO to fit for binary feature selection problem. Their findings show that trans-

formation functions have a substantial impact on algorithm behavior when it comes to updating

the position of search agents and finding the best solution to the feature selection problem.

Multi-trial vector-based differential evolution (MTDE) is a metaheuristic optimization

algorithm that is based on a multi-trial vector search strategy (i.e., trial vector producers

(TVPs)). In this algorithm, several subpopulations which are dispersed according to a winner-

based policy are generated and TVPs are applied on their dedicated subpopulations then they

communicate their experiences through a life-long experience [25].

Quantum-based avian navigation optimizer algorithm (for short, QANA) is inspired by the

meticulous precision of birds during migration for long-distances [26]. In QANA, the popula-

tion is distributed into multiple flocks to explore the search space utilizing a self-adaptive

quantum orientation and two mutation mechanisms called DE/quantum/I and DE/quantum/

II (in which DE means differential equations). The assignment of flocks is based on success-

based population distribution (SPD). The information flow communicates through the popu-

lation using V-echelon. In [27], a binary form of Sine Cosine Algorithm (SCA) has been gener-

ated for medical datasets using two V-shaped and S-shaped transform functions while the

search space remained continuous.

A new variant of whale optimization algorithm (WOA) which consider the spatial bound-

aries has been proposed by [28] to solve the high-dimensional gene selection process. Modified

cat swarm optimization (MCSO) was used in [29] to select the dataset’s most relevant features;

SVM, kernel ridge regression, and random forest were used for classification. In [30], Grass-

hopper optimization algorithm (GOA) was used to simultaneously optimizing the SVM

parameters and selecting best subset of features. In [31], a binary bat optimization algorithm

adjunct with an extreme learning machine has been used to optimize a particular fitness func-

tion which computes a score for every feature and tries to maximize interclass distance and

minimize within-class distance.

In [32], an improvised interval value-based particle swarm optimization (PSO) algorithm

implemented to select the best genes for cancer classification. In [33], the gene numbers were

reduced by Fisher criteria followed by a wrapper gene selection algorithm using cellular learn-

ing automata and ant colony search algorithm for gene selection to increase the classification

accuracy.

In [34], binary particle swarm optimization (BPSO) and gene-to-class sensitivity informa-

tion were used to select genes and improve accuracy. An extreme learning machine was used

to classify data [35] and to produce a hybrid gene selection algorithm by combining a filter FS

method and Binary Differential Evolution (BDE) algorithm. In this method, firstly, features

are ranked using the information gain. Then, high-ranked features are used for initializing the

BDE population. BDE’s operators are performed, and the best set of features maximizes the

classification accuracy with fewer features.
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A forward gene selection algorithm was introduced in [36]. This method produces an aug-

mented dataset to achieve good results in cases with few samples and a regression algorithm

that selects the gene groups. The cost function in the regression algorithm is the sum of the

squared errors with the L2-norm penalty function. Gene selection for autism using the aggre-

gation of some feature selection methods was produced in [37]; In this method, SVM classifies

the genes selected by different methods, and at the second stage, a random forest of decision

trees is used to get the final decision.

A combination of support vector machine recursive feature elimination algorithm and

support vector machine t-test recursive feature elimination was employed in [38]. T-score

with sample selection was used in [39] for gene selection. T-score is based on t-statistics

measuring the correlation between input features and output class labels. In this method,

relevant samples are selected at each iteration using a modified logistic regression loss

function, and then genes are ranked by computing T-score for these samples. A Maxi-

mum–Minimum Correntropy Criterion (MMCC) approach was introduced in [40] to

select informative genes from microarray data. Correntropy locally measures the similarity

between two random vectors, and it is defined as the expectation of the kernel function

applied to these vectors. MMCC is a filter-based method, and after selecting genes, it uses

SVM to classify data.

A modification of the analytic hierarchy process gene selection method by incorporating

statistics of several gene-ranking methods, including two-sample t-test, entropy, ROC curve,

Wilcoxon test, and signal to noise ratio, was presented [41]. Due to a smaller number of sam-

ples, leave-one-out was preferred to k-fold cross-validation. In [42], informative genes were

selected using mutual information between genes and classes, and the disease was classified

using selected genes and SVM. Integration of the partial least squares (PLS) based recursive

feature elimination with simulated annealing and square root was produced in [43] and

employed for gene selection.

A two-phase gene selection approach based on a combination of multivariate filter method

and wrapper method, optimized by recursive binary GSA was utilized by [44]. A swarm intelli-

gence-based search algorithm based on improved binary GSA and information gained has

been applied on five cancer datasets [45]. They used the k-nearest neighbors’ algorithm with

K = 1 and compared results with the locality-sensitive Laplacian score (LSLS) method. The

proposed method outperformed the LSLS method in 4 of 5 datasets regarding accuracy, preci-

sion and recall. A hybrid wrapper method which is a combination of teaching learning-based

algorithm (TLBO) and gravitational search algorithm (GSA), called TLBOGSA, was developed

by [46]. In the first step of gene selection, minimum redundancy maximum relevance

(mRMR) has been applied to the data and then a wrapper method tries to find the most infor-

mative genes. The GSA has been used in the teaching phase to improve search capability. The

overall accuracy was above 98%.

3. Materials and methods

IBGSA [13] is an improved version of BGSA with N searcher objects (agents). The population

of agents is initialized randomly. The ith object is considered as a binary vector with the D
dimensions as the following.

Xi ¼ x1

i ; . . . ; xdi ; . . . ; xDi
� �

ð1Þ

The goal is to find the object, which has produced the best objective value. Here, the classifica-

tion accuracies are considered as the objective values. The mass of each object is defined as
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Eq 2.

Mi tð Þ ¼
fiti tð Þ � worst tð Þ

XN
j¼1
fitj tð Þ � worst tð Þ

ð2Þ

Mii ¼ Mai ¼ Mpi ¼ Mi

Where Mi(t) and fiti(t) are the mass and fitness values of the ith object, respectively, worst(t) is

the population’s worst fitness. Total forces of the K heavier objects toward the other objects are

computed using Eq 3, and the acceleration is reachable with Eq 4.

Fd
i tð Þ ¼

X

j2Kbest; i6¼j
randjF

d
ij tð Þ; F

d
ij tð Þ ¼ G tð Þ

Mpi tð Þ �Maj tð Þ
Rij tð Þ

p
þ E

ðxdj tð Þ � xdi tð ÞÞ ð3Þ

adi tð Þ ¼
Fd
i tð Þ

Mii tð Þ
ð4Þ

The velocity of an object is updated by adding the obtained acceleration to a fraction of its cur-

rent velocity as Eq 5.

vdi t þ 1ð Þ ¼ randi � vdi tð Þ þ adi tð Þ ð5Þ

In binary environments, dimensions have values of 0 or 1. In IBGSA [13], the probability of

switching from 0 to 1 or vice versa is carried out by a transfer function (Tfn), which is com-

puted with the use of Eq 6. Then, a rule defined as Eq 7 is employed to obtain the positions of

the objects.

Tfn vdi tð Þ
� �

¼ Aþ 1 � Að Þ �
�
�tanh vdi tð Þ

� ��
�; A ¼ k1ð1 � exp

FC
k2

� �

Þ ð6Þ

if randðÞ < Tfnðvdi ðt þ 1ÞÞ then ð7Þ

xdi t þ 1ð Þ ¼ complementðxdi tð ÞÞ

else xdi t þ 1ð Þ ¼ xdi tð Þ

Where k1 and k2 are constant parameters. Fc is the failure counter. A failure happens if the

best-found solution does not change after one iteration. If failure occurs, Fc increases by one

and if success occurs, Fc is set to 0 [13]. This algorithm is iterated for T number of iterations

and the best set of features is returned.

4. The proposed method

PGSA is a hybrid method which combined a filter and a wrapper method. The block diagram

of PGSA is presented in Fig 1. The PGSA runs through several cycles to overcome the difficul-

ties of high dimensionality. The method has two parts. At first, the number of genes is reduced

by a filter-based method; then the gene set is passed on to the next step for further reduction.

In the second step, the IBGSA is performed for some cycles. Final result of every cycle would

have a lower number of features that is optimized according to the accuracy. The process will

be repeated over several cycles in a way that the output of a certain cycle would be the input

for the next cycle; thus, the number of genes and the dimension of search space will be
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reduced. In each cycle, PGSA works in joint with a classifier and try to maximize the classifica-

tion accuracy. Each part of the algorithm would be dissected and explained thoroughly in the

following sections.

4.1. Gene reduction using a filter-based method

In the first phase, genes are ranked using a filter-based method. We use the entropy characteris-

tic for gene ranking. The high-ranked genes are selected and delivered to the following phase.

4.2. Gene reduction pyramidically using IBGSA

The first phase of primary cycle reduces the number of genes into n. Then in the second phase,

the number of genes is further reduced by IBGSA. The best genes are selected at each cycle,

and the number of genes is updated for the next cycle. At the start of each cycle, the population

of IBGSA is initialized randomly. The operators are then performed for some iterations and

search the n-dimensional search space to find the best set of genes. After some iterations, the

number of genes is reduced into n’ (n n’). The next cycle is performed with the updated

search space with n-dimension. With this method, the number of genes and the dimensional-

ity of the search space are gradually reduced. At each cycle, IBGSA selects a subset of features

that produces the best classification accuracy. The pseudo code is produced in Fig 2.

4.3. Model evaluation

We used two different methods to measure the performance of the algorithms. Firstly, we have

divided the dataset into training (70%) and test (30%) subsets for the gene selection. when the

most relevant genes were selected by the algorithms, we utilized MATLAB classification

toolbox to model the selected genes obtained from the algorithms, and five-fold cross-valida-

tion has been used for evaluation. For the sake of simplicity, we have only shown the five-fold

cross-validated results.

Fig 1. Gene selection using PGSA.

https://doi.org/10.1371/journal.pone.0265351.g001
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4.4. Experimental data

The dataset is based on microarray data of 20,545 gene expressions in 233 patients with breast

cancer [47]. Six distinctive subtypes of breast cancer are provided that meticulously correlate

with treatment response; each group’s characteristics are described separately in the Table 1.

The dataset and additional information can be accessed through the GEO database

(GSE20685). The data has been merged, normalized, batch effect-corrected for the preprocess-

ing step, and filtered for genes with low variance via an integrated R pipeline [48].

4.5. Benchmark algorithms

The results are compared with three heuristic search algorithms for gene selection using the

FEATURESELECT software in MATLAB [49]. These methods are the following: Genetic algo-

rithm (GA), particle swarm optimization (PSO) and imperialistic competitive algorithm

(ICA). The SVM degree of kernel, gamma and tolerance of termination criterion were 3, 1 and

0.001 respectively.

The fitness function used by PGSA is defined as the classification accuracy as Eq 8. Accu-

racy, true positive rate (TPR), positive predictive value (PPV) and F1-score, are calculated as

Eqs 9–11, respectively. Accuracy shows that how well the method correctly classified the sam-

ples. TPR indicates how well the method correctly classified positive samples. PPV is the prob-

ability that subjects with a positive test for a breast cancer subgroup genuinely have the correct

one. F1-score is the harmonic mean of PPV and TPR. All statistical analyses were performed in

MATLAB.

Accuracy ¼
Number of Correct classified samples

Total number of samples
ð8Þ

True Positive Rate TPRð Þ ¼
TP

TP þ FN
ð9Þ

Fig 2. Pseudo code of gene selection using pyramid IBGSA.

https://doi.org/10.1371/journal.pone.0265351.g002
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Positive Predictive Value PPVð Þ ¼
TP

TP þ FP
ð10Þ

F1score ¼ 2�
PPV � TPR
PPV þ TPR

ð11Þ

5. Results

5.1. Workflow of feature selection

The best result of thirty independent runs are considered. For GA, PSO and ICA, the number

of agents is set to 60. For the PGSA method, the total number of cycles is 8, the k1 is equal to

one and k2 is 500. The total number of fitness evaluations is set to 480 for all algorithms.

The number of genes, the SVM kernel best suited for the model and each algorithm’s best

accuracy will be provided in Table 2. All the computational processes were run on MATLAB

2021 with a Core i5 CPU and eight gigabytes RAM.

Table 1. Characteristics and survival information for subgroups.

Subtype patients Characteristics Approximate 12-month survival (%)

I N = 37 Variable size 80

Estrogen receptor (ER)-negative

Variable progesterone receptor (PR)

Her-2 negative

Low risk of distant metastasis

II N = 34 Large tumor 50

ER-negative

Variable PR

Her-2 overexpression

High risk of distant metastasis

III N = 41 Large tumor 60

Weak ER

Variable PR and Her-2

Low risk of distant metastasis

IV N = 40 Large tumor 50

ER-positive

PR-positive

Her-2 overexpression

High risk of distant metastasis

V N = 41 Small tumor 85

ER-positive

PR-positive

Her-2-negative

Least likely to distant metastasis

VI N = 40 Small tumor 80

ER-positive

PR-positive

Her-2 negative

High risk of distant metastasis

https://doi.org/10.1371/journal.pone.0265351.t001
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5.2. Feature selection benchmark

The overall accuracy, TPR, PPV and F1-score of the best model during the five-fold cross-vali-

dation on the whole dataset are provided in Tables 2 and 3, respectively. As we can see, PGSA

could reach the highest overall accuracy (84.5%) followed by ICA and GA. The PSO was the

least accurate one (68.7%). Moreover, PGSA reduce the number of genes to 73 genes (i.e.,

approximately 280 times more compact than the original dataset dimension) which is lower

than the other algorithms. It shows that PGSA could reduce the number of genes and maintain

reasonably good accuracy. The confusion matrix of four optimization algorithms is shown in

Fig 3. In case of TPR metric, there is a much more harmony in every class for PGSA (mini-

mum TPR of 0.77 and maximum of 0.94 with standard deviation of 0.07 for PGSA) than others

and it indicates the beneficence of PGSA in clinical context. In case of PPV, there is a higher

variance in results for GA, PSO and ICA than PGSA (minimum of 0.79, maximum of 0.9 with

standard deviation of 0.04 for PGSA) and it implies that by using PGSA, more patients will

gain from the new classification. The Fig 4 shows the accuracy and number of genes during

thirty runs.

5.3. Network analysis

To understand the interaction of selected genes, we constructed the protein-protein interac-

tion (PPI) network using the STRING database. Maximum ten additional interactions with a

confidence cut-off of 0.4 have been selected to retrieve the most crucial gene-gene (i.e., pro-

tein-protein) interactions. We used cytohubba extension in Cytoscape to find the top 10 genes

Table 2. The overall accuracy of gene selection algorithms.

Algorithm Accuracy of the best model Best SVM kernel number of genes

GA 0.721 Quadratic 76

PSO 0.687 Quadratic 77

ICA 0.794 Cubic 76

PGSA 0.845 Quadratic 73

https://doi.org/10.1371/journal.pone.0265351.t002

Table 3. Five-fold cross-validated TPR, PPV, and F1-score of different algorithms. The best result for each class has been bolded.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

TPR

GA 1.0 0.85 0.63 0.63 0.79 0.59

PSO 1.0 0.62 0.64 0.57 0.80 0.59

ICA 0.94 0.79 0.77 0.76 0.82 0.72

PGSA 0.94 0.87 0.81 0.77 0.94 0.80

PPV

GA 0.81 0.65 0.73 0.68 0.80 0.65

PSO 0.65 0.62 0.78 0.57 0.90 0.57

ICA 0.81 0.76 0.83 0.72 0.80 0.82

PGSA 0.84 0.79 0.85 0.90 0.80 0.88

F1-score

GA 0.90 0.73 0.67 0.65 0.80 0.62

PSO 0.79 0.62 0.70 0.57 0.85 0.58

ICA 0.87 0.78 0.80 0.74 0.81 0.77

PGSA 0.89 0.83 0.83 0.83 0.87 0.83

https://doi.org/10.1371/journal.pone.0265351.t003
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with the highest bottleneck value in the network [50]. Bottlenecks are nodes in networks

which is thought to be an indicator of essentiality for cell viability. The results are depicted in

Fig 5. In the course of this work, we discovered that heat shock protein 90-alpha (HSP90AA1)

is the most highlighted gene in the network and based on the available data, HSP90AA1 is an

evolutionary conserved protein which has a prominent role in processes such as DNA damage,

inflammation and tumorigenesis. there is a considerable body of evidence that shows plasma

levels of HSP90AA1 has clinical benefit in prediction of onset and risk of metastasis in breast

cancer patients [51]. In the present work, it also became apparent that HSP90AA1 may has a

role in prediction of response to therapy in breast cancer. The next important bottleneck gene,

is protein tyrosine kinase 2 (PTK2) which is an enzyme playing crucial roles in cell adhesion,

migration and survival and aberrant upregulation of PTK2 in epithelial cells leads to malignan-

cies such as breast cancer. Upregulation of PTK2 is correlated with poor survival and drug

resistance in patients with breast cancer [52]. In concordance with previously mentioned

genes, the SRC gene is involved in similar processes such as cell adhesion, migration, and sur-

vival. Moreover, there is a relationship between the SRC and estrogen receptor, which makes

Fig 3. Confusion matrix of optimization algorithms.

https://doi.org/10.1371/journal.pone.0265351.g003
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the SRC a novel source of investigation in response to therapy in tumors like breast cancer

[53]. Results show that the PGSA method performs with sufficient reliability when used in

genetic data for breast cancer.

6. Conclusion

PGSA, a hybrid feature selection method, was used with the goal of identifying the most

important genes driving response to therapy in breast cancer. In comparison to GA, PSO and

ICA, PGSA could reach to a lower number of genes while achieving an accuracy of 84.5 per-

cent. From network analysis, we were able to deduce that the most critical genes involved in

the prediction of response to therapy were those connected to DNA repair, inflammation, and

cellular adhesion processes. The main characteristic of PGSA is the consistency of the selected

genes, and these genes are in line with the prior discoveries in predicting breast cancer progno-

sis. To the best of our knowledge, there was no metaheuristic feature selection benchmark

study on this dataset.

Thanks to recent breakthroughs in genomics and epigenetics, the etiology of diseases can

be studied in great detail. Statistical methods for detecting the causes of the disease only inde-

pendently analyze the different genetic and proteomic elements; the volume of data produced

by genome-wide association study (GWAS) methods complicates the computational processes

and takes a long time to achieve the ground truth solutions. personalized medicine must evolve

quickly and reliable feature selection (i.e., gene selection) techniques that can shrink vast quan-

tities of data is highly needed to develop; As a result, personalized genetic tests (PGTs) for each

condition could be developed and made available to the public, greatly aiding in the screening,

monitoring and predicting the response to therapy.

Fig 4. Accuracy (%) of PGSA during thirty independent runs. The Y and X axes imply the accuracy and iteration respectively. The bubble size is correlated with the

number of genes; the bigger the bubble, the higher the number of genes. The best model was reached at the 18th run with 84.5% accuracy and 73 genes.

https://doi.org/10.1371/journal.pone.0265351.g004
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