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Abstract: The current bioinformatics study was undertaken to analyze the transcriptome of chicken
(Gallus gallus) after influenza A virus challenge. A meta-analysis was carried out to explore the
host expression response after challenge with lowly pathogenic avian influenza (LPAI) (H1N1,
H2N3, H5N2, H5N3 and H9N2) and with highly pathogenic avian influenza (HPAI) H5N1 strains.
To do so, ten microarray datasets obtained from the Gene Expression Omnibus (GEO) database
were normalized and meta-analyzed for the LPAI and HPAI host response individually. Different
undirected networks were constructed and their metrics determined e.g., degree centrality, closeness
centrality, harmonic centrality, subgraph centrality and eigenvector centrality. The results showed
that, based on criteria of centrality, the CMTR1, EPSTI1, RNF213, HERC4L, IFIT5 and LY96 genes were
the most significant during HPAI challenge, with PARD6G, HMG20A, PEX14, RNF151 and TLK1L
having the lowest values. However, for LPAI challenge, ZDHHC9, IMMP2L, COX7C, RBM18, DCTN3,
and NDUFB1 genes had the largest values for aforementioned criteria, with GTF3C5, DROSHA,
ATRX, RFWD2, MED23 and SEC23B genes having the lowest values. The results of this study can be
used as a basis for future development of treatments/preventions of the effects of avian influenza
in chicken.

Keywords: microarray; network; meta-analysis; Python; influenza; chicken; transcriptome; HPAI; LPAI

1. Introduction

Global monitoring of influenza is crucial for improvements in disease management,
rapid intervention and decreasing the potential impact of an influenza pandemic. Avian
Influenza (AI) is caused by three types of viruses: types A, B and C. Influenza A viruses
(IAVs) are potentially zoonotic viruses that can cause infection in birds and a small number
of mammals [1]. Influenza A virus is the only species of the alpha influenza virus genus
in the Orthomyxoviridae family. Most human influenza pandemics of the 20th century
were caused by IAVs that originated, either wholly or in part, from avian influenza A
viruses [2]. The virus can be transmitted from wild birds to native poultry, which provides
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the opportunity for a zoonotic influenza epidemic [3], and can significantly affect the
evolution of influenza viruses that circulate within human populations [4].

All strains of influenza A subtypes have been isolated from wild birds. Some isolates
of influenza A virus cause severe disease in both domestic poultry and occasionally humans.
The various subtypes are named according to the type of hemagglutinin and neuraminidase
molecules present on the viral surface. There are 18 distinct known H antigens (H1 to H18)
and 11 distinct known N antigens (N1 to N11) [5]. Based on their pathogenicity, avian
influenza A subtypes can be classified into two classes: lowly pathogenic avian influenza
(LPAI) and highly pathogenic avian influenza (HPAI). Lowly pathogenic avian influenza
(LPAI) viruses rarely cause human infections but could contribute to future pandemic
outbreaks; however, little is known about inter-species differences in the host responses to
these viruses [6]. Studies are being undertaken to try and understand differences in the
host response after challenge with viral strains with different propensities for evolution to
high pathogenicity [7].

Human infections with the swine-origin influenza virus A (H1N1) were first detected
in April 2009, and then spread rapidly across the globe. Children and young adults are
particularly susceptible to the 2009 H1N1 virus infection because they have no or low
immunity to the novel 2009 H1N1 strains [8,9]. The widespread and rapid distribution of
the 2009 H1N1 viruses in humans raises a concern about the evolution of more virulent
strains during passage in the population. One fear is that mutant forms of the 2009 H1N1
viruses may exhibit significantly increased virulence [10,11].

Highly pathogenic avian influenza (HPAI) H5N1 viruses cause severe infection in
chickens at near complete mortality, but corresponding infection in ducks is typically mild
or asymptomatic [12]. In particular, the Eurasian lineage of HPAI H5N1 virus causes severe
disease in humans with a fatality rate of about 60% [13]. Most human influenza pandemics
of the 20th century were caused by influenza A viruses (IAVs) that originated, either wholly
or in part, from avian influenza A viruses [2]. Ducks and other waterfowl are reservoirs for
most IAVs, including the hemagglutinin (HA) and neuraminidase (NA) subtypes that have
caused previous human pandemics [14]. Despite being susceptible to infection with a wide
range of IAVs, such birds often show little or no clinical signs [15,16]. In contrast, most
HPAI H5N1 virus strains produce very severe disease in chickens, turkeys and quails, often
causing up to 100% mortality within 2–3 days [17,18]. With their natural resistance, ducks
support genetic reassortment of influenza viruses, providing a mechanism of evolution of
genetically diverse IAVs including HPAI H5N1 viruses [19,20].

Naturally, viral genome mutations play a big role in the severity of viral diseases.
For instance, PA-X is a newly discovered protein that is known to affect viral replication
and host gene expression [21]. Loss of PA-X expression increases the viral virulence in
mice, chickens, and mallard ducks, as shown in the reductions of virulence in the 1918
H1N1 pandemic virus in mice when PA-X expression was decreased [22]. Two CK10-based
PA-X deficient viruses were created as subtypes of the H5N1 virus to demonstrate the
ability of PA-X to reduce the severity of the H5N1 virus in mice, chickens, and ducks [23].
The influenza A virus endoribonuclease PA-X usurps RNA splicing to selectively target
host RNAs for destruction. Proximity-labeling proteomics reveals that PA-X interacts with
cellular RNA processing proteins, some of which are partially required for host shutoff.
Thus, PA-X taps into host nuclear pre-mRNA processing mechanisms to destroy nascent
mRNAs shortly after their synthesis. This mechanism sets PA-X apart from other viral host
shutoff proteins that target actively translating mRNAs in the cytoplasm [24].

Enhanced surveillance needs fast, robust and cheap analytical methods to provide a
thorough analysis of influenza virus strains [25]. This is where sophisticated network-based
tools can prove beneficial. The theory of intricate networks plays a main role in a wide
variety of disciplines [26]. In general, the mathematical discipline which underpins the
study of complex networks in biology is based on graph theory, where Graph G = (V, E)
with V = vertices and E = edges. The edge may have direction (digraph) or no direction
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(multigraph). Figure 1 delineates both directed and undirected graphs with their adjacency
matrices.

Genes 2022, 13, 435 3 of 16 
 

 

(multigraph). Figure 1 delineates both directed and undirected graphs with their adja-

cency matrices. 

 

Figure 1. An indication of directed and undirected graphs showing their adjacency matrices. 

Potential applications within the field of biology include the identification of drug 

targets and the design of effective control strategies for infectious diseases [27], to name 

but two. A basic premise of designing a gene network is that knowledge regarding the 

structure of genetic relationships enriches existing knowledge of the function of each in-

dividual gene. Supplementary Table S1 summarizes some network-based studies that 

have been applied in poultry transcriptomic research. However, these network-based 

analyses have not been utilized for studying the host response to influenza infection in 

chicken. Gene network analysis goes beyond knowledge of single gene effects and shows 

relational interaction of numerous genes. This is therefore an effective way to construct 

gene modules to gain a deeper understating of the biological pathways and networks un-

derpinning response to disease. In this study, for the first time, we use indirect graph 

analyses to look at the biological effects of influenza infection in chickens and identify the 

core genes involved in transcriptional change. We believe it is vital to understand the path 

and pace of the virus which culminates in the identified host–virus interactions, with a 

view to formulating decisions regarding mitigation strategies, virus containment, antivi-

ral therapy and vaccination. 

2. Materials and Methods 

2.1. Datasets Used in This Study 

Microarray expression profiles from chicken after influenza challenge were down-

loaded from the Gene Expression Omnibus (GEO) database 

(http://www.ncbi.nlm.nih.gov/geo (accessed on 22 October 2018). Data relating to LPAI 

studies included challenge with H2N3, H5N3, H9N2, H5N2 and H1N1 strains and data 

relating to HPAI involved H5N1 challenge. Each dataset consisted of infected and control 

groups. For HPAI, 24 samples were examined (consisting of 16 infected and 8 control sam-

ples) and for LPAI, 76 samples (consisting of 56 infected and 20 controls) were studied 

(Figure 2). 

Figure 1. An indication of directed and undirected graphs showing their adjacency matrices.

Potential applications within the field of biology include the identification of drug
targets and the design of effective control strategies for infectious diseases [27], to name
but two. A basic premise of designing a gene network is that knowledge regarding the
structure of genetic relationships enriches existing knowledge of the function of each
individual gene. Supplementary Table S1 summarizes some network-based studies that
have been applied in poultry transcriptomic research. However, these network-based
analyses have not been utilized for studying the host response to influenza infection in
chicken. Gene network analysis goes beyond knowledge of single gene effects and shows
relational interaction of numerous genes. This is therefore an effective way to construct
gene modules to gain a deeper understating of the biological pathways and networks
underpinning response to disease. In this study, for the first time, we use indirect graph
analyses to look at the biological effects of influenza infection in chickens and identify the
core genes involved in transcriptional change. We believe it is vital to understand the path
and pace of the virus which culminates in the identified host–virus interactions, with a
view to formulating decisions regarding mitigation strategies, virus containment, antiviral
therapy and vaccination.

2. Materials and Methods
2.1. Datasets Used in This Study

Microarray expression profiles from chicken after influenza challenge were down-
loaded from the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.
gov/geo (accessed on 22 October 2018). Data relating to LPAI studies included chal-
lenge with H2N3, H5N3, H9N2, H5N2 and H1N1 strains and data relating to HPAI
involved H5N1 challenge. Each dataset consisted of infected and control groups. For HPAI,
24 samples were examined (consisting of 16 infected and 8 control samples) and for LPAI,
76 samples (consisting of 56 infected and 20 controls) were studied (Figure 2).

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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[30], an add-on R package, a set of DEGs with FDR < 0.05 were obtained. The RP is a 

Figure 2. The datasets used and their corresponding viruses and sample collection times (post-
infection). All samples are derived from lung tissue. H5N1-50-92 is a classical HPAI virus H5N1
strain (A/turkey/England/50-92/91) and H5N1-ty-Ty is a contemporary Eurasian lineage clade 2.2.1
H5N1 virus (A/turkey/Turkey/1/05).

2.2. Normalization of Microarray Data

Figure 3 shows the bioinformatics pipeline used in this study. The CEL files from
each dataset were normalized using the RMA normalization method in the Affymetrix
Expression console software package (version: 1.1). RMA is a normalization algorithm
for microarray data, correcting background, normalizing and summarizing the probe
level information without the use of the information from the Mis-Match probe. Correct
normalization is an absolute prerequisite for accurate evaluation of gene expression [28].
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2.3. Network Construction

We used the rank product meta-analysis algorithm on normalized microarray data
from the various avian influenza challenge experiments shown in Figure 2. The rank
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product is a non-parametric statistic that was originally aimed at identifying differentially
expressed genes (DEGs) in a dataset [29]. Using the RankProd (RP) package (Version
1.1.383) [30], an add-on R package, a set of DEGs with FDR < 0.05 were obtained. The
RP is a statistical approach that is widely used to detect differentially expressed features
in -omics data e.g., transcriptomics, metabolomics and proteomics studies. Standardized
expression values of meta-genes from all samples were used to rank and select the most
important genes.

2.4. Derivation of Network Metrics

Up-regulated and down-regulated DEGs were used to train the network. Differentially
expressed genes were obtained using meta-analysis by comparing fold change between
disease and control groups from each data series. The gene expression data were then
standardized. The Pearson correlation between the gene expression data was then obtained
and genes with correlation values higher than 95% (ad-hoc) were used in Networkx (version
2.4 for python3.7 via anaconda) (https://networkx.github.io/ (accessed on 16 November
2018) to draw the undirected gene network and its metric measures cited in Table 1.
NeworkX is a Python-based software package, used to extract the network metric measures,
manipulate data, and study the structure, dynamics, and functions of complex networks
(Supplementary Table S2). It has many standard graph algorithms for data structures for
graphs, digraphs, and multigraphs. We developed individual networks based on both
up-regulated and down-regulated genes. Investigation of complete sets of DEGs did not
produce meaningful networks.

Table 1. Python Networks.

Python Network for LPAI Microarray Data

Regulation Number of Nodes Number of Edges

up-regulation 1842 60,606
down-regulation 4162 243,604

Python Network for HPAI Microarray Data

Regulation Number of Nodes Number of Edges

up-regulation 305 114
down-regulation 1813 276

LPAI—lowly pathogenic avian influenza; HPAI—highly pathogenic avian influenza; nodes = genes;
edges = interactions.

2.5. Downstream Analysis of Network Genes

The obtained results were used to construct a Venn diagram to identify genes over-
lapping between different strains. This was done using the Jvenn package (http://jvenn.
toulouse.inra.fr/app/example.html (accessed on 20 May 2019). Gene IDs of DEGs were
also uploaded to the PANTHER [31] website (http://www.pantherdb.org/ (accessed on
1 July 2019) to investigate the differences in gene expression between the samples after the
viral challenge compared to the control samples. Network ranking algorithms created using
Cytoscape software package ClueGo + Clue Pedia (version: 3.8.0.) (https://cytoscape.org/
(accessed on 28 September 2019) were then used to identify genes overlapping with the
Python-based network results. Biological pathways, functions and networks relating to
identified DEGs were investigated by means of Ingenuity Pathway Analysis (IPA) soft-
ware (Qiagen: https://digitalinsights.qiagen.com/products-overview/discovery-insights-
portfolio/analysis-and-visualization/qiagen-ipa/ (accessed on 12 April 2021). Differen-
tially expressed genes with adjusted p < 0.05 and FC > 1.5 were used in the IPA analysis.

https://networkx.github.io/
http://jvenn.toulouse.inra.fr/app/example.html
http://jvenn.toulouse.inra.fr/app/example.html
http://www.pantherdb.org/
https://cytoscape.org/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
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3. Results
3.1. Analysis of LPAI Datasets

In the LPAI datasets, 6004 probes (3535 genes) were differentially expressed (p < 0.05)
with 31% of DEGs being up-regulated and 69% of DEGs down-regulated. For the H1N1
strain there were 9 common probes between 2 h and 10 h after viral infection (Figure 4A).
For H5N2 there were 24 probes expressed at all times and there were 64 common probes
expressed between 2 h and 10 h after viral infection (Figure 4B). For H9N2, there were
15 probes expressed across all times and there were 57 common probes between 2 h and 10 h
after viral infection (Figure 4C). In terms of probes commonly expressed between different
viral sub-types, we see 1520 common probes between H5N2 and H9N2, 271 probes between
H5N2 and H1N1, 102 probes between H1N1 and H9N2, 294 probes between H5N2 and
H5N3, 171 probes between H5N2, H9N2 and H1N1 and 210 probes between H5N2, H9N2
and H5N3. All LPAI DEGs (FC > +/−1.5) are shown in Supplementary Table S3.
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3.2. Analysis of HPAI Datasets

The Venn diagram in Figure 4D shows that for H5N1 infections, there were 31 com-
monly expressed probes between Ck10 12 h and Ck10 24 h datasets; 23 between Ck-pax 12 h
and Ck-pax 24 h and 2778 between H5N1 ty-Ty and H5N1 50–92. The largest set of common
probes was found between Ck-pax 24 h, 50–92 and ty-Ty datasets, with 550 probes shared
(Figure 4D). The result of the meta-analysis for chicken influenza microarray data showed
that in the HPAI datasets examined, 390 probes (265 genes) were differentially expressed
(p < 0.05). For DEGs, 29% were found to be up-regulated while 71% were down-regulated.
A list of all significant differentially expressed genes is shown in Supplementary Table S4.

3.3. Comparison of LPAI and HPAI Datasets

In order to shed some light on the differential gene expression between HPAI and
LPAI challenge, Venn diagrams were used to identify overlapping DEGs between both the
up-regulated and down-regulated gene sets (Figure 5). Collectively, this analysis, based
on direct comparison of gene expression across the two influenza groups, demonstrated
that there are 91 genes in common between down-regulated HPAI and LPAI datasets—the
largest number of common genes. When up-regulated data are compared, there are seen to
be 69 genes differentially expressed after both LPAI and HPAI challenge.
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Figure 5. Intersected analysis was used for the identification of common DEGs from all ten datasets.
(A) Total differentially expressed genes between HPAI and LPAI from across all possible group com-
parisons. (B) Venn diagram showing up- and down-regulated genes in HPAI and LPAI experiments.
Different coloured regions represent different datasets, and the intersecting area denotes the common
DEGs. (DEGs, differentially expressed genes; HPAI, highly pathogenic avian influenza; LPAI, lowly
pathogenic avian influenza).

The purpose of this study was to identify the most important genes involved in the
avian flu response, based on the location of these genes in a gene network. Meta-analysis
was performed individually on LPAI and HPAI datasets for genes up-regulated and for
those down-regulated. Table 1 shows the information relating to the Python networks
generated for each challenge group. The nodes represent genes and edges represent
interactions in the gene network. For LPAI data, the up-regulated network includes
1842 nodes and 60,606 edges, while the down-regulated network contains 4162 nodes and
243,604 edges. With the HPAI data, we see an up-regulated network including 305 nodes
and 114 edges and a down-regulated network that includes 1813 nodes and 276 edges.
Results from our network analyses are summarized in Table 2, which describes the hub
genes identified in each of the up- or down-regulated groups.
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Table 2. Top 6 hub genes identified from each network analysis.

LPAI: Up-Regulated Genes

Gene Number of Connections Degree Harmonic Closeness Eigenvector Subgraph

RBM18 384 0.37 647.81 0.5 0.07 1.21 × 10103

NDUFB1 375 0.36 639.53 0.49 0.07 1.17 × 10103

DCTN3 372 0.36 641.19 0.5 0.07 1.16 × 10103

COX7C 370 0.36 639.55 0.49 0.06 1.03 × 10103

IMMP2L 368 0.36 638.38 0.49 0.07 1.16 × 10103

ZDHHC9 368 0.36 639.43 0.5 0.07 1.11 × 10103

LPAI: Down-Regulated Genes

Gene Number of Connections Degree Harmonic Closeness Eigenvector Subgraph

GTF3C5 849 0.36 1491.63 0.52 0.06 8.47 × 10184

RFWD2 840 0.36 1493.43 0.52 0.05 8.04 × 10184

MED23 828 0.35 1486.05 0.52 0.05 7.78 × 10184

SEC23B 798 0.34 1469.68 0.52 0.05 7.52 × 10184

ATRX 796 0.34 1450.85 0.5 0.05 6.77 × 10184

DROSHA 794 0.34 1456.03 0.5 0.05 7.31 × 10184

HPAI: Up-Regulated Genes

Gene Number of Connections Degree Harmonic Closeness Eigenvector Subgraph

CMTR1 27 0.52 37.08 0.61 0.26 2.23 × 106

HERC4L 24 0.47 35.58 0.58 0.24 1.91 × 106

IFIT5 23 0.45 34.11 0.53 0.24 1.84 × 106
LY96 23 0.45 34.03 0.52 0.21 1.45 × 106

RNF213 22 0.43 33.61 0.52 0.24 1.78 × 106

EPSTI1 22 0.43 33.53 0.52 0.22 1.56 × 106

HPAI: Down-Regulated Genes

Gene Number of Connections Degree Harmonic Closeness Eigenvector Subgraph

PEX14 60 0.45 81.7 0.5 0.16 5.62 × 1017

HMG20A 59 0.44 81.2 0.5 0.16 5.53 × 1017

TLK1L 59 0.44 81.2 0.5 0.16 5.52 × 1017

RNF151 59 0.44 81.78 0.51 0.16 5.43 × 1017

PARD6G 58 0.43 80.78 0.5 0.15 5.01 × 1017

CAV2 55 0.41 79.2 0.49 0.15 4.88 × 1017

As the centrality measure of the genes in the networks reduces, the proportion of the
genes remaining in the network also reduces. Genes with high ‘centrality’, ‘harmonic’,
‘degree’, ‘closeness’, ‘Eigenvector’ and ‘Subgraph’ metrics achieve similar performance,
whereas ‘betweenness centrality’ and ‘load centrality’ have a lower performance. Results
from the ‘core number’ and ‘cluster’ criteria were not appropriate for finding modules. The
‘degree centrality’ metric in gene networks defines the importance of a gene in a graph as
being measured based on its degree; the higher the degree of a gene, the more important it
is in a graph. According to the results of the present study, the ‘degree centrality’ criterion
obtained more accurate results than other criteria, as the results from this criterion are
consistent with the results of the gene network based on the correlation between the genes.
Centrality criteria for different DEGs are as shown in Table 2.

The networks created are too large to present pictorially, but as an example, we
show a section of the HPAI networks as depicted using Cytoscape software. Figure 6A
shows a section of the up-regulated network and Figure 6B part of the down-regulated
gene network.
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Figure 6. Cytoscape gene networks of the up-regulated HPAI dataset (A) and down-regulated HPAI
dataset (B).

Examining genes differentially expressed between the HPAI and LPAI data sets identi-
fied the genes summarized in Table 3. CMTR1, HERC4L, IFIT5, LY96, RNF213 and EPSTI1
were all more highly expressed after HPAI challenge compared to LPAI challenge. It is
interesting to note that several of these genes (IFIT5, LY96, RNF213 and EPST1) were previ-
ously identified in a study examining LPAI and HPAI infection in ducks and chickens [32].
However, RBM18, NDUFB1, DCTN3, COX7C, IMMP2 and LZDHHC9 all showed higher
expression during the host response to LPAI.

Table 3. Comparison of differential gene expression found between HPAI and LPAI datasets.

Gene Symbol Gene Name Entrez Gene ID

HPAI PAI

Log2 Fold
Change Regulation Log2 Fold

Change Expression

CMTR1 cap methyltransferase 1 14306 2.10 UP

HERC4L hect domain and RLD 4-like 4297 2.05 UP

IFIT5
interferon induced protein

with tetratricopeptide
repeats 5

33635 2.64 UP

LY96 lymphocyte antigen 96 5508 1.91 UP

RNF213 ring finger protein 213 10972 2.06 UP

EPSTI1 epithelial stromal
interaction 1 11241 2.01 UP

RBM18 RNA binding motif
protein 18 7150 1.30 UP

NDUFB1 NADH:ubiquinone
oxidoreductase subunit B1 4970 1.27 UP

DCTN3 dynactin subunit 3 4824 1.29 UP

COX7C cytochrome c oxidase
subunit 7C 4726 1.32 UP

IMMP2L
inner mitochondrial
membrane peptidase

subunit 2
9006 1.27 UP
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Table 3. Cont.

Gene Symbol Gene Name Entrez Gene ID

HPAI PAI

Log2 Fold
Change Regulation Log2 Fold

Change Expression

ZDHHC9 zinc finger DHHC-type
containing 9 2532 1.19 UP

PEX14 peroxisomal biogenesis
factor 14 6768 −0.34 down

HMG20A high mobility group 20A 20936 −0.34 down

TLK1L tousled like kinase 1 like 6751 −0.27 down

RNF151 ring finger protein 151 9782 −0.36 down

PARD6G par-6 family cell polarity
regulator gamma 9912 −0.42 down

CAV2 caveolin 2 9078 −0.36 down

GTF3C5 general transcription factor
IIIC subunit 5 21008 −0.70 down

RFWD2 ring finger and WD repeat
domain 2 37706 −0.64 down

MED23 mediator complex subunit 23 8401 −0.68 down

SEC23B Sec23 homolog B, coat
complex II component 21262 −0.76 down

ATRX
alpha thalassemia/mental

retardation syndrome
X-linked

7476 −0.68 down

DROSHA drosha ribonuclease III 20908 −0.70 down

3.4. Analysis of All Up- and All Down-Regulated Genes

We also performed a general analysis across all up- (Table 4) and all down-regulated
(Table 5) genes from both HPAI and LPAI datasets and identified significant genes. In
general, we see a fairly unique response to LPAI and HPAI infections. However, from our
network analysis, some genes were identified as important hub genes across both types of
challenge. Amongst genes up-regulated, SELENOK, NDUFA1, PPP1R7, SMDT1, COX7C,
PRELID3B, CIB1, OST4 and NDUFB2 were highlighted. Some of these (SELENOK, SMDT1,
CIB1) are involved in calcium signaling, while others (NDUFA1, COX7C, NDUFB2) play a
role in the mitochondrial respiratory chain. Ca2+- dependent signaling plays a crucial role
in influenza viral internalization and infection, as well as being implicated in apoptosis
of viral-infected cells [33]. An increase in activity of the mitochondrial respiratory chain
is also known to occur after influenza infection [34]. Significant down-regulated genes
included PUS10, ERBIN, SYDE2, PCGF6, FZD6, ROR1, LRIG2, SUPT7L, EXOC8, KIF1C and
PCM1. These genes have a variety of functions including miRNA processing (PUS10), RNA
polymerase II-specific transcription repressor activity (PCGF6), and negative regulation
of biological processes including cell proliferation and apoptosis (FZD6) and chromatin
modification (SUPT7L). Many of these genes are thus seen to have a role in how other genes
are regulated.
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Table 4. Hub genes for all up-regulated data.

Gene Symbol Gene Name Probe ID Number of Connections

SELENOK selenoprotein K Gga.1058.1.S1_at 209

NDUFA1 NADH:ubiquinone
oxidoreductase subunit A1 Gga.5918.1.A1_a_at 207

PPP1R7 protein phosphatase 1 regulatory
subunit 7 Gga.5583.1.S1_a_at 202

SMDT1 single-pass membrane protein
with aspartate rich tail 1 Gga.9946.1.S1_at 200

COX7C cytochrome c oxidase subunit 7C Gga.6171.1.S1_a_at 200
PRELID3B PRELI domain containing 3B Gga.9900.2.S1_at 199

CIB1 calcium and integrin binding 1 Gga.5965.2.S1_a_at 198

OST4 oligosaccharyltransferase
complex subunit 4, non-catalytic Gga.6184.1.S1_at 196

NDUFB2 NADH:ubiquinone
oxidoreductase subunit B2 Gga.17299.1.S1_a_at 196

Table 5. Hub genes for all down-regulated data.

Gene Symbol Gene Name Probe ID Number of
Connections

PUS10 pseudouridylate
synthase 10 GgaAffx.4897.1.S1_at 509

ERBIN erbb2 interacting protein Gga.17560.1.S1_at 496

SYDE2 synapse defective Rho
GTPase homolog 2 Gga.11842.1.S1_s_at 492

PCGF6 polycomb group ring
finger 6 Gga.16959.1.S1_at 490

FZD6 frizzled class receptor 6 Gga.2690.1.S1_at 489

ROR1 receptor tyrosine kinase
like orphan receptor 1 Gga.9476.1.S1_at 485

LRIG2
leucine rich repeats and

immunoglobulin like
domains 2

Gga.17165.1.S1_at 479

SUPT7L SPT7 like, STAGA
complex gamma subunit Gga.16763.1.S1_at 475

EXOC8 exocyst complex
component 8 Gga.14199.1.S1_at 470

KIF1C kinesin family
member 1C Gga.15878.1.S1_s_at 469

PCM1 pericentriolar material 1 Gga.3449.1.S1_at 468

3.5. Gene Ontology

Analysis of functional ontologies associated with the genes being differentially ex-
pressed in response to influenza infection was carried out. Supplementary Tables S5–S8
show the biological processes, molecular functions and cellular components associated
with DEGs identified as being up-regulated in response to HPAI (Supplementary Table S5),
down-regulated in response to HPAI (Supplementary Table S6), up-regulated in response to
LPAI (Supplementary Table S7) and down-regulated in response to LPAI (Supplementary
Table S8). Based on KEGG analysis, important pathways affected during response to HPAI
include those of Influenza A, Cytokine-cytokine receptor interaction, NOD-like receptor
signaling and Toll-like receptor signaling, whereas after LPAI challenge cell adhesion
molecules, MAPK signaling, ErbB signaling and phagosome activity are modified.

3.6. Pathway Analysis

In order to explore the biological pathways and functional processes associated with
differentially expressed genes, Ingenuity Pathway Analysis software was used. Figure 7
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shows a comparison of some of the most significant biological activities related to the DEGs
with respect to LPAI challenge compared to HPAI disease. Viral infection and replication
is lower after LPAI challenge and apoptosis higher. This higher level of cell death is
mirrored by the lower levels of cell survival indicated. This reflects the host ability to kill
AI-infected cells and ultimately overcome LPAI infection—a situation not enabled when
chickens succumb to HPAI virus. Upon investigation of the gene networks being modified
upon HPAI challenge, we see that IFNG and IFNB are two of the main activators of gene
expression. Conversely, genes such as IL4, IL10 and STAT6 are inhibited, restricting a Th2-
type immune response (Supplementary Table S9), directing the host toward an antiviral
Th1 response. Supplementary Figure S1 shows the interferon-stimulated inflammatory
response that is initiated after the H5N1 HPAI infection investigated in this study.
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4. Discussion

Here we present a network analysis of a variety of microarray datasets representing
avian influenza challenge in chicken. These datasets represent both lowly pathogenic and
highly pathogenic infections. Our network modelling identifies core genes central to the
response to both kinds of challenge, whether that be through up- or down-regulation of
gene expression.

We observed that degree, harmonic and closeness centrality methods generate highly
significant results. These methods are reliable applicants for use in practice to identify the
hub genes related to a particular disease [35]. Load and betweenness centrality methods
do not have a higher statistical significance than the baseline method [34] in highlighting
known avian influenza genes. However, degree, harmonic and closeness centrality pa-
rameters can identify the previously unknown genes which are involved in the disease
response of interest. These methods can be used to generate new hypotheses on host-virus
interaction, and highlight candidates for experimental validation. Gene networks were
used to identify the functional relevance of a gene interacting with communicating nodes
in a biological network. The higher the value, the higher the relevance of the gene in
connecting the regulatory molecules [36]. One can easily read basic features of the graph
(degree, hierarchical structure, etc.) as well as more nuanced features, e.g., the relationship
between a vertex and the hierarchical position of its neighbors. The present visualization
strategy is a useful tool in discriminating between networks with different topological
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properties and structural arrangement, and may be also used for comparison of models
with real data, providing an additional tool for model validation [37].

For each type of challenge (LPAI and HPAI), unique and common host response
genes were identified. During LPAI infection, genes involved in the process of apoptosis
are activated, compared with the HPAI response. This may be one of the reasons why
birds are able to overcome lowly pathogenic strain infections but not that of the highly
pathogenic variety. On the other hand, immune stimulation and an interferon response is
seen after HPAI challenge. However, as chickens are unable to survive the HPAI challenge,
this response is either (1) inadequate in overcoming the viral infection or (2) too extreme
and causes the so-called ‘cytokine storm’ often responsible for mortality in the face of
HPAI infection. The levels of cytokine expression that are seen here do not appear to be
excessive however, so it is likely that the response that is being initiated, in this instance, is
insufficient. Indeed, only 96 genes are seen to be significantly up-regulated in response to
HPAI (with 4.9-fold maximum expression change). A strong down-regulation of several
genes is however seen. These include immune genes such as BLB1, CXCR4, IRF2BP2, TLR5
and TNFRSF1B. So it may be that HPAI infection causes an overall down-regulation of the
immune system, thus rendering the host incapable of mounting a sufficient response to
the virus.

Most of the up-regulated LPAI DEGs are involved in functions associated with the
mitochondria or Golgi apparatus. Flu infection is known to lead to alterations in mito-
chondria morphology, release of pro-apoptotic proteins, loss of mitochondrial membrane
potential, and eventually cell death [38]. When we look at the up-regulated HPAI DEGs
on the other hand, we see that several are involved in the innate immune response, with
CMTR1 and IFIT5 being well-known interferon-stimulated genes, LY96 enhancing TLR4-
dependent activation of NF-kappa-B [39] and EPSTI1 mediating RELA/p65 and STAT1
phosphorylation and nuclear localization upon activation of macrophages [40].

Looking at core genes identified across all viral challenges, genes up-regulated in both
highly and lowly pathogenic infections include those involved in calcium signaling –a
process central to biological activity after viral infection. Various viruses enter host cells
via endocytosis, but the underlying molecular mechanisms are unknown. The influenza
A viruses (IAVs) enter cells via redundant pathways of clathrin-mediated and clathrin-
independent endocytosis, with intracellular calcium having a central role in regulation
of both pathways, by activating a signaling axis comprising RhoA, Rho-kinase, phos-
phatidylinositol 4-phosphate 5-kinase (PIP5K) and phospholipase C (PLC). IAV infection
induces oscillations in the cytosolic Ca2+ concentration of host cells, the prevention of
which markedly attenuates virus internalization and infection. The small GTPase RhoA is
found both to function downstream of the virus-induced Ca2+ response and to induce Ca2+

oscillations in a manner dependent on Rho-kinase and subsequent PIP5K-PLC signaling.
This signaling circuit regulates both clathrin-mediated and clathrin-independent endocyto-
sis during virus infection and seems to constitute a key mechanism for regulation of IAV
internalization and infection [33].

Other genes with a role in the mitochondrial respiratory chain were also identified.
Genes commonly down-regulated encompass a variety of functions, but many were in-
volved in gene regulation. The Cap Methyltransferase 1 (CMTR1) gene was identified as a
core up-regulated gene in the HPAI gene expression network. This gene has been identi-
fied as a host dependency factor, vital for efficient viral cap-snatching and regulating cell
autonomous immune response. It also provides synergistic protection with the influenza
endonuclease inhibitor Xofluza [41]. CMTR1 also has a potential role in the pathogenesis of
asthma exacerbations [42]. Also in the HPAI gene expression network, the PARD6G gene
(Par-6 Family Cell Polarity Regulator Gamma) was seen to be down-regulated. It is thought
to play a role in the formation of epithelial tight junctions [43]. The expression changes
occurring in these genes could help explain the differences in mortality seen between LPAI
and HPAI infection in chickens.
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5. Conclusions

We have used network analysis methods to predict hub gene associations from a
collection of microarray datasets known to be related to the avian response to influenza
infection, and created gene-interaction networks by correlation amongst differentially
regulated genes. Next, we used degree, eigenvector, closeness, betweenness, subgraph,
harmonic centrality, clustering and core number metrics to rank the genes in the network
according to their relevance in the system. Our method has enabled the identification of core
genes involved in the general host response to influenza infection in chicken e.g., SELENOK,
NDUFA1, PPP1R7, SMDT1, COX7C, PRELID3B, CIB1, OST4 and NDUFB2 amongst up-
regulated data and PUS10, ERBIN, SYDE2, PCGF6, FZD6, ROR1, LRIG2, SUPT7L, EXOC8,
KIF1C and PCM1 from down-regulated data. Comparison between different pathogenic
strains identifies up-regulation of CMTR1, HERC4L, IFIT5, LY96, RNF213 and EPSTI1 as
being significant during HPAI challenge, with RBM18, NDUFB1, DCTN3, COX7C, IMMP2
and LZDHHC9 being central to the LPAI expression network.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13030435/s1, Table S1: Previous network based studies
in chicken [44–60], Table S2: Network metrics used in this study [61–67], Table S3: Differentially
expressed genes from LPAI data analysis, Table S4: Differentially expressed genes from HPAI data
analysis, Table S5: Gene Ontology of up-regulated HPAI DEGs, Table S6: Gene Ontology of down-
regulated HPAI DEGs, Table S7: Gene Ontology of up-regulated LPAI DEGs, Table S8: Gene Ontology
of down-regulated LPAI DEGs, Table S9: HPAI upstream activators.
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