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Abstract 9 

 Single cell RNA sequencing (scRNAseq) studies have provided critical insight 10 

into the pathogenesis of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-11 

CoV-2), the causative agent of COronaVIrus Disease 2019 (COVID-19). scRNAseq 12 

workflows are generally designed for the detection and quantification of eukaryotic host 13 

mRNAs and not viral RNAs. The performance of different scRNAseq methods to study 14 

SARS-CoV-2 RNAs has not been thoroughly evaluated. Here, we compare different 15 

scRNAseq methods for their ability to quantify and detect SARS-CoV-2 RNAs with a 16 

focus on subgenomic mRNAs (sgmRNAs), which are produced only during active viral 17 

replication and not present in viral particles. We present a data processing strategy, 18 

single cell CoronaVirus sequencing (scCoVseq), which quantifies reads unambiguously 19 

assigned to sgmRNAs or genomic RNA (gRNA). Compared to standard 10X Genomics 20 

Chromium Next GEM Single Cell 3′ (10X 3′) and Chromium Next GEM Single Cell 21 

V(D)J (10X 5′) sequencing, we find that 10X 5′ with an extended R1 sequencing 22 
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strategy maximizes the unambiguous detection of sgmRNAs by increasing the number 23 

of reads spanning leader-sgmRNA junction sites. Differential gene expression testing 24 

and KEGG enrichment analysis of infected cells compared with bystander or mock cells 25 

showed an enrichment for COVID19-associated genes, supporting the ability of our 26 

method to accurately identify infected cells. Our method allows for quantification of 27 

coronavirus sgmRNA expression at single-cell resolution, and thereby supports high 28 

resolution studies of the dynamics of coronavirus RNA synthesis.  29 

Importance 30 

 Single cell RNA sequencing (scRNAseq) has emerged as a valuable tool to study 31 

host-viral interactions particularly in the context of COronaVIrus Disease-2019 (COVID-32 

19). scRNAseq has been developed and optimized for analyzing eukaryotic mRNAs, 33 

and the ability of scRNAseq to measure RNAs produced by Severe Acute Respiratory 34 

Syndrome Coronavirus 2 (SARS-CoV-2) has not been fully characterized. Here we 35 

compare the performance of different scRNAseq methods to detect and quantify SARS-36 

CoV-2 RNAs and develop an analysis workflow to specifically quantify unambiguous 37 

reads derived from SARS-CoV-2 genomic RNA and subgenomic mRNAs. Our work 38 

demonstrates the strengths and limitations of scRNAseq to measure SARS-CoV-2 RNA 39 

and identifies experimental and analytical approaches that allow for SARS-CoV-2 RNA 40 

detection and quantification. These developments will allow for studies of coronavirus 41 

RNA biogenesis at single-cell resolution to improve our understanding of viral 42 

pathogenesis. 43 

  44 
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Introduction 45 

Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is the 46 

causative agent of COronaVIrus Disease-2019 (COVID-19), which as of November 47 

2021 has caused over 250 million cases and over 5 million deaths globally(1, 2). Global 48 

efforts to understand the pathogenesis of SARS-CoV-2 infection have led to the 49 

development of vaccines and antivirals, which have reduced morbidity and mortality(3). 50 

“Omics” methods have been instrumental in studying SARS-CoV-2 in part because they 51 

have generated large amounts of data regarding host-viral interactions at 52 

unprecedented speed(4–15). Single-cell RNA sequencing (scRNAseq) studies in 53 

particular have been used to study viral tropism(16–22), peripheral immune 54 

changes(23–33), transcriptional changes induced by infection(34, 35), and to develop 55 

cell atlases of COVID-19 pathology(23, 24, 36, 37). Of note, most scRNAseq workflows 56 

have been developed and optimized for studies of eukaryotic transcription but not viral, 57 

specifically SARS-CoV-2, transcription. The performance of different scRNAseq 58 

methods to detect and quantify viral RNAs may impact the analysis and interpretation of 59 

such studies.  60 

 SARS-CoV-2 is a betacoronavirus with a 29 kB positive-sense, single stranded 61 

RNA genome(38, 39). SARS-CoV-2 generates genomic RNA (gRNA), subgenomic 62 

mRNAs (sgmRNAs), and negative-sense antigenomic RNA during active infection(40, 63 

41). Both gRNA and sgmRNAs are poly-adenylated, which enables detection by 64 

scRNAseq protocols that rely on poly-T primed reverse transcription(39–41). Translation 65 

of gRNA results in the production of one of two polyproteins, pp1a and pp1ab, which are 66 
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subsequently cleaved into an array of non-structural proteins involved in pathogenesis 67 

and replication(39, 41). Translation of sgmRNAs generates structural and accessory 68 

viral proteins critical for virion production and pathogenesis(39, 41). sgmRNAs are 69 

produced only in cells with actively replicating virus, while gRNA is present in both 70 

infected cells and virions(40, 41). Therefore, specific detection of sgmRNAs can allow 71 

for: 1) specific identification of cells with actively replicating virus and 2) analysis of the 72 

dynamics of viral gene expression within and across cells and viruses.  73 

 sgmRNAs are generated by discontinuous transcription events during negative 74 

strand synthesis(40). Transcription Regulatory Sequences (TRS), present in the 5′ 75 

leader sequence of the virus (TRS-L) and upstream of each ORF body (TRS-B), 76 

regulate this process(40). Template switching of the viral polymerase from a TRS-B to a 77 

TRS-L generates sgmRNAs with the 5′ leader sequence fused to the sgmRNA ORF 78 

body (Figure 1A)(40). These “nested” sgmRNAs share the viral ORF sequence 79 

downstream of the junction site in addition to a common leader sequence upstream of 80 

the junction site(40). This redundancy poses a challenge for standard scRNAseq data 81 

processing pipelines because reads mapping to redundant sgmRNA sequences are 82 

categorized as “ambiguous” and typically excluded from quantification. This problem 83 

has been addressed in bulk RNAseq by quantifying SARS-CoV-2 reads spanning 84 

leader-ORF junctions, which unambiguously identify sgmRNAs(12, 15). However, many 85 

scRNAseq methods do not sequence this region of sgmRNAs at significant coverage 86 

due to differences in library format and configuration of sequencing reads. 87 
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We hypothesized that both experimental (i.e. scRNAseq method) and data 88 

processing decisions influence the ability to detect, resolve, and quantify SARS-CoV-2 89 

RNA species with scRNAseq. We developed a data processing workflow, single cell 90 

coronavirus sequencing (scCoVseq), to quantify only unambiguous SARS-CoV-2 reads 91 

in scRNAseq data. We found that SARS-CoV-2 RNA detection differed by 10X 92 

Genomics Chromium scRNAseq method, due in part to ambiguity of the library 93 

fragments generated by each method. We show that 10X Chromium Next GEM Single 94 

Cell V(D)J (10X 5′) scRNAseq with an extended read 1 (R1) sequencing strategy 95 

maximized unambiguous SARS-CoV-2 reads and thereby increased detection of SARS-96 

CoV-2 RNAs. Using this method, we identify infected and uninfected “bystander” cells 97 

within the same culture and determine differentially expressed genes between infected, 98 

bystander, and mock cells.  99 

Materials and Methods 100 

Cell lines and Viral Infection 101 

Vero-E6 cells (ATCC, CRL-1586) were maintained in Dulbecco's Modified Eagle 102 

Medium (DMEM, Corning #10-017-CV) supplemented with 10% fetal-bovine serum 103 

(FBS) and 1% Penicillin Streptomycin (PSN, Fisher scientific #15-140-122), and 104 

routinely cultured at 37° C with 5% CO2.  105 

SARS-CoV-2 (isolate USA-WA1/2020, BEI resource NR-52281) and control media 106 

(mock infected) stocks were grown by inoculating a confluent T175 flask of Vero-E6 cells 107 

(passage 2). Mock and SARS-CoV-2 infected cultures were maintained in reduced serum 108 

DMEM (2% FBS) for 72 hours, after which culture media was collected and filtered by 109 
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centrifugation (8000 x g, 15 minutes) using an Amicon Ultra-15 filter unit with a 100KDa 110 

cutoff filter (Millipore # UFC910024). Concentrated stocks in reduced-serum media (2% 111 

FBS), supplemented with 50mM HEPES buffer (Gibco #15630080) were stored at -80°C. 112 

Viral titers were determined by plaque assay as previously described(42). All SARS-CoV-113 

2 propagations and experiments were performed in a Biosafety Level 3 facility in 114 

compliance with institutional protocols and federal guidelines. 115 

scRNAseq 116 

For scRNAseq experiments, Vero-E6 cells in 6 well plates were infected with 117 

SARS-CoV-2 at a MOI of 0.1, or with an equivalent volume of control media, in reduced-118 

serum media (2% FBS) for 24 hours. To prepare cells for scRNAseq, mock and SARS-119 

CoV-2 infected cultures were washed with calcium/magnesium-free PBS and 120 

disassociated using TrypLE (Gibco # 12605010, 5 minutes at 37° C), after which 121 

samples were centrifuged (200 x g, 5 minutes), resuspended in calcium/magnesium-122 

free PBS supplemented with 1% BSA, and counted. Mock and SARS-CoV-2 infected 123 

cell culture samples were filtered through a 40µm FlowMi strainer (ScienceWare # 124 

H13680-0040) and counted prior to loading on the 10X Genomics Chromium Controller 125 

according to manufacturer’s protocol. Mock and infected samples were loaded on 126 

separate lanes of a 10X Genomics Chromium Controller for either NextGEM Single Cell 127 

3′ v3.1 (10X 3′), or NextGEM Single Cell V(D)J v1.1, (10X 5′).  128 

Gene expression libraries were prepared for 10X 3′ and 5′ samples according to 129 

manufacturer’s guidelines. Final 10X 3′ mock and infected gene expression libraries 130 

and the 10X 5′ infected gene expression library were PCR amplified for 16 cycles while 131 
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the 10X 5′ mock gene expression library was amplified for 14 cycles. 10X 3′ gene 132 

expression libraries were pooled and sequenced by short-read sequencing on an 133 

Illumina NextSeq 500 using a high output 150 cycle reaction kit according to 134 

manufacturers’ protocol with the following read lengths: read 1 28 nt; i7 index 8 nt; and 135 

read 2 130 nt. 10X 5′ gene expression libraries were also pooled and sequenced with 136 

10X recommended read lengths (read 1 26 nt; i7 index 8 nt; and read 2 132 nt) or with 137 

extended R1 protocol (read 1 158 nt; i7 index 8 nt; no read 2). 138 

scRNAseq Pre-Processing 139 

Conversion of Illumina BCL files to fastq 140 

Fastq files for standard sequencing 3′ and 5′ gene expression libraries were 141 

generated using the mkfastq command in cellranger v.3.1.0 (10X Genomics). Fastq files 142 

for 5′ libraries sequenced with the extended R1 strategy were generated using bcl2fastq 143 

v2.20.0 (Illumina, Inc). Extended R1 fastqs were then separated into pseudo R1 fastqs, 144 

containing the cell barcode and UMI, and pseudo read 2 (R2) fastqs, containing cDNA 145 

sequence, using a customized Python/3.7.3 script (available at github link pending) as 146 

follows. The cell barcode and UMI are selected from the first 26 bp of R1. The 147 

subsequent 13 bp derive from the template switch oligonucleotide and are ignored. The 148 

remaining nucleotides (and corresponding quality scores) are reverse complemented 149 

and stored as pseudo R2. The read header of the pseudo R2 fastqs are modified to 150 

reflect the format for standard R2 fastqs.  151 

Downsampling fastqs to control for sequencing depth 152 
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To control for differences in sequencing depth for each library, read depth per 153 

library was downsampled to approximately 50,000 reads per cell. To generate a 154 

whitelist of cell barcodes for downsampling while accounting for transcriptional 155 

shutdown in SARS-CoV-2 infected cells (35), we generated preliminary gene x cell 156 

matrices for our dataset using cellranger/3.1.0 count (10X Genomics, Inc) to quantify 157 

and align reads to a host reference (African Green Monkey, ChlSab1.1) combined with 158 

SARS-CoV-2 transcripts as annotated by the NCBI SARS-CoV-2 reference 159 

(NC_045512.2) with modifications for USA/WA01 strain for each dataset. The resulting 160 

output was analyzed in R/4.0.4 with Seurat/4.0.1(43–45) to filter out putative doublets 161 

and empty droplets according to total UMIs/cell, number of genes/cell, and percent of 162 

mitochondrial gene expression. After filtering, putative cell-containing cell barcodes 163 

were output to a whitelist per library. Based on the these whitelists, the initial fastq files 164 

were downsampled using seqtk (version 1.2)(46) to a total read depth of 50,000 165 

multiplied by the number of cells in the library.  166 

Preparation of empirically derived SARS-CoV-2 genome reference 167 

Downsampled fastq files were then mapped using cellranger count/3.1.0 (10X 168 

Genomics, Inc) to an empirically defined reference of SARS-CoV-2 sgmRNAs derived 169 

from previously reported SARS-CoV-2 (BetaCoV/Korea/KCDC03/2020) RNAs 170 

sequenced with long-read direct RNA Nanopore sequencing(12). These were 171 

downloaded from the UCSC Genome Browser Table Browser(47) after filtering for TRS-172 

dependent transcripts and score > 900 and exporting to gtf format. Transcripts for 173 

previously unknown ORFs were excluded from the annotation. An additional annotation 174 
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for genomic RNA was included which covered the entire length of the SARS-CoV-2 175 

genome. Aligning the BetaCoV/Korea/KCDC03/2020 genome with USA/WA-CDC-176 

WA1/2020 genome showed that the USA/WA-CDC-WA1/2020 had an additional 21 3′ 177 

adenosine nucleotides annotated. To account for this in our reference, we extended any 178 

annotations from BetaCoV/Korea/KCDC03/2020 that ended at the 3′ end of the genome 179 

by an additional 21 bases. This SARS-CoV-2 reference was appended to the host 180 

ChlSab1.1 Ensembl reference. 181 

scCoVseq 182 

To unambiguously assign and quantify scRNAseq reads to SARS-CoV-2 RNAs, 183 

the cellranger output BAM was filtered for reads mapping to SARS-CoV-2 or ChlSab1.1 184 

references using samtools (version 1.11)(48). SARS-CoV-2 aligned reads were then 185 

subset to likely genomic RNA reads or sgmRNA reads. Genomic reads were defined as 186 

those containing no gaps in their alignment and mapping upstream of the start of the 187 

most 5′ sgmRNA, S. sgmRNA reads were defined as SARS-CoV-2 reads containing a 188 

gap and mapping in part to the 5′ leader sequence, defined as the 5′ proximal 80 189 

nucleotides of the SARS-CoV-2 genome, and in part 3′ to the start of S. All other reads 190 

mapping to the SARS-CoV-2 genome were discarded. Reads passing these filtering 191 

steps were quantified with umi_tools (version 1.0.0)(49). An R/3.5.3 script using the 192 

Matrix (version 1.2-18)(50) and readr (version 1.3.1)(51) packages was used to convert 193 

this to a sparse matrix and save as an rds file to decrease file size. UMIs that were 194 

assigned to multiple genes were removed from the resulting matrix during analysis.  195 
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scRNAseq Analysis 196 

Sashimi Plots 197 

 Reads from 10X 3′, 10X 5′, and 10X 5′ extended R1 data that were aligned to 198 

the SARS-CoV-2 reference by cellranger were subset from the cellranger output BAM 199 

file. Each BAM file was downsampled to approximately 1 x 106 reads to control for 200 

differences in sequencing depth across libraries. Sashimi plots were generated with 201 

ggsashimi (version 1.0.0)(52).  202 

Classification of SARS-CoV-2 Infected Cells 203 

 scCoVseq-derived gene by cell matrices were loaded into R/4.0.4 and analyzed 204 

with the Seurat/4.0.1(43–45) package. For each 10X method, mock and infected gene x 205 

cell matrices were merged with the Seurat merge command. Scaled SARS-CoV-2 UMI 206 

expression of 600 sampled cells were clustered with five methods (k means clustering, 207 

hierarchical/Ward clustering, DIANA, mixture model-based clustering, and k medoids 208 

clustering) using the clValid (version 0.7) package(53). Based on optimal performance 209 

as measured by average distance, average distance between means, average 210 

proportion of non-overlap, connectivity, Dunn index, figure of merit, and silhouette width, 211 

k-medoids clustering implemented with the PAM algorithm and k set to 2 optimally 212 

separated infected from uninfected cells. Therefore to identify infected and bystander 213 

cells within SARS-CoV-2 treated cultures, euclidean distance between the z-scaled 214 

expression of SARS-CoV-2 sgmRNA UMIs per cell was clustered using pam (k = 2) 215 

implemented in the cluster (version 2.1.2) package(54). Output clusters were then 216 
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compared for viral UMI expression per cell, and the cluster with more viral UMIs was 217 

classified as infected and the other as uninfected. 218 

Comparison of SARS-CoV-2 RNA UMIs per scRNAseq Method 219 

 To examine the distribution of SARS-CoV-2 UMIs per cell by scRNAseq method, 220 

the 25th percentile of total UMIs was quantified for all infected cells from each 10X 221 

method. Any cells with fewer UMIs than the minimum 25th percentile of all samples were 222 

discarded, and all cells were subsequently downsampled to this same number of total 223 

UMIs/cell using the Seurat SampleUMI command. Each dataset was randomly 224 

downsampled to the same number of infected cells to equalize for differences in cell 225 

numbers, and viral sgmRNA UMIs/cell were plotted by scRNAseq method.  226 

SARS-CoV-2 Read Distribution by scRNAseq Method 227 

 SARS-CoV-2 reads were defined as genomic or subgenomic using scCoVseq. 228 

Reads aligning to the SARS-CoV-2 reference that were excluded from scCoVseq were 229 

classified as ambiguous. The number of genomic, subgenomic, or ambiguous reads per 230 

million SARS-CoV-2 reads was calculated and plotted for each scRNAseq method. 231 

Differential Expression Analysis 232 

 To explore expression differences between infected, bystander, and mock cells, 233 

differential expression testing with edgeR (version 3.32.1) was performed with 234 

modifications for scRNAseq as previously described(55, 56). Viral genes were excluded 235 

from analysis, and only host genes expressed in at least 10% of cells were tested. To 236 

account for differences in RNA content of infected cells due to virally-induced 237 

transcriptional shutdown, all cells were downsampled to the 25th percentile of total UMIs 238 
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of infected cells. Cells with fewer UMIs than the threshold were excluded from analysis. 239 

Differential gene expression was performed with edgeR using a generalized linear 240 

model quasi-likelihood F test adapted with a term for gene detection rate(55, 56). Genes 241 

with an absolute log2 fold change greater than or equal to 1 and false discovery rate 242 

less than 0.05 were considered significant. For KEGG enrichment analysis, pairwise 243 

tests between mock, bystander, and infected cells were performed. Differentially 244 

expressed genes with an absolute log2 fold change greater than or equal to 1 and false 245 

discovery rate less than 0.05 were considered significant and subject to KEGG 246 

enrichment analysis using the KEGG annotations for African Green Monkey as 247 

implemented in the edgeR function kegga.  248 

Quantification of SARS-CoV-2 sgmRNA Junction Sites 249 

 We explored the ability of our extended R1 sequencing to detect SARS-CoV-2 250 

sgmRNA junctions using STARsolo (version 2.7.8a)(57). Aligned reads were re-mapped 251 

to the empirical SARS-CoV-2 annotation described above and junction sites per cell 252 

were quantified. The resulting junction per cell matrix was plotted in R/v4.0.4. 253 

Flow Cytometry 254 

Vero E6 cells were fixed with 4% paraformaldehyde at room temperature for a 255 

minimum of 24 hours, washed once with PBS and permeabilized with 1X perm-wash 256 

buffer (BDBiosciences #554723) for 5 minutes. SARS-CoV nucleocapsid (N) antibody 257 

(clone 1C7C7) (kindly provided by Thomas Moran, Icahn School of Medicine at Mount 258 

Sinai, New York, NY), conjugated to AlexaFluor 647 was diluted 1:400 in perm-wash 259 

buffer, and added directly to samples. Samples were then incubated at room 260 
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temperature for 40 minutes in the dark. After staining, samples were washed once with 261 

1X perm-wash buffer, once with PBS, resuspended in FACS buffer (PBS supplemented 262 

with 1% FBS), and acquired on a Gallios flow cytometer (Beckman-Coulter). For all viral 263 

infections, analysis was performed with FlowJo software (version 10.7.1, Becton 264 

Dickinson), excluding cell doublets and debris and gating according to mock infected 265 

populations. 266 

Immunofluorescence microscopy 267 

Vero E6 were seeded in 6-well plates (Falcon REF-353046) with one coverslip (Fisher 268 

Scientific 12-550-143) per well. After 24 hours post infection, cells were washed with 269 

PBS and fixed with 4% paraformaldehyde (Fisher Scientific AA433689M) overnight. 270 

Fixed cells were permeabilized using 0.1% Triton-X (Fisher Scientific AC327371000) in 271 

PBS and blocked with 4% bovine serum albumin (BSA, Fisher Scientific BP1600-100) in 272 

PBS. Blocked coverslips were incubated with mouse anti-SARS-CoV N antibody (clone 273 

1C7, 1:500 in 4% BSA PBS) overnight at 4C, washed three times with PBS, and 274 

incubated for 45 minutes with 1:500 AlexaFluor 488-conjugated anti-mouse (Invitrogen 275 

A11001, 1:500 in 4% BSA PBS) plus DAPI (Thermo Fisher Scientific D1306, 1:1000 in 276 

4% BSA PBS) at room temperature. Coverslips were then stained with phalloidin (1:400 277 

in PBS) for 1 hour at room temperature and washed again three times with PBS. 278 

Coverslips were mounted using Prolong Diamond (Life Technologies P36970). Confocal 279 

laser scanning was performed using a Leica SP5 DMI (ISMMS Microscopy CoRE and 280 

Advanced Bioimaging Center) with a ×40/1.25 oil objective. Images were collected at a 281 
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resolution of 512 × 512 pixels in triplicate per slide. Images were processed and 282 

analyzed using LAS X and CellProfiler v4(58).  283 

Data Availability 284 

 Raw and processed scRNAseq data are available at (GEO accession number 285 

pending) and code is available at (github pending). 286 

Results 287 

SARS-CoV-2 generates gRNA and sgmRNAs during infection, which are highly 288 

redundant in their sequences (Figure 1A). Reads mapping to redundant sequences are 289 

assigned to all genes which contain that sequence and are typically excluded from 290 

quantification steps in scRNAseq processing pipelines. We therefore identified read 291 

structures which could unambiguously identify gRNA or different species of sgmRNAs 292 

to allow for their quantification (Figure 1B). Reads derived from gRNA should be 293 

contiguous and could map anywhere on the SARS-CoV-2 genome. Reads derived from 294 

sgmRNA could be either gapped or contiguous and could map to the 5′ leader and/or 295 

downstream of the start site of S, the most 5′ sgmRNA. Because contiguous reads 296 

mapping downstream of S could derive either from gRNA or sgmRNAs, they were 297 

excluded from quantification. Only reads aligning in part to the 5′ leader and in part 298 

downstream of S could be confidently derived from sgmRNAs. We therefore defined 299 

gRNA reads as contiguous reads aligning upstream of regions contained in sgmRNAs. 300 

sgmRNA reads were defined as discontinuous reads spanning the leader region and 301 

regions used by sgmRNAs. Reads that did not match either of these formats could not 302 

unambiguously be assigned to gRNA or an sgmRNA and were therefore excluded from 303 
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quantification (Figure 1B). With this framework, we developed scCoVseq to quantify 304 

unambiguous genomic and subgenomic viral reads (Figure 1C). Using scCoVseq, we 305 

compared the abilities of different scRNAseq methods to quantify SARS-CoV-2 RNAs. 306 

 In the widely available Chromium scRNAseq method developed by 10X 307 

Genomics, Inc, there are two formats for droplet-based scRNAseq: 10X 3′ and 10X 5′. 308 

10X 3′ generates library fragments derived from the 3′ regions of poly-adenylated RNAs 309 

within a cell (Figure 2A). Because sgmRNAs share all viral sequence 3′ of the leader-310 

body junction site, 10X 3′ library fragments derived from SARS-CoV-2 heavily cover the 311 

3′ end of the viral genome and do not contain leader-ORF junctions (Figure 2D). These 312 

reads cannot differentiate gRNA from sgmRNA or distinguish different sgmRNA 313 

species. 10X 5′ generates library fragments from the 5′ termini of poly-adenylated 314 

RNAs (Figure 2B). These fragments are on average approximately 500 bp long 315 

(according to the manufacturer’s documentation) and should contain leader-ORF 316 

junctions of SARS-CoV-2 sgmRNAs. The transcript read (R2), however, derives from 317 

the 3′ end of these fragments and at the recommended read length of 91 bases is not 318 

long enough to consistently sequence into the leader-sgmRNA junction site (Figure 319 

2B). 10X 5′ can therefore detect some but not all junctions (Figure 2E). We reasoned 320 

that we could use 10X 5′ library fragments to detect junction-spanning reads by 321 

sequencing from the 5′ end of the fragment. To do this we extended R1, which is 322 

normally used to sequence the cell barcode and UMI, to sequence into the leader-body 323 

junction site (Figure 2C). Using 10X 5′ with Extended R1, we were able to sequence 324 

more leader-sgmRNA junction sites and increase our ability to unambiguously quantify 325 
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sgmRNAs (Figure 2F). Indeed 10X 5′ Extended R1 increased the number of leader-326 

sgmRNA spanning reads over 10X 5′ and 10X 3′ (Figure 2G). When quantified with 327 

scCoVseq, we found that 10X 5′ Extended R1 quantifies more UMIs per sgmRNA per 328 

cell compared to 10X 5′ or 10X 3′ (Figure 2H). Importantly, the average host gene 329 

expression per sample was significantly correlated across methods, suggesting that 330 

host gene measurements were minimally affected by 10X 5′ Extended R1 331 

(Supplemental Figure 1). Taken together, 10X 5′ libraries sequenced with extended 332 

R1 sequencing results in a greater number of unambiguous reads derived from 333 

sgmRNAs over 10X 3′ or 10X 5′, and consequently recovers more sgmRNA UMIs/cell. 334 

 Using this method, we analyzed Vero E6 cells 24 hours post infection with 335 

SARS-CoV-2 at an MOI of 0.1 (Figure 3A). We were able to quantify sgmRNAs and 336 

gRNA at single-cell resolution (Figure 3B). Using expression values for sgmRNAs, we 337 

compared multiple unsupervised methods to identify infected cells. We found that a k-338 

medoid clustering approach implemented with the pam algorithm performed best as 339 

indicated by multiple metrics to separate infected from uninfected cells (Supplemental 340 

Figure 2A-C). We found that this classification method detected a similar percentage of 341 

infected cells as detected using flow cytometry and immunofluorescence microscopy of 342 

the same cultures (Supplemental Figure 2D). Using our infection classification, we 343 

performed differential expression testing of infected cells compared to bystander cells 344 

within the same culture as well as to cells from a mock culture. As previously 345 

described(35), we observed downregulation of many host genes in infected cells 346 

accompanied by an upregulation of cellular stress response genes (Figure 3D, E).  We 347 
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further observed that, while bystander and mock cells had similar gene expression, a 348 

small number of genes were upregulated in bystander cells compared to mock cells 349 

(Figure 3D, E). This is especially notable given the inability of Vero E6 cells to produce 350 

interferons in response to viral infection (59). KEGG enrichment analysis of differentially 351 

expressed genes in pairwise comparisons of infected, mock, and bystander cells 352 

showed that genes related to COVID19 were enriched in our infected cells supporting 353 

our method for infection classification (Figure 3F). 354 

Discussion 355 

 In this study, we examined the ability of two commonly used scRNAseq methods, 356 

10X 3′ and 10X 5′, to detect and quantify SARS-CoV-2 derived RNAs with a focus on 357 

sgmRNAs. Because of the redundant nature of coronavirus sgmRNA sequences, we 358 

developed scCoVseq, which unambiguously quantifies both sgmRNAs and gRNAs in 359 

10X data. We found that 10X methods detect unambiguous leader-sgmRNA junction-360 

spanning reads to different degrees. We were able to increase the detection of leader-361 

sgmRNA junction-spanning reads by extending the length of R1 during sequencing of 362 

10X 5′ libraries, an approach we term 10X 5′ Extended R1 sequencing. Combining 10X 363 

5′ Extended R1 with scCoVseq maximized quantification of sgmRNA UMIs compared to 364 

10X 5′ or 10X 3′. 365 

 The ability to use sgmRNA expression to identify cells with actively replicating 366 

virus may improve the utility of scRNAseq in studies of coronavirus tropism. A challenge 367 

in many scRNAseq studies, particularly studies of primary tissues, has been identifying 368 

cells with active infection as opposed to cells with large amounts of ambient or 369 
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extracellular viral RNA (such as phagocytic cells and/or cells not supporting active 370 

infection)(16). Because sgmRNAs are produced only during viral replication and are 371 

absent from virions, our method allows us to distinguish between infected and 372 

uninfected cells associated with “background” viral RNA (Supplemental Figure 2C). In 373 

downstream analyses of host transcriptomic changes induced by infection, accurate 374 

classification of infected cells is important for robust analyses of transcriptional 375 

differences between infected and uninfected cells because incorrect classifications may 376 

dilute effect sizes and resultant significance values. This method also enables the 377 

comparison of sgmRNA expression dynamics at single cell resolution. Such analyses 378 

may be particularly relevant for comparing viral gene expression between different cell 379 

types, coronaviruses, or between SARS-CoV-2 variants of interest, which have been 380 

described to have different kinetics of sgmRNA expression(60). This approach could be 381 

extended to any coronavirus or nidovirus, including potentially novel emerging 382 

coronaviruses. Finally, scCoVseq can be used to examine differential junction site 383 

usage within single cells (Supplemental Figure 3).  Several groups have identified 384 

TRS-independent SARS-CoV-2 sgmRNAs(12, 13, 15), the significance of which 385 

remains unknown. It is possible that changes in junction site usage between cell types 386 

or during the course of infection may play a role in pathogenesis.  387 

 It should be noted that there are some limitations to our study. With our dataset, 388 

we are unable to know the true infection state of a cell processed for scRNAseq, and 389 

therefore we cannot assess the true accuracy of our method to classify infected cells. 390 

An additional limitation of our method is that quantification of viral genes with scCoVseq 391 
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is dependent on accurate annotation of viral RNAs. We derived our annotation based on 392 

published empirically-defined TRS-dependent RNAs(12), but this does not preclude the 393 

existence of other viral RNAs at time points or in cell types not studied. Importantly, we 394 

explicitly exclude TRS-independent RNAs from our analyses. Methods such as 395 

STARsolo(57) or sequencing 10X libraries with long-read sequencing(61) may allow for 396 

detection and quantification of viral RNAs without reference annotation and irrespective 397 

of TRSs.  398 

Acknowledgments 399 

 This work was supported in part by NIH grants R21 AI149180, R01 AI151029, 400 

and U01 AI150748. P.C. was supported by the Mount Sinai Medical Scientist Training 401 

Program T32 GM007280. P.C, R.S.P., and E.J.D. were supported by the Viral Host 402 

Pathogenesis Training Grant T32 AI07647. 403 

We thank Randy Albrecht for BSL3 facility management and support. We also 404 

thank Thomas Moran, Center for Therapeutic Antibody Discovery at the Icahn School of 405 

Medicine at Mount Sinai, for kindly providing anti-SARS-CoV N antibody. We thank 406 

Michael A Schotsaert for flow cytometry support. This work was supported in part 407 

through the computational resources and staff expertise provided by Scientific 408 

Computing at the Icahn School of Medicine at Mount Sinai. Research reported in this 409 

paper was supported by the Office of Research Infrastructure of the National Institutes 410 

of Health under award number S10OD026880. The content is solely the responsibility of 411 

the authors and does not necessarily represent the official views of the National 412 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Institutes of Health. Microscopy was performed at the Microscopy CoRE at the Icahn 413 

School of Medicine at Mount Sinai.  414 

Author Contributions 415 

Conceptualization: P.C., B.R.R. 416 

Data Curation: P.C., B.R.R. 417 

Formal Analysis: P.C., B.R.R. 418 

Funding Acquisition: B.R.R. 419 

Investigation: P.C., E.J.D., O.D. 420 

Methodology: P.C., B.R.R. 421 

Project Administration: B.R.R. 422 

Software: P.C., R.S.P., B.R.R. 423 

Supervision: B.R.R. 424 

Validation: P.C., R.S.P., E.J.D., O.D. 425 

Visualization: P.C., B.R.R. 426 

Writing – original draft: P.C., B.R.R. 427 

Writing – review & editing: P.C., E.J.D., O.D., R.S.P., B.R.R. 428 

  429 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

References 430 

1.  Dong E, Du H, Gardner L. 2020. An interactive web-based dashboard to track 431 

COVID-19 in real time. Lancet Infect Dis 20:533–534. 432 

2.  Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, 433 

Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, Investigating CNC, 434 

Team R. 2020. A novel coronavirus from patients with pneumonia in china, 2019. N 435 

Engl J Med 382:727–733. 436 

3.  Carvalho T, Krammer F, Iwasaki A. 2021. The first 12 months of COVID-19: a 437 

timeline of immunological insights. 4. Nat Rev Immunol 21:245–256. 438 

4.  Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ, 439 

Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Huettenhain R, Kaake RM, Richards 440 

AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, 441 

Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir 442 

M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno 443 

E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, 444 

Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, 445 

Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, 446 

Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang X-P, Liu 447 

Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, 448 

Shengjuler D, Fletcher SJ, O’Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, 449 

Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu D, Wang H-Y, Trenker R, Young 450 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, 451 

Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, 452 

Jura N, von Zastrow M, Verdin E, Ashworth A, Schwartz O, d’Enfert C, Mukherjee 453 

S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor SN, Fraser JS, 454 

Gross JD, Sali A, Roth BL, Ruggero D, Taunton J, Kortemme T, Beltrao P, 455 

Vignuzzi M, García-Sastre A, Shokat KM, Shoichet BK, Krogan NJ. 2020. A SARS-456 

CoV-2 protein interaction map reveals targets for drug repurposing. Nature 457 

https://doi.org/10.1038/s41586-020-2286-9. 458 

5.  Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C, Quan S, Zhang F, Sun R, Qian L, Ge W, 459 

Liu W, Liang S, Chen H, Zhang Y, Li J, Xu J, He Z, Chen B, Wang J, Yan H, Zheng 460 

Y, Wang D, Zhu J, Kong Z, Kang Z, Liang X, Ding X, Ruan G, Xiang N, Cai X, Gao 461 

H, Li L, Li S, Xiao Q, Lu T, Zhu Y, Liu H, Chen H, Guo T. 2020. Proteomic and 462 

metabolomic characterization of COVID-19 patient sera. Cell 463 

https://doi.org/10.1016/j.cell.2020.05.032. 464 

6.  Bojkova D, Klann K, Koch B, Widera M, Krause D, Ciesek S, Cinatl J, Münch C. 465 

2020. SARS-CoV-2 infected host cell proteomics reveal potential therapy targets 466 

https://doi.org/10.21203/rs.3.rs-17218/v1. 467 

7.  Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-468 

Ronen Y, Tamir H, Achdout H, Stein D, Israeli O, Beth-Din A, Melamed S, Weiss S, 469 

Israely T, Paran N, Schwartz M, Stern-Ginossar N. 2020. The coding capacity of 470 

SARS-CoV-2. Nature 1–9. 471 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

8.  Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Marrero MC, Polacco BJ, 472 

Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, 473 

Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran 474 

QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, 475 

Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, 476 

Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang 477 

G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, 478 

Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O’Neal MC, Cai Y, Chang 479 

JCJ, Broadhurst DJ, Klippsten S, Wit ED, Leach AR, Kortemme T, Shoichet B, Ott 480 

M, Saez-Rodriguez J, tenOever BR, Mullins D, Fischer ER, Kochs G, Grosse R, 481 

García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, 482 

Krogan NJ. 2020. The Global Phosphorylation Landscape of SARS-CoV-2 483 

Infection. Cell 0. 484 

9.  Schmidt N, Lareau CA, Keshishian H, Ganskih S, Schneider C, Hennig T, Melanson 485 

R, Werner S, Wei Y, Zimmer M, Ade J, Kirschner L, Zielinski S, Dölken L, Lander 486 

ES, Caliskan N, Fischer U, Vogel J, Carr SA, Bodem J, Munschauer M. 2021. The 487 

SARS-CoV-2 RNA–protein interactome in infected human cells. 3. Nat Microbiol 488 

6:339–353. 489 

10.  Flynn RA, Belk JA, Qi Y, Yasumoto Y, Wei J, Alfajaro MM, Shi Q, Mumbach MR, 490 

Limaye A, DeWeirdt PC, Schmitz CO, Parker KR, Woo E, Chang HY, Horvath TL, 491 

Carette JE, Bertozzi CR, Wilen CB, Satpathy AT. 2021. Discovery and functional 492 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

interrogation of SARS-CoV-2 RNA-host protein interactions. Cell 184:2394-493 

2411.e16. 494 

11.  Blanco - Melo D. 2020. Imbalanced host response to SARS - CoV - 2 drives 495 

development of COVID - 19. Cell. 496 

12.  Kim D, Lee J-Y, Yang J-S, Kim JW, Kim VN, Chang H. 2020. The architecture of 497 

SARS-CoV-2 transcriptome. Cell 181:914-921.e10. 498 

13.  Wang D, Jiang A, Feng J, Li G, Guo D, Sajid M, Wu K, Zhang Q, Ponty Y, Will S, 499 

Liu F, Yu X, Li S, Liu Q, Yang X-L, Guo M, Li X, Chen M, Shi Z-L, Lan K, Chen Y, 500 

Zhou Y. 2021. The SARS-CoV-2 Subgenome Landscape and its Novel Regulatory 501 

Features. Mol Cell 0. 502 

14.  Ziv O, Price J, Shalamova L, Kamenova T, Goodfellow I, Weber F, Miska EA. 503 

2020. The short- and long-range RNA-RNA Interactome of SARS-CoV-2. Mol Cell 504 

https://doi.org/10.1016/j.molcel.2020.11.004. 505 

15.  Chang JJ-Y, Rawlinson D, Pitt ME, Taiaroa G, Gleeson J, Zhou C, Mordant FL, 506 

Paoli-Iseppi RD, Caly L, Purcell DFJ, Stinear TP, Londrigan SL, Clark MB, 507 

Williamson DA, Subbarao K, Coin LJM. 2021. Transcriptional and epi-508 

transcriptional dynamics of SARS-CoV-2 during cellular infection. Cell Rep 0. 509 

16.  Bost P, Giladi A, Liu Y, Bendjelal Y, Xu G, David E, Blecher-Gonen R, Cohen M, 510 

Medaglia C, Li H, Deczkowska A, Zhang S, Schwikowski B, Zhang Z, Amit I. 2020. 511 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

Host-viral infection maps reveal signatures of severe COVID-19 patients. Cell 512 

https://doi.org/10.1016/j.cell.2020.05.006. 513 

17.  Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, Talavera-514 

López C, Maatz H, Reichart D, Sampaziotis F, Worlock KB, Yoshida M, Barnes JL, 515 

Network HLB. 2020. SARS-CoV-2 entry factors are highly expressed in nasal 516 

epithelial cells together with innate immune genes. Nat Med 26:681–687. 517 

18.  Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, Winter H, 518 

Meister M, Veith C, Boots AW, Hennig BP, Kreuter M, Conrad C, Eils R. 2020. 519 

SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial 520 

transient secretory cells. EMBO J 39:e105114. 521 

19.  Fodoulian L, Tuberosa J, Rossier D, Landis B, Carleton A, Rodriguez I. 2020. 522 

SARS-CoV-2 receptor and entry genes are expressed by sustentacular cells in the 523 

human olfactory neuroepithelium. BioRxiv 524 

https://doi.org/10.1101/2020.03.31.013268. 525 

20.  Qi F, Qian S, Zhang S, Zhang Z. 2020. Single cell RNA sequencing of 13 human 526 

tissues identify cell types and receptors of human coronaviruses. Biochem Biophys 527 

Res Commun 526:135–140. 528 

21.  Ravindra NG, Alfajaro MM, Gasque V, Wei J, Filler RB, Huston NC, Wan H, 529 

Szigeti-Buck K, Wang B, Montgomery RR, Eisenbarth SC, Williams A, Pyle AM, 530 

Iwasaki A, Horvath TL, Foxman EF, van Dijk D, Wilen CB. 2020. Single-cell 531 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

longitudinal analysis of SARS-CoV-2 infection in human bronchial epithelial cells. 532 

BioRxiv https://doi.org/10.1101/2020.05.06.081695. 533 

22.   Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and 534 

demographics | Nature Medicine. 535 

23.  Bieberich F, Vazquez-Lombardi R, Yermanos A, Ehling RA, Mason DM, Wagner B, 536 

Kapetanovic E, Roberto RBD, Weber CR, Savic M, Rudolf F, Reddy ST. 2021. A 537 

single-cell atlas of lymphocyte adaptive immune repertoires and transcriptomes 538 

reveals age-related differences in convalescent COVID-19 patients. bioRxiv 539 

2021.02.12.430907. 540 

24.  Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martínez-Colón GJ, McKechnie JL, Ivison 541 

GT, Ranganath T, Vergara R, Hollis T, Simpson LJ, Grant P, Subramanian A, 542 

Rogers AJ, Blish CA. 2020. A single-cell atlas of the peripheral immune response 543 

in patients with severe COVID-19. 7. Nat Med 26:1070–1076. 544 

25.  Yao C, Bora SA, Parimon T, Zaman T, Friedman OA, Palatinus JA, Surapaneni 545 

NS, Matusov YP, Chiang GC, Kassar AG, Patel N, Green CER, Aziz AW, Suri H, 546 

Suda J, Lopez AA, Martins GA, Stripp BR, Gharib SA, Goodridge HS, Chen P. 547 

2021. Cell-Type-Specific Immune Dysregulation in Severely Ill COVID-19 Patients. 548 

Cell Rep 34. 549 

26.  MacDonald L, Otto TD, Elmesmari A, Tolusso B, Somma D, McSharry C, Gremese 550 

E, McInnes IB, Alivernini S, Kurowska-Stolarska M. 2020. COVID-19 and 551 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

Rheumatoid Arthritis share myeloid pathogenic and resolving pathways. bioRxiv 552 

2020.07.26.221572. 553 

27.  Schreibing F, Hannani M, Ticconi F, Fewings E, Nagai JS, Begemann M, Kuppe C, 554 

Kurth I, Kranz J, Frank D, Anslinger TM, Ziegler P, Kraus T, Enczmann J, Balz V, 555 

Windhofer F, Balfanz P, Kurts C, Marx G, Marx N, Dreher M, Schneider RK, Saez-556 

Rodriguez J, Filho IGC, Kramann R. 2021. Dissecting CD8+ T cell pathology of 557 

severe SARS-CoV-2 infection by single-cell epitope mapping. bioRxiv 558 

2021.03.03.432690. 559 

28.  Wen W, Su W, Tang H, Le W, Zhang X, Zheng Y, Liu X, Xie L, Li J, Ye J, Dong L, 560 

Cui X, Miao Y, Wang D, Dong J, Xiao C, Chen W, Wang H. 2020. Immune cell 561 

profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell 562 

Discov 6:31. 563 

29.  Lee JS, Park S, Jeong HW, Ahn JY, Choi SJ, Lee H, Choi B, Nam SK, Sa M, Kwon 564 

J-S, Jeong SJ, Lee HK, Park SH, Park S-H, Choi JY, Kim S-H, Jung I, Shin E-C. 565 

2020. Immunophenotyping of COVID-19 and influenza highlights the role of type I 566 

interferons in development of severe COVID-19. Sci Immunol 5. 567 

30.  Wang F-S, Zhang J-Y, Wang X, Xing X, Xu Z, Zhang C, Song J-W, Fan X, Xia P, 568 

Fu J-L, Wang S-Y, Xu R-N, Dai X-P, Shi L, Huang L, Jiang T-J, Shi M, Zhang Y, 569 

Zumla A, Maeurer M, Bai F. 2020. Single-cell landscape of immunological 570 

responses in COVID-19 patients. bioRxiv 2020.07.23.217703. 571 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

31.  Zhang J-Y, Wang X-M, Xing X, Xu Z, Zhang C, Song J-W, Fan X, Xia P, Fu J-L, 572 

Wang S-Y, Xu R-N, Dai X-P, Shi L, Huang L, Jiang T-J, Shi M, Zhang Y, Zumla A, 573 

Maeurer M, Bai F, Wang F-S. 2020. Single-cell landscape of immunological 574 

responses in patients with COVID-19. 9. Nat Immunol 21:1107–1118. 575 

32.  Kalfaoglu B, Almeida-Santos J, Tye CA, Satou Y, Ono M. 2020. T-cell 576 

hyperactivation and paralysis in severe COVID-19 infection revealed by single-cell 577 

analysis. BioRxiv https://doi.org/10.1101/2020.05.26.115923. 578 

33.  Wei L, Ming S, Zou B, Wu Y, Hong Z, Li Z, Zheng X, Huang M, Luo L, Liang J, Wen 579 

X, Chen T, Liang Q, Kuang L, Shan H, Huang X. 2020. Viral invasion and type I 580 

interferon response characterize the immunophenotypes during COVID-19 581 

infection. Electron J https://doi.org/10.2139/ssrn.3555695. 582 

34.  Wyler E, Mösbauer K, Franke V, Diag A, Gottula LT, Arsie R, Klironomos F, 583 

Koppstein D, Ayoub S, Buccitelli C, Richter A, Legnini I, Ivanov A, Mari T, Del 584 

Giudice S, Papies JP, Müller MA, Niemeyer D, Selbach M, Akalin A, Rajewsky N, 585 

Drosten C, Landthaler M. 2020. Bulk and single-cell gene expression profiling of 586 

SARS-CoV-2 infected human cell lines identifies molecular targets for therapeutic 587 

intervention. BioRxiv https://doi.org/10.1101/2020.05.05.079194. 588 

35.  Miorin L, Kehrer T, Sanchez-Aparicio MT, Zhang K, Cohen P, Patel RS, Cupic A, 589 

Makio T, Mei M, Moreno E, Danziger O, White KM, Rathnasinghe R, Uccellini M, 590 

Gao S, Aydillo T, Mena I, Yin X, Martin-Sancho L, Krogan NJ, Chanda SK, 591 

Schotsaert M, Wozniak RW, Ren Y, Rosenberg BR, Fontoura BMA, García-Sastre 592 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

A. 2020. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and 593 

antagonize interferon signaling. Proc Natl Acad Sci 117:28344–28354. 594 

36.  Melms JC, Biermann J, Huang H, Wang Y, Nair A, Tagore S, Katsyv I, Rendeiro 595 

AF, Amin AD, Schapiro D, Frangieh CJ, Luoma AM, Filliol A, Fang Y, 596 

Ravichandran H, Clausi MG, Alba GA, Rogava M, Chen SW, Ho P, Montoro DT, 597 

Kornberg AE, Han AS, Bakhoum MF, Anandasabapathy N, Suárez-Fariñas M, 598 

Bakhoum SF, Bram Y, Borczuk A, Guo XV, Lefkowitch JH, Marboe C, Lagana SM, 599 

Del Portillo A, Zorn E, Markowitz GS, Schwabe RF, Schwartz RE, Elemento O, 600 

Saqi A, Hibshoosh H, Que J, Izar B. 2021. A molecular single-cell lung atlas of 601 

lethal COVID-19. Nature 1–6. 602 

37.  Delorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y, Segerstolpe Å, 603 

Abbondanza D, Fleming SJ, Subramanian A, Montoro DT, Jagadeesh KA, Dey KK, 604 

Sen P, Slyper M, Pita-Juárez YH, Phillips D, Biermann J, Bloom-Ackermann Z, 605 

Barkas N, Ganna A, Gomez J, Melms JC, Katsyv I, Normandin E, Naderi P, Popov 606 

YV, Raju SS, Niezen S, Tsai LT-Y, Siddle KJ, Sud M, Tran VM, Vellarikkal SK, 607 

Wang Y, Amir-Zilberstein L, Atri DS, Beechem J, Brook OR, Chen J, Divakar P, 608 

Dorceus P, Engreitz JM, Essene A, Fitzgerald DM, Fropf R, Gazal S, Gould J, 609 

Grzyb J, Harvey T, Hecht J, Hether T, Jané-Valbuena J, Leney-Greene M, Ma H, 610 

McCabe C, McLoughlin DE, Miller EM, Muus C, Niemi M, Padera R, Pan L, Pant D, 611 

Pe’er C, Pfiffner-Borges J, Pinto CJ, Plaisted J, Reeves J, Ross M, Rudy M, 612 

Rueckert EH, Siciliano M, Sturm A, Todres E, Waghray A, Warren S, Zhang S, 613 

Zollinger DR, Cosimi L, Gupta RM, Hacohen N, Hibshoosh H, Hide W, Price AL, 614 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

Rajagopal J, Tata PR, Riedel S, Szabo G, Tickle TL, Ellinor PT, Hung D, Sabeti 615 

PC, Novak R, Rogers R, Ingber DE, Jiang ZG, Juric D, Babadi M, Farhi SL, Izar B, 616 

Stone JR, Vlachos IS, Solomon IH, Ashenberg O, Porter CBM, Li B, Shalek AK, 617 

Villani A-C, Rozenblatt-Rosen O, Regev A. 2021. COVID-19 tissue atlases reveal 618 

SARS-CoV-2 pathology and cellular targets. Nature 1–8. 619 

38.   Mechanisms of SARS-CoV-2 Transmission and Pathogenesis: Trends in 620 

Immunology. 621 

39.  V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. 2020. Coronavirus biology and 622 

replication: implications for SARS-CoV-2. 3. Nat Rev Microbiol 1–16. 623 

40.  Sola I, Almazán F, Zúñiga S, Enjuanes L. 2015. Continuous and discontinuous 624 

RNA synthesis in coronaviruses. Annu Rev Virol 2:265–288. 625 

41.  Perlman S, Masters PS. 2020. Coronaviridae: The Viruses and Their Replication, 626 

p. 411–442. In Howley, PM, Knipe, DM, Whelan, S (eds.), Fields Virology: 627 

Emerging Viruses, 7th ed. Wolters Kluwer Health/lippincott Williams & Wilkins, 628 

Philadelphia, PA. 629 

42.  Daniloski Z, Jordan TX, Wessels H-H, Hoagland DA, Kasela S, Legut M, Maniatis 630 

S, Mimitou EP, Lu L, Geller E, Danziger O, Rosenberg BR, Phatnani H, Smibert P, 631 

Lappalainen T, tenOever BR, Sanjana NE. 2021. Identification of Required Host 632 

Factors for SARS-CoV-2 Infection in Human Cells. Cell 184:92-105.e16. 633 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

43.  Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas 634 

AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, 635 

Regev A, McCarroll SA. 2015. Highly parallel genome-wide expression profiling of 636 

individual cells using nanoliter droplets. Cell 161:1202–1214. 637 

44.  Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. 2018. Integrating single-cell 638 

transcriptomic data across different conditions, technologies, and species. Nat 639 

Biotechnol 36:411–420. 640 

45.  Hafemeister C, Satija R. 2019. Normalization and variance stabilization of single-641 

cell RNA-seq data using regularized negative binomial regression. Genome Biol 642 

20:296. 643 

46.  Li H. 2021. lh3/seqtk. C. 644 

47.  Fernandes JD, Hinrichs AS, Clawson H, Navarro Gonzalez J, Lee BT, Nassar LR, 645 

Raney BJ, Rosenbloom KR, Nerli S, Rao A, Schmelter D, Zweig AS, Lowe TM, 646 

Ares M, Corbet-Detig R, Kent WJ, Haussler D, Haeussler M. 2020. The UCSC 647 

SARS-CoV-2 genome browser. BioRxiv 648 

https://doi.org/10.1101/2020.05.04.075945. 649 

48.   Twelve years of SAMtools and BCFtools | GigaScience | Oxford Academic. 650 

49.   UMI-tools: Modelling sequencing errors in Unique Molecular Identifiers to improve 651 

quantification accuracy. 652 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

50.   2021. Sparse and Dense Matrix Classes and Methods [R package Matrix version 653 

1.3-4]. Comprehensive R Archive Network (CRAN). 654 

51.   2020. Read Rectangular Text Data [R package readr version 1.4.0]. 655 

Comprehensive R Archive Network (CRAN). 656 

52.  Garrido-Martín D, Palumbo E, Guigó R, Breschi A. 2018. ggsashimi: Sashimi plot 657 

revised for browser- and annotation-independent splicing visualization. PLOS 658 

Comput Biol 14:e1006360. 659 

53.   2008. clValid: An R Package for Cluster Validation by Guy Brock, Vasyl Pihur, 660 

Susmita Datta, Somnath Datta. 661 

54.  Maechler M, original) PR (Fortran, original) AS (S, original) MH (S, Hornik  [trl K, 662 

maintenance(1999-2000)]  ctb] (port to R, Studer M, Roudier P, Gonzalez J, 663 

Kozlowski K, pam()) ES (fastpam options for, Murphy  (volume.ellipsoid({d >= 3})) 664 

K. 2021. cluster: “Finding Groups in Data”: Cluster Analysis Extended Rousseeuw 665 

et al. 666 

55.  Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for 667 

differential expression analysis of digital gene expression data. Bioinformatics 668 

26:139–140. 669 

56.  Soneson C, Robinson MD. 2018. Bias, robustness and scalability in single-cell 670 

differential expression analysis. 4. Nat Methods 15:255–261. 671 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

57.  Kaminow B, Yunusov D, Dobin A. 2021. STARsolo: accurate, fast and versatile 672 

mapping/quantification of single-cell and single-nucleus RNA-seq data. bioRxiv 673 

2021.05.05.442755. 674 

58.  McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, 675 

Doan M, Ding L, Rafelski SM, Thirstrup D, Wiegraebe W, Singh S, Becker T, 676 

Caicedo JC, Carpenter AE. 2018. CellProfiler 3.0: Next-generation image 677 

processing for biology. PLOS Biol 16:e2005970. 678 

59.  Emeny JM, Morgan MJY 1979. Regulation of the Interferon System: Evidence that 679 

Vero Cells have a Genetic Defect in Interferon Production. J Gen Virol 43:247–252. 680 

60.  Parker MD, Lindsey BB, Shah DR, Hsu S, Keeley AJ, Partridge DG, Leary S, Cope 681 

A, State A, Johnson K, Ali N, Raghei R, Heffer J, Smith N, Zhang P, Gallis M, 682 

Louka SF, Whiteley M, Foulkes BH, Christou S, Wolverson P, Pohare M, Hansford 683 

SE, Green LR, Evans C, Raza M, Wang D, Gaudieri S, Mallal S, Consortium TC-19 684 

GU (COG-U, Silva TI de. 2021. Altered Sub-Genomic RNA Expression in SARS-685 

CoV-2 B.1.1.7 Infections. bioRxiv 2021.03.02.433156. 686 

61.  Russell AB, Elshina E, Kowalsky JR, Te Velthuis AJW, Bloom JD. 2019. Single-cell 687 

virus sequencing of influenza infections that trigger innate immunity. J Virol 93. 688 

689 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469642
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

Figure Legends 690 

Figure 1: A. Illustration of SARS-CoV-2 genomic RNA, gRNA, and subgenomic RNAs, 691 

sgmRNAs. B. Top: Reads included for analysis by scCoVseq. Either: 1) contiguous 692 

reads mapping to ORF1a/b and therefore derived from gRNA or 2) discontinuous reads 693 

spanning the leader region and ORFS transcribed by sgmRNAs Bottom: Reads 694 

excluded from analysis by scCoVseq. Either: 1) discontinuous reads that do not include 695 

sequence mapping to the leader region and downstream of S or 2) contiguous reads 696 

that map to ORFs other than ORF1a/b, which are ambiguous. C. Activity diagram of 697 

scCoVseq pipeline. Blue rectangles indicate inputs/outputs for each stage. Orange 698 

rounded rectangles indicate a process in bold with software indicated. 699 

Figure 2: A-C. Illustration of gRNA and S and ORF3a sgmRNAs. Red box indicates 700 

regions contained in final 10X library. Lower: Example illustration of 10X library 701 

fragments derived from gRNA and S and ORF3a sgmRNAs with sequencing read 1 and 702 

read 2 indicated. 10X 3′ (A), 10X 5′ (B), and 10X 5′ Extended R1 (C) libraries are 703 

illustrated. D-F. Sashimi plot of 10X 3′ (D), 10X 5′ (E), and 10X 5′ Extended R1 (F) 704 

reads mapped to the SARS-CoV-2 genome filtered to show only junctions supported by 705 

at least 1,000 reads. Total number of reads visualized is indicated in the bottom right. G. 706 

Reads per million reads mapped to SARS-CoV-2 reads mapping to a single viral gene 707 

in 10X 3′, 10X 5′, or 10X 5′ with Extended R1 data. Reads are colored by their mapping 708 

with contiguous reads mapping to ORF1a/b in yellow, leader-sgmRNA junction-709 

spanning reads in blue, and ambiguously mapped reads in grey. H. UMIs per cell for all 710 

sgmRNAs in infected cells in each dataset. Each dataset was downsampled to an equal 711 
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number of infected cells and each cells’ total UMIs were downsampled to the same 712 

value to control for differences in sequencing depth. The leader region is enlarged in 713 

illustrations of the genome for visibility. L = Leader.  714 

 715 

Figure 3: A. Experimental design. Vero E6 cells were infected or mock infected with 716 

SARS-CoV-2 (USA-WA1/2020) at an MOI of 0.1. At 24 hours post-infection, cells were 717 

analyzed by scRNAseq using 10X 5′ with Extended R1 sequencing. B-C. 3,047 mock 718 

and infected cells embedded in tSNE space derived from euclidean distance of scaled 719 

viral sgmRNA expression. Cells are colored by (B) indicated viral RNA expression, or 720 

(C) experimental condition and assigned infection status of cells. D. Heatmap of genes 721 

differentially expressed in infected, bystander, or mock cells. Differential expression 722 

testing was performed on host gene expression downsampled to an equal number of 723 

UMIs/cell across cells to account for infection-induced transcriptional shutdown. Genes 724 

were selected for visualization based on false discovery rate of less than 0.05 and 725 

absolute log2 fold change of at least 1. Non-downsampled gene expression data is 726 

shown. Along the top, infection status, total viral UMIs and genomic RNA as quantified 727 

by CellRanger and scCoVseq are indicated. Cells and genes are clustered with ward d2 728 

clustering based on euclidean distance. E. Expression of selected host genes per cell 729 

by infection status. Data shown is not downsampled. Top: genes induced in infected 730 

cells. Middle: genes repressed in infected cells. Bottom: genes upregulated in bystander 731 

cells compared to mock. F. KEGG pathway enrichment in genes differentially expressed 732 

in pairwise comparisons of downsampled infected, bystander, and mock cells. Dot size 733 
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and fill indicates the -log10 p value of enrichment with red dots indicating enrichment in 734 

the first infection state and blue in the second infection state noted above each panel. 735 

 736 

Supplemental Figure 1: Average counts of host gene expression of cells analyzed by 737 

10X 3′, 10X 5′, and 10X 5′ with Extended R1 sequencing. Each point represents the 738 

average UMIs/cell of a single gene assayed in the indicated assays. At the top left, the 739 

Pearson correlation coefficient and resulting p value are indicated. 740 

 741 

Supplemental Figure 2: A. Comparison of performance metrics (average distance, AD; 742 

average distance between means, ADM; average proportion of non-overlap, APN; 743 

connectivity; Dunn Index; figure of merit, FOM; and silhouette index) by several 744 

clustering methods (diana, model-based, hierarchical, kmeans, and pam) run on 745 

sgmRNA expression of 600 randomly sampled cells analyzed with 10X 5′ Extended R1 746 

and scCoVseq. Left: Performance metrics for each method across k values from 2 to 5. 747 

Right: performance metrics for each method with k = 2. B. Visualization of infection 748 

classification by different methods. C. Viral gene expression of cells by infection status, 749 

determined by pam clustering method. D. Percent of infected cells per sample as 750 

measured by flow cytometry, immunofluorescence, and infection classification with 751 

unsupervised (pam) method or supervised infection classification by classifying infected 752 

cells as those with at least 375 total viral UMIs. Because the same sample was 753 

sequenced with 10X 5′ and 10X 5′ Extended R1, flow cytometry and 754 

immunofluorescence results are duplicated for ease of visualization. Error bars for 755 
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immunofluorescence indicate mean ± one standard deviation of percent infected cells 756 

based on three fields per sample. 757 

 758 

Supplemental Figure 3: Detection of junction sites in SARS-CoV-2 reads with 10X 5′ 759 

Extended R1. Junction sites are represented by the 5′ start site and 3′ end site on the y 760 

and x-axis, respectively. The color indicates the log2 total UMIs/junction across all cells 761 

in the SARS-CoV-2 infected sample. Below each axis, the number of UMIs supporting a 762 

position as a junction start or end site is indicated with a density plot. 763 

 764 
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Figure 1: A. Illustration of SARS-CoV-2 genomic RNA, gRNA, and subgenomic RNAs, 765 

sgmRNAs. B. Top: Reads included for analysis by scCoVseq. Either: 1) contiguous 766 

reads mapping to ORF1a/b and therefore derived from gRNA or 2) discontinuous reads 767 

spanning the leader region and ORFS transcribed by sgmRNAs Bottom: Reads 768 
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excluded from analysis by scCoVseq. Either: 1) discontinuous reads that do not include 769 

sequence mapping to the leader region and downstream of S or 2) contiguous reads 770 

that map to ORFs other than ORF1a/b, which are ambiguous. C. Activity diagram of 771 

scCoVseq pipeline. Blue rectangles indicate inputs/outputs for each stage. Orange 772 

rounded rectangles indicate a process in bold with software indicated. 773 

  774 
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Figure 2: A-C. Illustration of gRNA and S and ORF3a sgmRNAs. Red box indicates 775 

regions contained in final 10X library. Lower: Illustration of 10X library fragments derived 776 

from gRNA and S and ORF3a sgmRNAs with sequencing read 1 and read 2 indicated. 777 

10X 3′ (A), 10X 5′ (B), and 10X 5′ Extended R1 (C) libraries are illustrated. D-F. 778 
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Sashimi plot of 10X 3′ (D), 10X 5′ (E), and 10X 5′ Extended R1 (F) reads mapped to 779 

the SARS-CoV-2 genome filtered to show only junctions supported by at least 1,000 780 

reads. Total number of reads visualized is indicated in the bottom right. G. Reads per 781 

million reads mapped to SARS-CoV-2 reads mapping to a single viral gene in 10X 3′, 782 

10X 5′, or 10X 5′ with Extended R1 data. Reads are colored by their mapping with 783 

contiguous reads mapping to ORF1a/b in yellow, leader-sgmRNA junction-spanning 784 

reads in blue, and ambiguously mapped reads in grey. H. UMIs per cell for all sgmRNAs 785 

in infected cells in each dataset. Each dataset was downsampled to an equal number of 786 

infected cells and each cells’ total UMIs were downsampled to the same value to control 787 

for differences in sequencing depth. The leader region is enlarged in illustrations of the 788 

genome for visibility. L = Leader.  789 

  790 
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 Figure 3: A. Experimental design. Vero E6 cells were infected or mock infected with 791 
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SARS-CoV-2 (USA-WA1/2020) at an MOI of 0.1. At 24 hours post-infection, cells were 792 

analyzed by scRNAseq using 10X 5′ with Extended R1 sequencing. B-C. 3,047 mock 793 

and infected cells embedded in tSNE space derived from euclidean distance of scaled 794 

viral sgmRNA expression. Cells are colored by (B) indicated viral RNA expression, or 795 

(C) experimental condition and assigned infection status of cells. D. Heatmap of genes 796 

differentially expressed in infected, bystander, or mock cells. Differential expression 797 

testing was performed on host gene expression downsampled to an equal number of 798 

UMIs/cell across cells to account for infection-induced transcriptional shutdown. Genes 799 

were selected for visualization based on false discovery rate of less than 0.05 and 800 

absolute log2 fold change of at least 1. Non-downsampled gene expression data is 801 

shown. Along the top, infection status, total viral UMIs and genomic RNA as quantified 802 

by CellRanger and scCoVseq are indicated. Cells and genes are clustered with ward d2 803 

clustering based on euclidean distance. E. Expression of selected host genes per cell 804 

by infection status. Data shown is not downsampled. Top: genes induced in infected 805 

cells. Middle: genes repressed in infected cells. Bottom: genes upregulated in bystander 806 

cells compared to mock. F. KEGG pathway enrichment in genes differentially expressed 807 

in pairwise comparisons of downsampled infected, bystander, and mock cells. Dot size 808 

and fill indicates the -log10 p value of enrichment with red dots indicating enrichment in 809 

the first infection state and blue in the second infection state noted above each panel. 810 

 811 
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Supplemental Figure 1: Average counts of host gene expression of cells analyzed by 813 
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10X 3′, 10X 5′, and 10X 5′ with Extended R1 sequencing. Each point represents the 814 

average expression of a single gene assayed in the indicated assays. At the top left, the 815 

Pearson correlation coefficient and resulting p value are indicated. 816 
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Supplemental Figure 2: A. Comparison of performance metrics (average distance, AD; 818 

average distance between means, ADM; average proportion of non-overlap, APN; 819 
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connectivity; Dunn Index; figure of merit, FOM; and silhouette index) by several 820 

clustering methods (diana, model-based, hierarchical, kmeans, and pam) run on 821 

sgmRNA expression of 600 randomly sampled cells analyzed with 10X 5′ Extended R1 822 

and scCoVseq. Left: Performance metrics for each method across k values from 2 to 5. 823 

Right: performance metrics for each method with k = 2. B. Visualization of infection 824 

classification by different methods. C. Viral gene expression of cells by infection status, 825 

determined by pam clustering method. D. Percent of infected cells per sample as 826 

measured by flow cytometry, immunofluorescence, and infection classification with 827 

unsupervised (pam) method or supervised infection classification by classifying infected 828 

cells as those with at least 375 total viral UMIs. Because the same sample was 829 

sequenced with 10X 5′ and 10X 5′ Extended R1, flow cytometry and 830 

immunofluorescence results are duplicated  for ease of visualization. Error bars for 831 

immunofluorescence indicate mean ± one standard deviation of percent infected cells 832 

based on three fields per sample. 833 
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Supplemental Figure 3: Detection of junction sites in SARS-CoV-2 reads with 10X 5′ 835 

Extended R1. Junction sites are represented by the 5′ start site and 3′ end site on the y 836 

and x-axis, respectively. Below each axis, the number of UMIs supporting a position as 837 

a junction start or end site is indicated with a density plot. 838 

 839 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2021.11.22.469642doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469642
http://creativecommons.org/licenses/by-nc-nd/4.0/

