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Low temperature synthesis via 
molten-salt method of r-Bn 
nanoflakes, and their properties
Yang chen, Xing Wang, Chao Yu, Jun Ding*, Chengji Deng & Hongxi Zhu

r-BN nanoflakes were synthesized using KBH4 and nH4cl as the main raw material in a high-purity 
nitrogen atmosphere. The effects of salt and salt-free conditions and heating temperature on the 
synthesis of BN were studied. The molten-salt method was used to synthesize BN at 650 °C, which was 
250 °C lower than the BN synthesis method without salt. Furthermore, at 1000 °C the prepared flake-
like BN crystals showed good crystallinity, uniform morphology, a particle diameter of 200–300 nm, and 
a thickness of 40–70 nm. Moreover, the specific surface area of BN was 294.26 m2/g. In addition, the BN 
synthesized at 1100 °C had a large elastic modulus value and good oxidation resistance.

Boron nitride (BN) is a new type of ceramic material with excellent performance and great potential for devel-
opment. Due to its low dielectric constant1, wave transparency2,3, good electrical insulation4, low thermal expan-
sion5, high thermal conductivity6, high-temperature lubricity7, high-temperature stability8, and wide band gap9. 
Common BN contains hexagonal boron nitride (h-BN) with a graphite layered structure, cubic boron nitride 
(c-BN) with a diamond sphalerite structure, wurtzite boron nitride (w-BN) with a hexagonal diamond wurtzite 
structure, rhombohedral boron nitride (r-BN) with a trigonal phase graphite structure, turbostratic boron nitride 
(t-BN) with a laminar structure, and amorphous boron nitride10–15. Of these, r-BN has high chemical stability 
and oxidation resistance, which makes it suitable for high-temperature resistant materials. Moreover, it also has a 
wide band gap, high thermal conductivity, and high resistivity, and can be used as an ideal substrate and heat sink 
material for high-power, high-temperature, and semiconductor materials.

At present, the research on BN is mainly focused on h-BN16–20 and c-BN21–23, and there has been little research 
on r-BN. In recent years, researchers have mainly used chemical vapor deposition (CVD) to synthesize r-BN. 
Chubarov et al. performed an in-depth study of r-BN. They used triethylboron and ammonia as precursors, 
and via CVD, r-BN was produced on a sapphire substrate at 1500 °C and a pressure of 7 kPa. The addition of a 
small amount of SiH4 to the gas mixture was also studied, and it was found that Si atoms acted as surface-active 
substances that stimulated the formation of high-quality r-BN24. Subsequently, they formed an AlN buffer layer 
by in-situ nitridation, and BN was grown under low pressure using H2 as a carrier gas at 1200–1500 °C25. After 
SiC was used as the substrate, it was found that growth temperature was 1500 °C, the N / B ratio was 642 and the 
deposition pressure was 7 kPa favored r-BN epitaxial growth, and no buffer layer was required26. In addition, Oku 
et al.27 prepared r-BN particles of 50–1000 nm diameter via CVD on a graphite substrate from a BCl3-NH3-H2 
reaction system at 1600 °C and a total pressure of 3–5 Torr. Most of these methods require a high reaction temper-
ature, a certain pressure, or a particular explosive atmosphere, and the purity of the synthesized r-BN is not high.

Other methods have also been used to prepare r-BN. Bao et al.28 prepared highly crystalline r-BN triangular 
nanosheets by using NaNH2 and B2O3 as raw materials in a solid-phase reaction in an autoclave at 600 °C for 6 h. 
The obtained r-BN triangular nanosheets had a width of approximately 300–500 nm and a thickness of approxi-
mately 50–90 nm, but this method required a long reaction time and a certain pressure. Ye et al.13 prepared r-BN 
powders by using Na2B4O7 and Mg as raw materials at 1000 °C for 3 h under a nitrogen atmosphere with NaCl 
molten salt. The prepared BN was not high in purity and it contained h-BN, and the reaction temperature was 
high. Therefore, further research is still needed to improve the production process of r-BN to obtain an r-BN 
preparation method that is simple and safe, uses a low synthesis temperature, and produces high yield.

In this work, we report on r-BN synthesized in a NaCl-KCl eutectic salt and a nitrogen atmosphere by using 
KBH4 and NH4Cl as the main raw materials, and compare the effect of the salt-free condition on the synthesis 
of r-BN. High-purity r-BN was synthesized at 650 °C and normal pressure by using the molten-salt synthesis 
(MSS)29–34 method, which was 250 °C lower than the temperature required when no salt was added, and it needed 
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a shorter reaction time. The effect of reaction temperature on the phase and microstructure of r-BN was studied. 
In addition, the chemical valence, optical properties, and specific surface area of the as-prepared r-BN nanoflakes 
were also investigated. One possible formation mechanism of r-BN is put forward. Finally, the prepared r-BN 
nanoflakes were subjected to antioxidant analysis.

Methods
Preparation of r-BN nanoflakes. Potassium borohydride (KBH4, 97.0% purity, Shanghai Aladdin 
Biochemical Technology Co., Ltd.) and ammonium chloride (NH4Cl, 99.5% purity, Tianjin Kaitong Chemical 
Reagent Co., Ltd.) were used as the main raw materials; sodium chloride (NaCl, 99.5% purity, Shanghai Aladdin 
Biochemical Technology Co., Ltd.) and potassium chloride (KCl, 99.5% purity, Shanghai Aladdin Biochemical 
Technology Co., Ltd.) were used as the molten salt to synthesize r-BN in high-purity nitrogen (99.999%). The 
raw materials (KBH4/NH4Cl, molar ratio of 1:2) and molten salt (molar ratio of NaCl/KCl = 1:1) were mixed at a 
mass ratio of 6:5. The mixture was heated from 25 °C at a ramp of 2 °C/min to 300 °C in a vertical corundum tube 
furnace, and then heated to 650–1100 °C at a rate of 4 °C/min and held for 4 h. After that, the reaction products 
were cooled in the furnace to room temperature. The reaction products were soaked in distilled water for 2 h and 
washed with distilled water two to three times by using an ultrasonic cleaner to remove unreacted materials and 
molten salts. The final product was then dried at 110 °C to obtain r-BN nanoflakes.

Because NH4Cl would become volatile above 330 °C, the mixture was heated from 25 °C to 300 °C at a rate 
of 2 °C/min so that KBH4 and NH4Cl could produce more stable substances to reduce the loss in the subsequent 
NH4Cl heating process, and the amount of NH4Cl was greater than that of KBH4 to compensate for the loss of 
NH4Cl at high temperature.

The reaction for synthesizing BN can be described as follows:

+ → + +KBH NH Cl BN KCl 4H (1)4(s) 4 (s) (s) (s) 2(g)

∆ = − . − . ⋅θ −G 265 01 0 41T (KJ mol )1

Characterization. The phases of the products were analyzed by X-ray diffraction (XRD, PANalytical, X’Pert 
Pro) using CuKα radiation. The element species and chemical valences of the samples’ surfaces were studied by 
X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific, ESCALAB 250Xi) with AlKα radiation. The 
morphology and crystal structure were observed by scanning electron microscopy (SEM, FEI, Nova 400 Nano 
SEM), high-resolution transmission electron microscopy (HRTEM, JEOL, JEM-2100 UHR STEM/EDS) and 
atomic force microscopy (AFM, NT-MDT Prima). In addition, a synchronous thermal analyzer with thermo-
gravimetric analysis-differential thermal analysis (TG-DTA, NETZSCH, STA449F3) was used to investigate the 
oxidation resistance of the as-prepared BN, and the generation process of the BN. The infrared absorption of the 
product was tested using the Fourier transform infrared (FTIR, Thermo Fisher Scientific, Nicolet iS 50) spectrum. 
The Brunauer–Emmett–Teller (BET) specific surface area of the as-prepared BN was characterized using a fully 
automatic surface area and porosity analyzer (JWGB, JW-BK100C).

Results and Discussion
phase analysis. Figure 1a shows the XRD patterns of samples heated at different temperatures for 4 h in 
NaCl-KCl eutectic salts. At 650 °C, the diffraction peak of BN appeared at 25–30°, but the amount of BN obtained 
after water washing of the fired product was small. This is because the molten salt partially melted (the eutectic 
melting temperature of NaCl-KCl is 657 °C), and generated a small amount of liquid phase environment. The 
raw materials of KBH4 and NH4Cl were mostly evaporated or decomposed after a long time at low temperature. 
This indicates that an excessive holding time at low temperatures was not conducive to the synthesis of BN. As 
the heating temperature rose to 1100 °C, the main diffraction peak of BN became sharp, and the peak intensity 
was maximized. This shows that BN synthesized at 1100 °C had the best crystallinity. Furthermore, there are two 

Figure 1. XRD patterns of samples heated at different temperatures for 4 h: (a) With salt; (b) Without salt.
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diffraction peaks: the peaks at diffraction angles (2θ) of 26.717° and 42.620° can be indexed to r-BN ((003) and 
(101)), respectively. In addition, a small amount of O2 from the N2 gas caused slight oxidation of the BN during 
the synthesis. A weaker hump is found at a diffraction angle of 22°, which corresponds to amorphous B2O3.

Figure 1b shows the XRD patterns of samples heated at different temperatures for 4 h without adding salt. No 
BN was generated at 800 °C. When the heating temperature was 900 °C, BN started to form. At 900–1100 °C, as 
the heating temperature increased, the peak intensity of BN increased and its peak became sharper. However, as 
the heating temperature rose to 1100 °C, the diffraction peak of the (003) crystal plane showed a slight shift in the 
higher angle direction, accompanied by a narrowing of the diffraction peak. Figure 1a also shows this phenome-
non. According to the Bragg equation ( θ λ=2d sin n ), the diffraction peak is shifted to a larger angle, the lattice 
spacing of BN is decreased, and the lattice is shrunken along the c-axis orientation. The grain size is larger in the 
direction perpendicular to the (00 l) direction, resulting in a narrowing of the (003) peak by continuous X-ray 
scattering35. In addition, a small diffraction peak appears at an angle of 75.955°, which is the (110) crystal plane of 
r-BN.

XPS can be used to check all elemental information in a substance. Figure 2a shows the full spectrum of the 
product XPS. In Fig. 1a, the O1s peak (532.77 eV) is attributed to amorphous B2O3. The C1s peak (284.94 eV) 
is attributed to the addition of C as an internal standard substance. The binding energies of B1s and N1s are 
190.75 eV and 398.09 eV, respectively. As shown in Fig. 2b, the B1s spectrum has two peaks at 191.42 eV and 
192.04 eV, corresponding to B-N and B-O, respectively. Moreover, the N1s spectrum has a peak at 398.19 eV, 
corresponding to N-B36 (Fig. 2c). From the elemental content calculation of the XPS data (Table 1), the product 
consists of 91.87% BN and 8.13% B2O3.

Microstructure analysis. Figure 3 shows SEM images of the BN synthesized at different temperatures in 
NaCl-KCl eutectic salts. Figure 3a shows many thin and poorly crystallized BN nanoflakes at 800 °C, which are 
stacked in a staggered relation to each other to form many small holes. The production of these holes may have 
been caused by the volatilization of the raw materials or the gases produced by the reaction. When the heating 

Figure 2. XPS spectra of BN synthesized at 1100 °C in NaCl-KCl eutectic salt: (a) The full spectrum of the 
product XPS; (b) B1s spectra of BN; (c) N1s spectra of BN.

Peak Peak BE (eV) FWHM (eV) Area Atomic (%)

O1s 532.77 3.23 1.917 × 105 3.46

C1s 284.94 3.04 2.098 × 105 9.64

N1s 398.09 2.82 1.351 × 106 39.08

B1s 190.75 2.71 4.082 × 105 47.82

Table 1. The relative content of elements in the XPS spectra of Fig. 2.
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temperature rose to 900 °C, BN nanoflakes grew (Fig. 3b). At 1000 °C, the as-synthesized BN has a uniform mor-
phology with a diameter of 200–300 nm and a thickness of 40–70 nm, and the two grains grow close together 
(Fig. 3c). As the heating temperature was increased to 1100 °C, the morphology of the BN was approximately 
unchanged, but some BN nanoflakes became curled (Fig. 3d). This may have occurred to reduce the surface 
free energy, so that the BN nanoflakes were in the lowest energy state to eliminate the internal stress of the flake 
structure. The nanoflake diameter is approximately 300–500 nm and the thickness is approximately 25–50 nm.

Figure 4 shows SEM images of the BN synthesized at different temperatures without adding salt. Figure 4a 
shows that irregular grains were generated at 800 °C, and the low temperature was not conducive to the growth of 
grains. Some irregular BN nanoflakes appear at 900 °C (Fig. 4b). When the temperature is 1000 °C, the BN nano-
flakes are not uniform in size, and many small flake-like particles of BN are formed on the large flake-like BN, and 
the small flake-like BN has grown tightly together (Fig. 4c). As the temperature rose to 1100 °C, the flake-like BN 
grew to a diameter of approximately 400–700 nm, and a thickness of approximately 50–75 nm (Fig. 4d).

The effects of different temperatures on the morphology and crystal structure of BN formed in a molten-salt 
environment were further investigated by TEM (Fig. 5). Figure 5a shows that the BN is very thin, and has grown 
with a staggered profile, with an average thickness of approximately 10 nm at 700 °C. At 800 °C, the crystallinity of 
the BN is not good, and the BN nanoflakes have rough boundaries and disordered edges (Fig. 5b). At 900 °C, the 
tip of the generated BN is clearly bifurcated, which could be described as two grains of BN grown into one grain 
along the c-axis direction (Fig. 5c). At 1000 °C, the BN nanoflakes have grown closely together and are of uniform 
size (Fig. 5d), which is consistent with Fig. 3c, and this further shows that the morphology of the BN synthesized 
at 1000 °C is better.

In addition, Fig. 6 shows the TEM, HRTEM, and selected area electron diffraction (SAED) images of BN syn-
thesized at 1100 °C in NaCl-KCl eutectic salts. Figure 6a shows a typical TEM image of BN nanoflakes, which have 
a diameter of 70–130 nm and a thickness of 5–30 nm, and some BN nanoflakes are wrinkled. The inset in Fig. 6a 
shows the SAED pattern of r-BN with some diffraction spots distributed over the diffraction rings, indicating that 
the BN nanoflakes have a polycrystalline structure. The diffraction rings are indexed as the (003) and (101) planes 
of r-BN, which corresponds to the XRD results. Figure 6b is the HRTEM image of the BN in Fig. 6a. The lattice 
spacing of the BN in the smooth area is 0.34 nm, which corresponds to the (003) plane of r-BN (3.334 Å, ICDD 
No. 00-045-1171)13, indicating that the BN nanoflakes grew in a direction perpendicular to the (003) crystal 
plane. This directly confirms our interpretation of the phenomenon shown in Fig. 1. However, the lattice spacing 

Figure 3. SEM images of BN synthesized at different temperatures in NaCl-KCl eutectic salts: (a) 800 °C;  
(b) 900 °C; (c) 1000 °C; (d) 1100 °C.
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at the fold is 0.35 nm. This may be due to the rotation of the lattice plane, which caused the BN nanoflakes to curl 
and exhibit folds on the crystal plane20, as in Fig. 3d.

The morphology of BN synthesized at 1100 °C in NaCl-KCl eutectic salts was further analyzed by AFM. The 
three-dimensional view and enlarged plan view of BN are shown in Fig. 7a,b. It can be clearly observed that BN 
has a flake-like structure, which is consistent with the previous SEM and TEM images (Figs 3d and 6a). The flakes 
are formed in a continuous step shape, the steps do not overlap each other, the surface is flat and smooth, and the 
width of the BN is approximately 400–450 nm. The elastic modulus of the BN is approximately 1.60 GPa (Fig. 7c).

FTIR spectrum of r-BN. The FTIR spectrum of the BN synthesized at 650 °C and 1100 °C in NaCl-KCl 
eutectic salt is shown in Fig. 8. The BN synthesized at 650 °C shows two strong absorption peaks at 1377 cm−1 and 
790 cm−1, which can be referred to as the in-plane B-N stretching vibration and the out-of-plane B-N-B bending 
vibration, respectively25. However, the BN synthesized at 1100 °C forms a weaker and broader absorption peak 
at 3428 cm−1, which may be due to the O-H bond of water adsorbed on the sample surface. The infrared analysis 
results are consistent with the XRD results, and this further confirms that the resulting product is high-purity 
r-BN.

Specific surface area analysis of r-BN. It is well known that the higher the specific surface area of a 
catalyst carrier, the more favorable the dispersion of the active components, and thus the more conducive to the 
improvement of its catalytic activity. Therefore, the high specific surface area of BN is of great value as a catalyst 
carrier37,38. With its high specific surface area, BN can be used not only as a catalyst carrier but also as an adsor-
bent and hydrogen storage material39–41. Figure 9 shows the specific surface area of BN synthesized at different 
temperatures, with and without salt. The synthesis temperature was 900–1100 °C, and the specific surface area of 
the BN synthesized by MSS42–49 method is 142.61–294.26 m2/g. The specific surface area of the BN synthesized at 
1000 °C is the largest, at 294.26 m2/g. This shows that the BN particles produced at this temperature were smaller, 
as is further confirmed by Fig. 3b–d.

When no salt was added, as the synthesis temperature increased, and the specific surface area of BN, which 
was in the range of 151.51–251.85 m2/g, decreased, indicating that as the temperature rose, the product particles 

Figure 4. SEM images of BN synthesized at different temperatures without adding salt: (a) 800 °C; (b) 900 °C; 
(c) 1000 °C; (d) 1100 °C.
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grew. This is further confirmed by Fig. 4b–d. In addition, the two synthesis methods of BN were compared, and 
the specific surface area of the BN synthesized by the MSS method at 1000 °C was found to be the largest.

Reaction mechanism of r-BN. Figure 10 shows the TG-DTA curves of the raw materials heated from 
25 °C at 5 °C/min to 1100 °C under a nitrogen atmosphere. The TG-DTA curves of the raw materials heated to 
1100 °C in NaCl-KCl eutectic salts are shown in Fig. 10a. As the heating temperature increased, an endothermic 
peak appeared at 259 °C with the partial volatilization or decomposition of NH4Cl (Eq. 2). With the increase in 
heating temperature, there was a faint endothermic peak at 582 °C due to the decomposition of KBH4 (Eq. 3). 
During this process, the generated KH and HCl reacted to generate H2 (Eq. 4). An exothermic peak appeared at 
775 °C, and the mass of the sample decreased with increasing temperature. The reason for this is that the resulting 
intermediate B3N3H6 (Eq. 5) was slowly dehydrogenated and became exothermic, resulting in the formation of 
BN (Eq. 6)50,51. The total weight loss was approximately 66%.

→ +NH Cl NH HCl (2)4 (s) 3(g) (g)

∆ = . − . ⋅θ −G 97 72 0 27T (KJ mol )1

Figure 5. TEM images of BN synthesized at different temperatures in NaCl-KCl eutectic salts: (a) 700 °C;  
(b) 800 °C; (c) 900 °C; (d) 1000 °C.

Figure 6. TEM and SAED (a), HRTEM (b) images of BN synthesized at 1100 °C in NaCl-KCl eutectic salts.
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→ +KBH BH KH (3)4(s) 3(g) (g)

∆ = . − . ⋅θ −G 377 28 0 26T (KJ mol )1

+ → +KH HCl KCl H (4)(g) (g) (s) 2(g)

∆ = − . + . ⋅θ −G 413 23 0 15T(KJ mol )1

Figure 7. AFM images of BN synthesized at 1100 °C in NaCl-KCl eutectic salts: (a) Three-dimensional view; 
(b,c) Enlarged plan view.

Figure 8. FTIR spectrum of the BN synthesized at 650 °C and 1100 °C in NaCl-KCl eutectic salt.

https://doi.org/10.1038/s41598-019-52788-0


8Scientific RepoRtS |         (2019) 9:16338  | https://doi.org/10.1038/s41598-019-52788-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

+ → +3NH 3BH B N H 6H (5)3(g) 3(g) 3 3 6(g) 2(g)

∆ = − . − . ⋅θ −G 642 95 0 02T (KJ mol )1

→ +B N H 3BN 3H (6)3 3 6(g) (s) 2(g)

∆ = − . − . ⋅θ −G 275 26 0 18T (KJ mol )1

Figure 10b shows the TG-DTA curves of the raw materials heated to 1100 °C without adding salt. The quality 
change in the sample presents in two distinct phases. In the first stage, the temperature range is approximately 
200–300 °C and the corresponding mass loss is 64%. In the second stage, the temperature range is 500–700 °C, 
corresponding to an 8% mass loss. In addition, there is a slight weight loss at 800–900 °C, corresponding to a 2% 
mass loss. The total weight loss is 74%. Compared with Fig. 10a, the weight loss is quite large, which means that 
the synthesis of BN using the MSS method can effectively reduce the loss of raw materials during the reaction 
process.

The reaction mechanism for forming BN was analyzed in conjunction with Fig. 10. A possible formation pro-
cess for r-BN is shown in Fig. 11. At approximately 200–300 °C, NH4Cl is partially volatilized or decomposed into 
NH3. When the temperature is heated to 350 °C, the KBH4 begins to melt. Because KBH4 is easily decomposed by 
inorganic acid (e.g., HCl), under the pressure generated by the NH3 gas, the KBH4 begins to decompose around 
580 °C to produce BH3. When the heating temperature rises to 657 °C, which is the eutectic melting temperature 
of NaCl-KCl, the liquid phase environment generated by the molten salt envelopes and penetrates the raw mate-
rial, preventing the transitional volatilization of NH4Cl and slowing down the reaction rate to reduce the loss of 
generated NH3 and BH3 with nitrogen. NH3 and BH3 are further reacted to form gaseous B3N3H6 intermediates, 
and this is followed by the slow dehydrogenation of B3N3H6 to produce BN nanoparticles. Finally, the BN nano-
particles aggregate into nuclei and grow into flake-like structures along the BN nuclei. The products were washed 
several times with distilled water to obtain the final product of BN nanoflakes.

Antioxidant analysis of r-Bn. Studying the antioxidant properties of substances is usually by means of a 
differential thermal analyzer or the establishment of oxidation kinetics models. In this work, to understand the 

Figure 9. Specific surface area of BN synthesized at different temperatures, with and without salt.

Figure 10. TG-DTA curves of raw materials heated to 1100 °C under nitrogen: (a) With salt; (b) Without salt.
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oxidation resistance of the synthesized BN nanoflakes, the as-prepared BN was subjected to TG and DTA tests. 
Figure 12 shows the TG-DTA curves of the as-prepared r-BN nanoflakes in air. The TG-DTA curves of the r-BN 
synthesized at 1100 °C in NaCl-KCl eutectic salts are shown in Fig. 12a. There is an endothermic peak at 80 °C, 
and the mass loss was due to the volatilization of water molecules in the sample. In addition, a pronounced exo-
thermic peak appears at 1009 °C, which starts at 894 °C and ends at 1084 °C, and the mass of the sample increases 
and begins to oxidize at 894 °C. Compared with the r-BN triangular nanoplates prepared by Bao et al. (BN started 
to oxidize at 800 °C)28, the oxidation resistance increased by approximately 100 °C. This result indicates that the 
as-prepared BN has excellent oxidation resistance and has good application prospects for high-temperature envi-
ronments. In addition, when the heating temperature is 800–1200 °C, the BN is oxidized to B2O3 with an increase 
of approximately 37% in mass. Theoretically, BN is oxidized to B2O3 with an increase of approximately 40% in 
mass, indicating that part of the synthesized BN was not oxidized.

Figure 12b shows the TG-DTA curves of the r-BN synthesized at 1100 °C without adding salt. When the tem-
perature is lower than 600 °C, the sample quality decreases as the heating temperature increased. Furthermore, an 
exothermic peak appears at 1025 °C, which starts at 901 °C and ends at 1085 °C. When the heating temperature 
is 800–1200 °C, the BN is oxidized to B2O3 with an increase of approximately 30% in mass. Compared with the 
synthesis of BN by MSS, this indirectly shows that the BN particles synthesized without the addition of salt were 
larger. Moreover, this can be confirmed by Figs 3d and 4d.

Conclusions
This study shows that the use of the MSS made it easier to synthesize high-purity r-BN nanoflakes with good 
morphology in a nitrogen atmosphere at low temperatures. KBH4 and NH4Cl were used as the main raw mate-
rials. The effect of salt addition and non-addition on the formation of r-BN was compared, and the heating tem-
perature was also an important factor in the synthesis. High-purity r-BN was synthesized at 650 °C by using the 
MSS. However, with no salt added, r-BN was synthesized at 900 °C. As the heating temperature increased to 
1000 °C, compared with the r-BN synthesized without salt, the r-BN synthesized using the molten NaCl-KCl salt 
had a uniform morphology. The grain diameter was 200–300 nm and the thickness was 40–70 nm. In addition, 
at 900–1100 °C, the specific surface area of BN synthesized by the MSS at 1000 °C was the largest, at 294.26 m2/g. 
Furthermore, the BN prepared at 1100 °C had good oxidation resistance in air, and its elastic modulus value was 
approximately 1.60 GPa.

Figure 11. Schematic diagram of the r-BN synthesis by molten salt method.

Figure 12. TG-DTA curves of the as-prepared BN nanoflakes in air: (a) With salt; (b) Without salt.
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