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Abstract

Building an accurate disease risk prediction model is an essential step in the modern quest

for precision medicine. While high-dimensional genomic data provides valuable data

resources for the investigations of disease risk, their huge amount of noise and complex

relationships between predictors and outcomes have brought tremendous analytical chal-

lenges. Deep learning model is the state-of-the-art methods for many prediction tasks, and it

is a promising framework for the analysis of genomic data. However, deep learning models

generally suffer from the curse of dimensionality and the lack of biological interpretability,

both of which have greatly limited their applications. In this work, we have developed a deep

neural network (DNN) based prediction modeling framework. We first proposed a group-

wise feature importance score for feature selection, where genes harboring genetic variants

with both linear and non-linear effects are efficiently detected. We then designed an explain-

able transfer-learning based DNN method, which can directly incorporate information from

feature selection and accurately capture complex predictive effects. The proposed DNN-

framework is biologically interpretable, as it is built based on the selected predictive genes.

It is also computationally efficient and can be applied to genome-wide data. Through exten-

sive simulations and real data analyses, we have demonstrated that our proposed method

can not only efficiently detect predictive features, but also accurately predict disease risk, as

compared to many existing methods.

Author summary

Accurate disease risk prediction is an essential step towards precision medicine. Deep

learning models have achieved the state-of-the-art performance for many prediction

tasks. However, they generally suffer from the curse of dimensionality and lack of biologi-

cal interpretability, both of which have greatly limited their applications to the prediction

analysis of whole-genome sequencing data. We present here an explainable deep transfer

learning model for the analysis of high-dimensional genomic data. Our proposed method
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can detect predictive genes that harbor genetic variants with both linear and non-linear

effects via the proposed group-wise feature importance score. It can also efficiently and

accurately model disease risk based on the detected predictive genes using the proposed

transfer-learning based network architecture. Our proposed method is built at the gene

level, and thus is much more biologically interpretable. It is also computationally effi-

ciently and can be applied to whole-exome sequencing data that have millions of potential

predictors. Through both simulation studies and the analysis of whole-exome data

obtained from the Alzheimer’s Disease Neuroimaging Initiative, we have demonstrated

that our method can efficiently detect predictive genes and it has better prediction perfor-

mance than many existing methods.

This is a PLOS Computational BiologyMethods paper.

Introduction

Constructing an accurate disease risk prediction model is an essential step in the modern

quest for precision medicine, an emerging model of health care that tailors treatments accord-

ing to individuals’ profiles [1]. Over the last decades, whole genome sequencing and genome-

wide association studies (GWAS) have uncovered many disease-associated genetic variants

that can be used to predict genetic susceptibility. However, individual genetic polymorphisms

typically explain only a small proportion of the heritability, even for traits that are highly heri-

table [2, 3]. It is widely accepted that most non-communicable diseases with a major public

health impact are polygenic, and thus jointly modeling these genetic variants is essential for an

accurate prediction model.

Polygenic risk scores (PRS) that aggregate the contributions of many single nucleotide poly-

morphisms (SNPs) towards the phenotype of interest has been widely used in many genetic

applications, including disease risk prediction and genetic prediction of complex traits [4]. By

estimating an individual’s genetic predisposition, PRS serves as a stable and measurable pre-

dictor, which can aid in the detection of diseases at an early stage and facilitate the delivery of

tailored treatments. PRS, in its simplest form, is calculated as a weighted sum of SNPs that

include all or more often a subset of genotyped SNPs [5–13]. The weights on SNPs can be

derived from the marginal association estimated from an external GWAS data [5]. For exam-

ple, [14] first used different thresholds to select SNPs from an external GWAS sample, and

then generated PRS for each subject in the independent target sample. Their PRS is calculated

as a weighted sum of risk alleles at selected SNPs, where the weights are the effect sizes esti-

mated from the external sample. The weights on SNPs can also be derived from joint modeling

of all SNPs, where linear mixed models and regularized regressions are commonly used [10–

12]. For example, MultiBLUP predicted the phenotype by a weighted average of SNPs from

multiple regions, where the weights are derived from a linear mixed model with multiple ran-

dom effects to allow different genomic regions having different effect sizes [10]. More recently,

the weights are proposed to be estimated using the summary statistics from GWAS [7, 9, 13].

For example, using summary statistics, lassosum estimated the weights for each SNP through

solving a lasso-type of problem [7], and DBSLMM extended the Bayesian linear mixed model

to handle large-scale genomic data [13].
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While most PRS methods can be viewed as a weighted average of risk alleles, they differ in

the assumption of distributions of genetic effects. Previous studies have shown that PRS with a

flexible modeling assumption on the genetic effects can achieve more robust and accurate pre-

diction performance across a range of phenotypes with various genetic architectures [13, 15].

While the latest developments in PRS can accommodate various types of effect size distribu-

tions [6, 13, 15], their fundamental assumption that all genetic variants act in an additive man-

ner remains the same. However, converging evidences have shown that non-linear predictive

effects (e.g., epistasis) widely exist [16]. For example, researchers have found that the protective

effects of C allele within the R1628P variant on Alzheimer’s Diseases in Chinese Han popula-

tion depend on the presence of APOE �4 alleles. To capture these non-linear predictive effects,

kernel functions were recently introduced into the prediction model and they have achieved

various levels of successes [11, 17]. However, the performance of kernel-based methods largely

depends on the pre-selected kernels, and thus can be sensitive to the underlying disease etiol-

ogy. Emerging deep learning models, the state-of-the-art methods for many prediction tasks,

have great potential to improve prediction models through discovering and modeling relevant

features of high complexity [18, 19]. However, they generally suffer from the curse of

dimensionality and provide limited insights into the genetic etiology of complex diseases, lim-

iting their applications in the prediction of traits and disease risk. A model that can accommo-

date complex predictive effects and be applied to high-dimensional data is urgently needed.

While high-dimensional genomic data offers deeper insight into the genetic architecture of

complex diseases, it brings tremendous challenges for the PRS construction, partially due to

their huge amount of noise. Previous studies have shown that in the absence of good biological

annotation, dimension reduction can be critical for an accurate risk prediction model, and

indeed many existing methods only uses a subset of SNPs for PRS construction. For example,

the C+T method proposed by Prive et al. constructed the PRS based on a subset of approxi-

mately independent SNPs obtained by clumping and p-value thresholding [9]. The recently

developed DBSLMM method relies on simple regressions to identify a subset of SNPs with

large-effects [13]. MKLMM and MultiBLUP split genomes into regions and selected SNPs

from a subset of regions in which the effect-size variance is significantly greater than that from

all other regions combined [10, 11]. MKpLMM and SARAL used penalized regression models

to identify a subset of predictive SNPs based on which PRS is calculated [12, 20]. While feature

selection employed in the existing PRS methods reduces the impact of noise, the pre-selected

features may only have sub-optimal prediction performance, as the objectives for feature selec-

tion and prediction modeling are not the same. For example, C+T procedure uses p-value

thresholding to select SNPs [9]. However, p-value is a function of effect size and sample size,

but neither of them has one-to-one correspondence with prediction accuracy. Therefore,

important predictors can be missed due to the pre-selection. In addition, the existing feature

selection methods are not efficient in extracting and modeling SNPs of high complexity (e.g.,

interaction effects).

While deep learning models are natural choices for capturing non-linear predictive effects,

most of them are not designed for the dimension reduction purpose. Feature importance

scores, such as those used in knockoff and Gaussian mirror models [21–28], have great poten-

tial to be adapted for detecting predictive features. However, both knockoff and Gaussian mir-

ror models double the dimension of input due to the construction of additional variables, and

thus are not directly applicable for analyzing high-dimensional data. Permutation-based fea-

ture importance score methods require model re-fit, and they tend to be computationally

expensive, especially for complex models (e.g., deep networks). Gene is a functional unit of

DNA, and thus selecting predictive features at the gene level not only reduces the computa-

tional complexity, but also improves the model interpret-ability. However, existing feature
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importance scores designed for deep learning models mostly focus on individual features [23,

26, 27], and thus not directly applicable for identifying predictive genes. Group knockoff mod-

els are among one of the few methods that have the potential for identifying predictors at the

gene level [29]. However, like knockoff models, the performance of group knockoff models

can be sensitive to the misspecification of the conditional distribution of features to be tested

and the dimension of the input layer has doubled due to the construction of knockoffs.

To address these limitations, we developed a deep transfer learning model for the calcula-

tion of PRS. We first developed explainable group-wise feature importance scores for the

dimension reduction, where genes that harbor features with various types of predictive effects

can be efficiently identified with controlled false positive rate. We then used the idea of transfer

learning to build an explainable deep transfer learning model for the PRS construction, where

information from feature screening is directly incorporated. In the following sections, we first

presented our proposed screening rule and the deep transfer learning model, and then exam-

ined the selection and prediction performance of our method. Finally, we applied our method

to predict AV45 and FDG using data obtained from the Alzheimer’s Disease Neuroimaging

Initiative [30].

Materials and methods

Set-based analyses that aggregate signals from all features within a set, have greatly facilitated

the detection of disease-associated regions. Using a similar idea in [29], we first developed a

group-wise feature importance score to screen the genome to select predictive regions (e.g.,

gene), and then used the idea of transfer leaning to build a predictive model, where informa-

tion from feature screening is directly incorporated.

Feature selection

For n i.i.d. sample, let Y = (Y1, � � �, Yn) be the phenotype and Xk = (X1k, � � �, Xnk) be the geno-

type for the kth genomic region (i.e., gene), where Xik ¼ ðXik1; � � � ;XiknkÞ with nk being the

number of genetic variants for the region. Yi can be either a real number in a regression setting

or an index from {1, 2, � � �, C} in a classification problem. We further split the data into two

subsets I 1 and I 2, and let Dj ¼ fðXik;YiÞ : i 2 I jg, j = 1, 2.

The goal for feature screening is to identify regions (e.g., gene and pathways) that harbor

predictive genetic variants, where the effects can be linear and/or non-linear. As deep neural

network (DNN) is the state-of-the-art method for modeling features with non-linear effects,

we propose to first fit a simple DNN model (e.g., multi-layer perceptron) for each region, and

then construct a group-wise feature importance score to gauge the predictive importance of

each region. Let fk(Xk) be a predictive model built based on region k trained on D1. The model

fk(Xk) can be viewed as a conditional mean (i.e., E[Y|Xk]) for continuous traits, or a conditional

probability (i.e., P(Y|Xk)) for categorical outcomes. Let L(Yi, fk(Xik)) denote a chosen loss func-

tion. For example, mean square error and cross entropy can be used as loss functions for con-

tinuous and binary outcomes, respectively. We propose to construct the group-wise feature

importance score, denoted as Δk, to gauge the predictive importance of region k:

Dk ¼
X

i2D2

li ¼
X

i2D2

ðLðYi; fkðXikÞÞ � E½LðYi; fkðX
0

ikÞÞ�Þ ð1Þ

X0ik represents the permuted data that is obtained via randomly shuffling the index of subjects,

and thus the permuted genetic data can maintain their intrinsic structures (e.g., linkage

disequilibrium).
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By definition, li ¼ LðYi; fkðXikÞÞ � E½LðYi; fkðX
0

ikÞÞ�. Therefore, the proposed group-wise fea-

ture importance score is obtained by comparing the loss derived from the observed and per-

muted data that is known to be not predictive. Intuitively, if region k is not predictive, then the

difference in loss between observed and permuted data should be around zero, and thus Δk is

expected to be 0. Alternatively, if region k is predictive, then the loss in observed data is

expected to be smaller than that from permuted data, leading to Δk< 0. Therefore, Δk< 0

measures the predictive power of region k, and a smaller negative value indicates higher pre-

dictive power.

We propose to test whether Δk is significantly smaller than 0 to determine whether region k
is predictive, and used the significance as a proxy to gauge the predictive power of region k for

a given DNN model. Therefore, we perform a one-sided hypothesis test:

H0 : Dk � 0 versus H1 : Dk < 0

Under the null, we assume that li (i 2 D2) comes from the same distribution and var

(li)<1, as jD2j ! 1. Therefore, we have Dk � Nð0; s2
kÞ, where jD2j denotes the cardinality

of D2 and s2
k is estimated empirically.

Although DNNs that can capture both linear and non-linear effects have good generaliza-

tion properties, they tend to be over-parameterized and can be overfit on the training data

(i.e., D1). Therefore, the differences in loss are proposed to be evaluated on the validation data

(i.e., D2). However, randomly splitting the data into two subsets (i.e., D1 and D2) once can cre-

ate chance finding, and thus we use the idea of K-fold cross-validation to define the overall test

statistics as

Dk ¼
1

K

XK

i

Dik;

where Δik is calculated using Eq 1 based on the data from the ith cross-validation. Given

each Δik asymptotically follows a normal distribution (i.e., Dik � Nð0; s2
ikÞ), we have

Dk � N 0; 1

K2

PK
i s

2
ik

� �
and thus the predictive significance of region k can be evaluated accord-

ingly. Although more fold of cross-validation can make the test statistics more robust, it can

increase computational burden. Through our evaluations, we found that there is not a substan-

tial difference when K is above 20. Therefore, we set K = 20 by default.

There are two fundamental differences between our proposed feature selection method and

other screening rules: 1) By applying the fitted model fk(�) on the permuted data (X0ik), we elim-

inate the need to refit a new model on each permuted data, making it easy to evaluate the loss

difference. The main advantage of such a strategy is its computational efficiency, which is of

great importance for complex DNN models. Indeed, refitting hundreds of DNNs for each

region is computationally prohibited. 2) Our proposed screening method aligns well with the

downstream prediction task. Unlike many existing methods that treat variable screening (e.g.,

SIS [31] and HSIC-Lasso [32]) and predictive modeling as independent processes, the pro-

posed group-wise feature importance score is designed to measure the predictive power for

each region, and thus is consistent with the goal of prediction modeling. The p-values derived

from our proposed test can be viewed as relevant importance for the prediction task, and thus

can provide practical guidance for feature selection. In addition, the proposed method allows

for considering the joint predictive effects from all features within the region, which not only

makes it possible to capture features with complex effects (e.g., interaction), but also greatly

facilitates model interpretation.
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Prediction modeling

Deep learning models are the state-of-the-art method for capturing and modeling features of

high complexity. However, they generally suffer from the curse of dimensionality and lack of

interpretability. While our proposed feature selection can reduce data dimension substantially,

training a DNN with pre-selected features can still be computationally expensive and need a

huge amount of memory. In addition, DNNs may fail to capture the infinitesimal effects that

have been often assumed by existing PRS methods [33]. In this work, we propose to design a

new network architecture, where DNNs built from feature screening are combined based on

the idea of transfer learning and a background node is further added to capture the infinitesi-

mal effects.

An illustrative figure of our proposed idea is shown in Fig 1. The background node (i.e., h0
0
)

is designed to capture the infinitesimal effects and is obtained by fitting a gBLUP model [33].

As the objective function in feature screening is the same as that in the final prediction task,

the networks trained during the feature screening process are informative for the final predic-

tion task. Therefore, we use the idea of transfer learning to build the final prediction model.

We propose to treat the last hidden layers of pre-trained models obtained from feature screen-

ing as the input, and stack the newly added hidden layers on top to model the joint effects

from these selected genes. Specifically, let p denote the number of genes selected based on our

proposed group-wise feature importance score presented in the previous section, and

f hk ðXk; θkÞ represents the last hidden layer of the DNN model trained on gene k, where θk is

a vector of the associated model parameters. Our proposed prediction model can be

Fig 1. An illustrative figure of the architecture of the proposed transfer-learning-based deep network. The blue box: DNN models obtained from

feature screening and the corresponding parameters are fixed. The green box: the background node (h0
0
) capturing the infinitesimal effects and the

newly added hidden layers designed to model the joint effects from selected genes. The parameters associated with the background node and the newly

added hidden layers are estimated.

https://doi.org/10.1371/journal.pcbi.1010328.g001
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presented as

EðYjXÞ ¼ gðf h
1
ðX1; θ1Þ; � � � ; f hp ðXp; θpÞ; γ1Þ þ g 0ðh00; g0Þ ð2Þ

where g(�;γ1) is a function associated with the added hidden layers with parameters γ1, and g0(�;
γ0) is a function for the background with parameter γ0. Same as transfer learning, we keep the

parameters associated with pre-trained models unchanged (i.e., θ is fixed in the network), and

only estimate parameters for the background (γ0) and newly added hidden layers (i.e., γ1).

Therefore, the proposed transfer learning model substantially reduced the number of parame-

ters as compared to a DNN with the same architecture, where (γ0, γ1, θ1, � � �, θp)0 needs to be

estimated. Similar to the feature screening process, standard loss function (e.g., mean square

error and cross entropy) and optimization technique (e.g., Adam) are used for parameter

estimation.

The algorithm of our proposed framework, including both feature screening and prediction

modeling, is depicted in algorithm 1. There are five major advantages of our proposed frame-

work: 1) It streamlines the dimension reduction and prediction modeling processes. By mak-

ing the objective functions for feature screening and prediction modeling the same, our

method reduces the chance of overlooking important predictors, and thus has great potential

to improve prediction accuracy. 2) Both feature screening and prediction modeling are built

based on DNN models, and thus it has the natural advantages of capturing and modeling fea-

tures of high complexity, making it easy to account for both linear and non-linear predictive

effects. 3) Our method selects predictors at the gene level, and thus has better interpretability

as compared to many existing DNNs that are completely black-box nature. 4) By using the

idea of transfer learning, we have substantially reduced the number of parameters in our pre-

diction model, and thus improve the memory and computational efficiency. 5) The proposed

framework is very flexible, and can easily accommodate various model assumptions. For

example, if interplay among genes is considered, the network shown in Fig 1 can be used. On

contrary, if only interactions within genes are considered, the network in Fig 2 can be used

instead, where fully connected layer is replaced by a pre-specified structure. In addition, unlike

existing PRS that either assumes diseases are caused by infinitesimal effects or large isolated

effects, our model can consider both conditions simultaneously. For example, when γ1 is esti-

mated to be zero, our model is equivalent to gBLUP that assumes the infinitesimal effects [33].

Similarly, when ĝ0 ¼ 0, our model is equivalent to a sparsity regression model, which assumes

diseases are affected by a few genes with large effects [34]. When both γ0 and γ1 are not zeros,

our method models both the effects from isolated large predictors as well as the infinitesimal

effects.

Algorithm 1 Deep Neural Network-based Prediction Model
Input: Genetic variants grouped into P regions (e.g., genes) and the
threshold level α for screening
Output: Prediction model f(X)
Step 1. Feature Screening (DNN-screen):
1: Input: Genetic variants grouped into P regions and the outcome y

in training data.
2: Output: The group-wise feature importance scores S = (S1, S2, � � �,

SP) and neural network models for each region fs(X) = (f1(X1;θ1), � � �,
fP(XP;θP)).
3: for i  1 to P do
4: Build neural network model fi(Xi;θi)
5: Calculate the group-wise feature importance score Si based on

fi(Xi;θi)
6: end for

Step 2. Prediction model (DNN-transfer):
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1: Input: Genetic variants grouped into P regions, the outcome y in
training data, the threshold level α for screening, group-wise feature
importance score S, and the deep neural network models for each region
fs(X).
2: Output: The final prediction model f(X).
3: Let fs and Xs be an empty model and input set.
4: for i  1 to P do
5: if Si < α then
6: Xs = [Xs, Xi]
7: Concatenate pre-built model: fs = [fs, fi(Xi;θi)]
8: end if
9: end for
10: Network architecture: a) stack hidden layers hs(�;γ1) on top of

fs(Xs;θ) as
f sðXs; yÞ

hsð�; g1Þ

" #

, and concatenate the background layer b(X;θ0) to

get the final network f(X;(θ, γ)) as bðX; g0Þ;
f sðXs; yÞ

hsð�; g1Þ

" # !

.

11: Estimate parameters γ while keeping parameters θ fixed.

Results

Simulation studies

We conducted a set of simulations to evaluate the performance of our method, including fea-

ture selection and prediction modeling. To mimic the human genome, genotypes were directly

drawn from the UK Biobank data, where unrelated white British individuals with missing

Fig 2. An illustrative figure of the architecture of the proposed transfer-learning-based deep network, where no interaction between genes is

assumed. The blue box: DNN models obtained from feature screening and the corresponding parameters are fixed. The green box: the newly added

hidden layers, a background node, and their associated parameters that need to be estimated.

https://doi.org/10.1371/journal.pcbi.1010328.g002
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genotype rate less than 5% were included. We cut the genome into genes based on GRCh37

assembly, and excluded variants that meet any of the follow criteria: 1) minor allele frequencies

<1%; 2) INFO score <0.8; and 3) missing rate>5%.

The evaluation of feature selection. We evaluated the performance of feature selection

based on power and type I error. We considered a total of ten genes with six harboring only

noise variants, and simulated the mean using the remaining four genes as:

mi ¼
P
bi1X1iIðX1i 2 F1Þ þ

P
bi2X2iIðX2i 2 F2Þ

þb3ð
P
X3iÞ

2
þ b4cosð

P
X4iÞ;

ð3Þ

where bik � Nð0; s2
kÞ and Fk indicates the sets of causal variants for gene k (k 2 {1, 2}). We set

90% and 10% of genetic variants in the first and second genes to be causal (i.e., I(X1i 2 F1) =

90% and I(X2i 2 F2) = 10%). As shown in Eq 3, in addition to genes with only additive effects,

another two genes that harbor non-linear effects, including pairwise interactions and a cosine

function, were considered. We simulated both normally distributed and binary outcomes as:

Yi ¼ mi þ �i; �i � Nð0; s2Þ

logð
pi

1 � pi
Þ ¼ mi; pi ¼ PrðYi ¼ 1jXiÞ

8
><

>:
ð4Þ

We considered sample sizes of 1,000, 10,000 and 100,000 in our simulations, and the corre-

sponding effect sizes are shown in S1 Table. For each setting, we did 5000 Monte Carlo simula-

tions. For our proposed feature selection (denoted as DNN-screen), DNN is set as a multi-

layer perceptron that has 2 hidden layers with 50 and 10 nodes for the first and second layers,

respectively. To control over-fitting, we also added a dropout layer after the first hidden layer,

where the dropout rate was set within the recommended range of 0.2 to 0.8. A total of 100

epochs was used for each model training. For comparison purposes, we analyzed the same

data using a widely-used set-based method, including SKAT with a linear kernel (denoted as

SKAT-linear) and SKAT-optimal that optimally combines the burden test and SKAT [35, 36].

We also analyzed each simulated data by first using a single variant test, and then derived the

region-based p-value using the ACAT, a recently proposed Cauchy-statistics-based method

[37].

The type I errors for both continuous and binary outcomes are shown in Table 1. For all

methods considered, the type I errors are well controlled under the significance level of 5%

and 1%. The power under the significance levels of 5% and 1% is shown in Fig 3 and S1 Fig,

respectively. Not surprisingly, our proposed DNN-based group-wise feature importance score

significantly outperformed the other three methods when the predictive effects are non-linear.

This is mainly because neural networks are particularly powerful at capturing non-linear

effects without the need of pre-specifying relationships between predictors and outcomes.

Table 1. The comparisons of type I errors based on 5000 Monte Carlo simulations.

Continuous Binary

No. DNN-screen SKAT-linear SKAT-optimal ACAT DNN-screen SKAT-linear SKAT-optimal ACAT

α = 0.05 1000 0.049 0.051 0.052 0.059 0.049 0.046 0.049 0.041

10000 0.054 0.053 0.056 0.055 0.048 0.049 0.050 0.050

100000 0.048 0.050 0.047 0.057 0.051 0.045 0.044 0.047

α = 0.01 1000 0.009 0.012 0.011 0.016 0.011 0.009 0.010 0.007

10000 0.010 0.010 0.013 0.013 0.012 0.012 0.011 0.012

100000 0.011 0.008 0.011 0.013 0.010 0.010 0.011 0.008

https://doi.org/10.1371/journal.pcbi.1010328.t001
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When causal genetic variants act in a linear additive manner, our proposed DNN-screen per-

forms similarly to ACAT that combines p-values from all variants within the region [37].

While SKAT with a linear kernel has similar performance to the proposed method when most

of the variants are causal, its power tends to reduce when only a small proportion of the vari-

ants are associated. Although ACAT method that is mainly driven by small p-values tends to

perform better than SKAT-based methods under all situations considered, it performed worse

than our method when the predictive effects are non-linear. Nevertheless, as shown in Fig 3

and S1 Fig, our proposed DNN-based group-wise feature importance score performs similarly

to the existing widely used set-based methods when the predictive effects are linear, and it sig-

nificantly outperforms these methods when non-linear effects present.

The evaluation of prediction modeling. To evaluate the prediction performance, we also

simulated both binary and continuous outcomes using Eq 4, where the conditional mean (μi)
included both linear and non-linear predictive effects:

mi ¼ I1
P
bi1X1iIðX1i 2 F1Þ þ I2

P
bi2X2iIðX2i 2 F2Þ þ I3b3ð

P
X3iÞ

2
þ I4b4cosð

P
X4iÞ

We considered three types of disease models, including 1) S1: linear effects only model (i.e.,

I1 = I2 = 1 and I3 = I4 = 0), 2) S2: non-linear effects only model (i.e., I1 = I2 = 0 and I3 = I4 = 1),

and 3) S3: both linear and non-linear effects (i.e., Ii = 1, 8i). Similar to the first simulation, we

set I(X1i 2 F1) = 90% and I(X2i 2 F2) = 10%. The details of effect sizes are summarized in S2

Table. For each model setting, we gradually increased the number of noise genes from 6 to 96

Fig 3. The comparisons of power under 5% significance level based on 5000 Monte Carlo simulations. Linear (90%): 90% of genetic variants on the

causal gene is predictive. Linear (10%): 10% of genetic variants on the causal gene is predictive. Interaction: pairwise interaction effects. Non-linear

(cos): genetic variants on the causal gene affect the outcome through a cosine function.

https://doi.org/10.1371/journal.pcbi.1010328.g003
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(i.e., the total number of genes increases from 10 to 100), and did 1000 Monte Carlo simula-

tions. To evaluate the prediction accuracy, Pearson correlations and the area under the curve

(AUC) are used for continuous and binary outcomes, respectively. For our proposed frame-

work, we first used feature selection to screen predictive genes. We then selected those that

met the p-value threshold, and treated them as the input for prediction modeling. The network

architecture of our model is the same as Fig 1, where the DNNs in the screening phase were

treated as pre-trained models and two fully connected hidden layers were stacked on top. The

number of hidden nodes for the first and second hidden layers were set to 100 and 10, respec-

tively. Similar to the first simulation, a total of 100 epochs was used for modeling training. We

denoted our proposed prediction model as DNN-transfer, where the parameters associated

with pre-trained DNNs and the newly added hidden layers were fixed and estimated, respec-

tively. For comparison purposes, we also analyzed each simulated dataset using a DNN model

with the same set of pre-selected genes and the same network architecture, except that all

model parameters, including both the parameters in pre-trained models and those from the

newly added hidden layers, are retrained. We denote this DNN model as DNN-optimal. We

further analyzed each simulated dataset using existing widely adopted genomic risk prediction

methods, including gBLUP [33] implemented in the gcta software, MultiBLUP [10], KMLMM

[11] and DPR [15]. For each of these methods, we used their default setting (denoted as

Default) as well as selected genes based on SKAT-linear, SKAT-optimal and ACAT.

Figs 4 (S2 Fig) and 5 (S3 Fig) summarized the prediction accuracy under different screening

thresholds for continuous and binary outcomes, respectively. As expected, when the outcomes

are affected by genetic variants with non-linear effects (i.e., disease models S2 and S3), our pro-

posed DNN-transfer significantly outperforms those prediction models that primarily focus

on linear relationships (i.e., gBLUP, MultiBLUP and DPR). Although MKLMM is designed to

capture non-linear effects through adopting a data-driven approach to select appropriate ker-

nels, its performance can vary substantially depending on whether the appropriate kernels

have been selected. For example, MKLMM can have similar level of performance as DNN-

transfer when the most appropriate kernels have been selected. However, MKLMM can per-

form substantially worse once the selected kernels do not reflect the underlying relationships.

When only linear additive effects are present (disease model S1), our DNN-transfer outper-

forms gBLUP under the default setting, but its performance is similar or slightly better than

the other methods. This clearly indicates that similar to all deep learning models, our proposed

DNN-transfer has natural advantages of capturing features with non-linear predictive effects,

and it offers the flexibility in modeling features of high complexity. As shown in Figs 4 and 5,

the proposed DNN-transfer has very robust performance across a range of disease models,

including a simple linear additive model to a more complex setting that involves different

types of non-linear effects.

As the number of noise regions increases, the prediction accuracy for all methods that have

employed a feature selection mechanism remains relatively stable, whereas the performance of

those without feature selection (i.e., the default settings of gBLUP and DPR) dropped substan-

tially. gBLUP assumes effect sizes from all genetic variants follow the same normal distribu-

tion, and the default setting of gBLUP include all genetic variants without filtering out the

impact of noise. As shown in both Figs 4 and 5, the prediction accuracy dropped the most for

gBLUP under its default setting as the number of noise increases. Similarly, DPR sets its prior

using a Dirichlet process with the stick-breaking constructive representation, and thus it mod-

els the effect sizes using a infinite normal mixture (i.e., bi �
Pþ1

k¼1
pkNð0; s2

kÞ). Although mix-

ture models have the ability to model various types of effect size distributions, it cannot

adequately tease out the impact of noise. Therefore, the prediction performance of DPR is
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affected by the amount of noise under its default setting. MultiBLUP, MKLMM, and our

method employed their own feature screening processes by default, and thus as expected their

performance remains largely unchanged as the number of noise increases. The robustness

against noise can be critical for the prediction analysis, especially when analyzing high-dimen-

sional genomic data.

For comparison purposes, in addition to the default settings, we also analyzed each simu-

lated data using the above software (i.e., gBLUP, MultiBLUP, MKLMM, DPR), where predic-

tive genetic regions are selected using commonly adopted methods, including SKAT-linear,

SKAT-optimal and ACAT. As expected, with feature screening implemented, the performance

for all methods remains stable as the number of noise increases. However, although SKAT-lin-

ear, SKAT-optimal and ACAT can efficiently identify features with linear effects and facilitate

the downstream prediction tasks, their ability in detecting features with complicated types of

effects is limited and thus the corresponding prediction models lack sufficient accuracy in the

presence of non-linear effects. On contrary, our method first efficiently detects genes harbor-

ing both linear and non-linear effects, and then uses these selected genes to build DNN mod-

els. Our method can reduce the impact of noise via feature screening, and maximize

prediction accuracy through modeling selected features with various types of effects. There-

fore, it is robust against noise, regardless of the underlying disease models. We consider this

Fig 4. The comparisons of prediction accuracy for continuous outcomes. Genes with p-values less than 0.001 are considered significant.

https://doi.org/10.1371/journal.pcbi.1010328.g004
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important, as high-dimensional genomic data has a large amount of noise, and causal variants

as well as their types of effects are unknown in advance.

Comparing the two DNN-based models (i.e., DNN-transfer v.s. DNN-optimal), although

our proposed transfer learning method (i.e, DNN-transfer) has significantly reduced the num-

ber of model parameters, its prediction performance is very similar to DNN-optimal, where all

parameters are re-estimated (Figs 4, 5, S2 and S3 Figs). The proposed DNN-transfer utilizes

the information from feature screening and only estimates the parameters associated with the

newly added hidden layers (i.e., green box in Fig 1). Therefore, DNN-transfer substantially

improves memory and computational efficiencies of a deep network that has the same archi-

tecture, making it scalable for the analysis of high-dimensional data. Indeed, in our proposed

prediction framework, the small DNN models built for each gene during the feature screening

process can be efficiently carried out via parallel computing, and the final prediction model

directly uses these DNN models without re-training their associated parameters. Therefore,

our proposed prediction framework has the capacity for the analysis of genome-wide data.

Real data application

We applied the proposed prediction framework to analyze the whole-genome sequencing data

obtained from ADNI, a multi-center longitudinal study aiming at detecting Alzheimer’s

Fig 5. The comparisons of prediction accuracy for binary outcomes. Genes with p-values less than 0.001 are considered significant.

https://doi.org/10.1371/journal.pcbi.1010328.g005
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disease (AD) at the earliest stage and tracking AD progression with biomarkers [30]. Whole

genome sequencing data from study participants in ADNI-2, including newly recruited and

ADNI-1/GO continuing subjects, were obtained and analyzed using Illumina Genotyping

Assays. After discarding genetically related individuals, 808 subjects remained in our study.

Clinical, imaging and biospecimen biomarkers from these study participants were also col-

lected. For our analyses, we focus on predicting the baseline PET imaging outcomes, including

AV45 and FDG scans, using high-dimensional genomic data, where individuals with missing

outcomes were excluded. The distributions of AV45 and FDG are shown in S4 Fig.

For the genomic data, we first filtered out genetic variants if they meet any of the following

criteria: 1) call rate per subject� 90%; 2) call rate per genetic variant� 90%; 3) the p-value of

Hardy-Weinberg equilibrium test� 10−5; 4) there is no variations for the genetic variant and

5) minor allele frequency� 0.01. We only focused on the exome data and annotated the

remaining variants based on GRch37 assembly. A total of 21,985 genes with 4,028,105 genetic

variants remained in our analyses.

Feature selection for AV45 and FDG. We first used our proposed group-wise feature

importance score to detect genes that are predictive for AV45 and FDG. For the network, it is

constructed the same as our simulation, where a multi-layer perceptron with 2 hidden layers

(n1 = 50 and n2 = 10) and a dropout layer is used. A total of 100 epochs was used for each

model training. For comparison purposes, similar to simulation studies, we also used 1) SKAT

with a linear kernel, 2) optimal SKAT and 3) the ACAT to detect phenotype-related features.

The QQ-plots for AV45 and FDG are shown in S5 and S6 Figs, respectively. Both the proposed

DNN-screen and SKAT with a linear kernel controlled the type I errors well for both AV45

and FDG, whereas both SKAT-optimal and ACAT tend to have slightly inflated type I errors

for the analyses of FDG. The Manhattan plots for the proposed DNN-screen and the other

three methods are shown in Fig 6 and S7 Fig, respectively. While SKAT-optimal failed to iden-

tify any genes at the significance level of 10−5, all the other methods have identified three

genes, including APOE, APOC1 and TOMM40. All these three genes are located on chromo-

some 19, and they are well know AD-related genes [38–42]. For example, APOE encodes the

Apolipoprotein E that plays an important role in the pathogenesis of AD. APOE �4 is a major

risk factor for AD in several populations (e.g., Caucasian and African American), and it is

over-represented among late-onset AD patients [43, 44]. APOC1 encodes the Apolipoprotein

C1, and it involves in the cholesterol metabolism which can affect AD pathology. The

rs4420638 polymorphism on APOC1 has an impact on the accumulation of homocysteine,

which is involved in AD development and progression [45]. The rs11568822 polymorphism

on APOC1 also increases the risk of AD in Caucasians, Asians, and Caribbeans [41]. TOMM40
has been reported to be associated with late-onset AD, where the mitochondrial dysfunction is

believed to be the underlying cause [39]. rs10524523 on TOMM40 affects the oxidative damage

and thus influences the onset and progression of AD [45]. ACAT also detected PVRL2 gene

that is associated with both AV45 and FDG. However, since the type I errors for ACAT

method tends to be inflated (S6 Fig), this additional gene should be interpreted with cautions.

The prediction analyses for AV45 and FDG. We further used our proposed DNN-

framework to predict AV45 and FDG using the whole-exome data, where DNN-screen is

employed to detect predictive genes and DNN-transfer is used to efficiently build prediction

models with these selected genes. To reduce over-fitting, we randomly selected 100 individuals

to serve as the testing set for each outcome, and used the remaining samples to select predictive

genes and train prediction models. To avoid the chance finding, we repeated this process 20

times and reported the average prediction accuracy that is calculated based on the testing sam-

ples. For the newly added hidden layers for our DNN-transfer model, it is set the same as our

simulation studies, where 2 hidden layers with 100 and 10 hidden nodes for the first and
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second layers respectively is included. 100 epochs were used for each model training. For com-

parison purposes, we analyzed the same dataset using DNN-optimal, where the network archi-

tecture is the same as that in DNN-transfer and all parameters are re-estimated. We also

analyzed each dataset using the widely-adopted gBLUP, MultiBLUP, MKLMM and DPR

methods, where four scenarios were considered, including all genes as well as genes selected by

SKAT-linear, SKAT-optimal and ACAT.

The genes that are selected as predictive genes under various thresholds are listed in S3

Table and S4 Table for AV45 and FDG, respectively. Using p< 10−5 as the threshold, DNN-

screen, SKAT-linear and ACAT methods selected APOE, APOC1 and TOMM40 as predictive

genes for both AV45 and FDG (chances are�85%). PVRL2 gene has been selected by the

DNN-screen and ACAT methods for both AV45 and FDG with the chances being around

25% for DNN-screen and 100% for ACAT, while it has never been detected by SKAT-based

methods. The ZNF565 gene has been detected 50% times for both AV45 and FDG by the

ACAT method, but it has not been detected by the other methods. The DIP2A has been

selected 20% by the DNN-screen method for the prediction of FDG, while it has not been

selected under other scenarios. The SKAT-optimal has not detected any genes that are selected

more than 20% of times for both AV45 and FDG under this threshold (i.e., p< 10−5), and all

other genes have been detected less than 10%.

The prediction accuracy when genes are pre-selected under the thresholds of 0.001 and

0.005 is shown in Fig 7 and S8 Fig, respectively. For both AV45 and FDG, the DNN-based

models (i.e., DNN-transfer and DNN-optimal) have better prediction accuracy than all the

other methods considered, including their default settings and those with feature screening

Fig 6. The Manhattan plot for AV45 and FDG using the DNN-screen method.

https://doi.org/10.1371/journal.pcbi.1010328.g006
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implemented. For the prediction of AV45, under the threshold of 0.001, gBLUP, MultiBLUP

and MKLMM with their default settings perform similarly, whereas the accuracy of DPR tends

to be slightly worse. For the prediction of FDG, MultiBLUP, MKLMM and DPR perform simi-

larly, whereas gBLUP tends to have better performance than them. Among feature screening

methods compared, ACAT usually provides the best accuracy for each of the prediction model

considered (i.e., gBLUP, MultiBLUP, MKLMM and DPR). While pre-selection can reduce the

impact of noise, they can also overlook the impact of SNPs with infinitesimal effects. That can

be part of the reasons why ACAT tends to perform better than SKAT-based methods. As

shown in S5 and S6 Figs, ACAT usually selects more features than the others, making it easier

to capture SNPs with small effects. However, given ACAT could have inflated type I error, the

models built with features selected by the ACAT can be hard to interpret. For our proposed

DNN-based models, we have accommodated two widely used model assumptions in the net-

work architecture design, where the background input node is designed to model the infinites-

imal effects and the selected gene nodes are used to capture the sparse predictive effects.

Therefore, as shown in Fig 7 and S8 Fig, the proposed DNN architecture has better prediction

accuracy.

Comparing the two DNN-based models, while our proposed DNN-transfer uses the idea of

transfer learning and has significantly reduced the model complexity, its prediction

Fig 7. The Pearson correlations between the predicted and observed values for AV45 and FDG. Genes are pre-selected under the p-value threshold

of 0.001 for DNN-transfer, SKAT-linear, SKAT-optimal and ACAT.

https://doi.org/10.1371/journal.pcbi.1010328.g007
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performance is very similar to the DNN model that re-trains all model parameters. Therefore,

although the proposed DNN-transfer is much more computationally efficient as compared to

a DNN model with the same architecture, it can still maintain a similar level of accuracy.

Discussion

In this paper, we proposed a novel deep neural network based prediction framework for the

analysis of high-dimensional genomic data. We first proposed an explainable group-wise fea-

ture importance score, which can efficiently detect predictive genes with various types of

effects and control the type I error well. We then developed a computationally efficient deep

transfer learning model for prediction analysis, where information from feature screening is

directly incorporated and both linear and non-linear predictive effects can be efficiently cap-

tured. Through extensive simulation studies and real data analyses, we have shown that our

proposed framework is more powerful in detecting predictive genes and it has better predic-

tion accuracy, especially when the predictive effects are non-linear.

Dimension reduction is critical for analyzing genome-wide data. Existing widely used

methods usually treat dimension reduction and prediction modeling in two separate steps

with different objective functions [9, 13]. Therefore, they can overlook important features,

leading to a sub-optimal prediction model. Recently developed methods tend to build predic-

tion models with the feature selection embedded [12, 20]. However, these methods can barely

be applied to genome-wide data due to their high computational cost. Furthermore, existing

feature selection methods usually focus on linear relationships, and thus is unlikely to identify

predictors with non-linear effects. Our proposed modeling framework overcomes the above

limitations by streamlining the feature selection and prediction modeling processes, where

both aim at capturing predictive effects of various forms and maximizing the prediction accu-

racy (i.e., the objective functions are the same). In particular, our screening process selects

genes that are “significantly” predictive. It first builds a DNN model for each gene, where the

prediction accuracy is maximized. It then detects predictive genes that harbor both linear and

non-linear effects through comparing the prediction accuracy from DNN models built with a

set of features and their permutations. Our proposed DNN-screen aligns well with the down-

stream prediction task, and is unlikely to overlook features that are highly predictive. We used

a DNN model for feature screening, which is mainly because our prediction model is also

DNN-based. Indeed, other machine learning models (e.g., support vector machine and ran-

dom forest) can also be employed for the feature screening process, where the group-wise fea-

ture importance score is calculated by comparing the prediction accuracy of the model with

original features and their permutations. In addition, we have derived the distribution of our

proposed group-wise feature importance score based on the data splitting idea, and the com-

putationally expensive procedure that requires to refit the model for each permuted data is not

needed, making it possible to consider models of high complexity (e.g., deep neural network

with complex architecture). While our proposed group-wise feature importance score aligns

well with the downstream tasks, its p-value threshold used for screening may still have an

impact on the prediction performance. Similar to many existing feature screening methods

[31, 32], using a very loose threshold for screening can include lots of noise, which not only

increases the computational complexity, but also reduces the robustness and accuracy of the

prediction model. Similarly, using a very stringent threshold can exclude the set of features

that are predictive. For our proposed method, we recommend to use a threshold of 0.001 or

0.005 for a whole-exome analysis (i.e., about 20,000 regions).

Substantial amount of evidences have suggested that non-linear predictive effects widely

exist [16]. However, existing literature for the calculation of PRS usually focuses on linear
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relationships [6, 10, 13, 15, 20], ignoring the contributions from predictors with non-linear

effects (e.g., interaction effects). Kernel functions have been recently incorporated into the pre-

diction model to capture those non-linear effects [11, 17], but their performance highly

depends on the pre-selected kernels and the underlying disease model. In our proposed

modeling framework, we developed a transfer-learning-based deep neural network for the

PRS construction. Therefore, our prediction model inherits all the advantages in deep neural

networks, and can discover and model features of high complexity. Different from deep neural

network that usually suffers from the curse of dimensionality and high computational cost,

our proposed DNN-transfer uses the idea of transfer learning and directly incorporates infor-

mation from feature screening into the network architecture. Therefore, it significantly

reduced the number of model parameters as compared to models of a similar level of complex-

ity, making it much more appealing in handling high-dimensional data. Indeed, our proposed

framework can be applied to whole exome data, where feature screening is used to scan all

genetic variants and a prediction model is built by directly incorporating information from

feature screening into the final prediction task.

While the proposed DNN-transfer utilizes the idea from transfer learning [46], it has its

own unique characteristics. Traditional transfer learning method utilizes a pre-trained model

that is obtained by jointly considering all features. However, for high-dimensional data, these

pre-trained models themselves can be hard to obtain, mainly due to their huge amount of

model parameters and the high computational cost. On contrary, our proposed method builds

the pre-trained model (i.e., blue box of Fig 1) by combining multiple gene-based DNN models,

which are trained separately in the feature screening process. The average computational time

for feature screening as sample sizes increases is illustrated in S9 Fig. As the gene-based DNN

models built in the feature screening process can also be efficiently implemented using parallel

computing, the pre-trained model in our proposed framework can be easily obtained. The

final architecture of our proposed prediction model includes a pre-trained model module that

is obtained by combining multiple pre-trained DNNs (Fig 1: blue box), and an added hidden

layer module that is designed to capture joint predictive effects from these genes (Fig 1: green

box). Similar to transfer learnings, we keep the parameters in the pre-trained model fixed and

only estimate the parameters associated with newly added hidden layers, which has substan-

tially reduced the model complexity while maintaining their capability in capturing predictive

effects of various forms. Indeed, for a whole exome analysis with approximately 22,000 genes

and a sample size of 500 (i.e., the analysis of FDG and AV45), our feature screening takes

about 15 seconds for each gene and the transfer-learning based prediction model takes no

more than 5 minutes for the final prediction tasks. Through both simulations (Figs 4 and 5, S2

and S3 Figs) and real data analyses (Fig 7 and S8 Fig), we have shown that our proposed DNN-

transfer can obtain similar levels of prediction accuracy as compared to a similar DNN with all

parameters re-estimated. Therefore, DNN-transfer can jointly consider a large number of

genes and efficiently build an accurate prediction model.

Model interpretation can be of great importance in the field of Bioinformatics. While deep

learning models have achieved the state-of-the-art prediction performance in many domains,

their black-box nature limited their applications for risk prediction studies. Unlike many exist-

ing DNNs (e.g., autoencoder and convolutional neural network), our proposed DNN-based

feature screening and prediction modeling framework has much better interpretability. Our

proposed group-wise feature importance score can detect predictive genes that is a functional

unit of DNA, and our designed prediction network architecture can reflect the underlying dis-

ease etiology. While we used the proposed group-wise feature importance score to detect pre-

dictive genes, the same idea can also be used to detect disease-associated pathways. In

addition, although we mainly focus on the prediction analysis based on genomic data in this
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work, our method can be applied to the analysis of various other data types (e.g., multi-omics

data), where the proposed DNN-based prediction framework is first used to detect the com-

plex inter/intra-relationships among multi-omcis data within a set (e.g., pathway) and then

build prediction models by using the detected predictive sets.

In the prediction analyses of FDG and AV45 using whole-exome data, we have found that

our proposed framework has achieved better prediction accuracy than existing methods (Fig 7

and S8 Fig). It consistently selected APOE, APOC1 and TOMM40 as highly predictive genes,

and all of them are well-known AD related. For example, it has been shown that genetic poly-

morphisms in APOE and APOC1 genes are associated with cognitive impairment progression

in patients with late-onset AD [41, 43, 44, 47]. Evidences have also suggested that APOE �4

itself increases cognitive decline, and APOC1 H2 has a synergistic effect with APOE �4 in

increasing the risk of cognitive decline [47]. rs2075650 polymorphism on TOMM40 gene con-

tributes to AD in Caucasian and Asian populations [48]. The polymorphic poly-T variant

rs10524523 on TOMM40 gene provides better estimation of age of late-onset AD for APOE �3

carriers [49]. In addition to those well-known AD-related genes, DIP2A and PVRL2 that are

selected from the predictions of AV45 and FDG have also shown to be associated with AD.

For example, [50] found that the RNA expression of DIP2A is altered in AD from 708 prospec-

tively collected autopsied brains, and [51] suggested that polymorphisms on PVRL2 are associ-

ated with late-onset AD. While our whole exome analyses improve the prediction accuracy

and offer more insight, additional replication studies are needed to further investigate these

risk prediction models and their utilities.

One of the limitations of our proposed prediction framework is that we carried out feature

screening at the gene level. Therefore, similar to many existing methods that only consider

marginal effects and within-gene interaction effects [11], our method can overlook genes with

only between gene interaction effects. A potential solution to this problem is that feature

screening can be implemented at the pathway levels, where interactions between genes within

the pathway can be explicitly modeled. To eliminate the impact of genes that are not predictive

within the pathway, a variational dropout layer can be added into our proposed transfer learn-

ing-based prediction model [52]. In addition, in this paper, we used gene annotations to group

genetic variants, and thus we mainly focused on the whole exome data. However, our proposed

method has the potential to be applied for genome-wide analysis. For example, the regions can

be defined using similar empirical criteria as those in [10, 11] for GWAS data (e.g., genetic var-

iants within 75Kb are grouped into a region), and the regions can be defined in a similar fash-

ion but with shorter length for whole-genome sequencing data (e.g., 2Kb).These can be future

directions of our research.

In summary, we have developed a DNN-based prediction modeling framework, which can

not only discover predictive features of complex forms, but also accurately and efficiently

build an explainable prediction model that can capture features of high complexity. The pro-

posed modeling framework is among the first few DNN-based method that can be applied to

whole exome data, and it is implemented in a python package that can be obtained from

https://github.com/YaluWen/EDNN.
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